Abstract. Let \(\{Y_n, n \geq 1\} \) be a sequence of independent positive random variables, defined on a probability space \((\Omega, \mathcal{A}, P)\), with a common distribution function \(F \). Put
\[
Y_n^* = \inf(Y_1, Y_2, \ldots, Y_n), \quad m \geq 1 \quad \text{and} \quad S_n = \sum_{m=1}^{n} Y_n^*, \quad n \geq 1.
\]
In this paper mixing limit theorem for the sums \(S_n, n \geq 1 \), is given and the random central limit theorem is proved.

1. Introduction and results. Let \(\{Y_n, n \geq 1\} \) be a sequence of independent positive random variables with a common distribution function \(F \). Let us put
\[
Y_n^* = \inf(Y_1, Y_2, \ldots, Y_m), \quad m \geq 1, \quad \text{and} \quad S_n = \sum_{m=1}^{n} Y_n^*, \quad n \geq 1.
\]
The three convergences: in probability, almost sure and in law were established in [4]-[7] for sums \(S_n \) of infima of independent random variables uniformly distributed on \([0, 1]\). The almost sure invariance principle was investigated in [8].

Now, let \(\{Y_n, n \geq 1\} \) be a sequence of independent positive random variables with a common distribution function \(F \) such that
\[
\int_{0}^{b} \left| F(x) - \frac{x}{b} \right| x^{-2} \, dx < \infty \quad \text{for} \quad 0 < b < \infty.
\]

T. Höglund proved in [9] the following central limit theorem:

Theorem 0. Under assumption (1)
\[
\lim_{n \to \infty} P(Z_n < x) = \Phi(x),
\]
where

\[Z_n = \frac{S_n - b \log n}{b \sqrt{2 \log n}}, \quad n > 1, \]

(2)

\[S_n = \sum_{k=1}^{n} Y_k^*, \quad Y_k^* = \inf(Y_1, Y_2, \ldots, Y_k), \quad k \geq 1, \quad n \geq 1, \]

and \(\Phi \) is the standard normal distribution function.

In this paper we give a mixing limit theorem and a random central limit theorem for \(\{Z_n, n > 1\} \).

Theorem 1. (i) Under the assumptions of Theorem 0 the sequence \(\{Z_n, n > 1\} \) is mixing, i.e.

\[\lim_{n \to \infty} P(Z_n < x | B) = \Phi(x) \]

for any event \(B \in \mathcal{A} \) such that \(P(B) > 0 \).

(ii) Let \(\{N_n, n \geq 1\} \) be a sequence of positive integer-valued random variables such that

\[N_n/a_n \overset{p}{\to} \lambda \quad \text{as } n \to \infty, \]

(3)

where \(\lambda \) is a positive random variable dependent only on finitely many \(Y_n, n \geq 1 \), and \(\{a_n, n \geq 1\} \) is a sequence of positive numbers tending to \(+\infty \). Then

\[\lim_{n \to \infty} P(Z_{N_n} < x) = \Phi(x). \]

2. **Proofs of results.** In the proof of Theorem 1 we apply some lemmas given by Deheuvels [5] and Höglund [9]. For the sake of completeness we present them in Section 3.

Proof of Theorem 1. (i) Let \(\{Z_n, n > 1\} \) be defined by (2) and let \(Y_{m,n}^* = \inf(Y_{m+1}, \ldots, Y_n) \) for \(n > m \). Denote by \(A_k \) the event \(\{Z_k < x\} \) for \(k \geq n_0 \), where \(n_0 \) is such that \(P(A_k) > 0 \) for all \(k \geq n_0 \). We prove that the sequence \(\{Z_n, n > 1\} \) is mixing.

By Theorem 1 ([10], p. 406) it is sufficient to show that

\[\lim_{n \to \infty} P(A_n | A_k) = \Phi(x), \quad k \geq n_0, \]

(5)

as, by Theorem 0, \(\lim_{n \to \infty} P(A_n | \Omega) = \Phi(x) \). Since

\[Z_n = \frac{S_k}{b \sqrt{2 \log n}} + \sum_{i=k+1}^{n} \frac{(Y_i^* - Y_{i-1}^*)}{b \sqrt{2 \log n}} + \sum_{i=k+1}^{n} \frac{Y_i^*}{b \sqrt{2 \log n}}, \]

we have $S_k/b \sqrt{2 \log n} \to 0$ a.s. as $n \to \infty$, and, by Lemma 3.4,

$$
\sum_{i=k+1}^{n} (Y_i - Y_i^*)/b \sqrt{2 \log n} \to 0 \text{ a.s. as } n \to \infty.
$$

The random variables $\sum Y_i^*$ are independent of S_k for every $k \geq n_0$, so, by Theorem 0, we immediately obtain (5) and the proof of (i) is completed.

(ii) To prove that $P(Z_{n_k} < x) \to \Phi(x)$ as $n \to \infty$ for every $\{N_n, n \geq 1\}$ satisfying (3), it is sufficient to note that the sequence $\{Z_n, n \geq 1\}$ satisfies assumptions of Theorem 3 in [3].

By (i) and since the random variable λ depends only on finitely many $Y_{n_k}, n \geq 1$, we have

$$
\lim_{n \to \infty} P(Z_n < x | A) = \Phi(x)
$$

for all $A \in \mathcal{F}_{\lambda}$, where \mathcal{F}_{λ} is the σ-field generated by the random variable λ.

Now we show that $\{Z_n, n \geq 1\}$ satisfies the generalized Anscombe's condition with the norming sequence $\{k_n = n, n \geq 1\}$, i.e. that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$
\limsup_{n \to \infty} P_A(\max_{(1-\delta)n < i < (1+\delta)n} |Z_n - Z_i| \geq \varepsilon) \leq \varepsilon P(A)
$$

holds for every $A \in \mathcal{F}_{\lambda}$, where $P_A(B) = P(A \cap B)$.

If we write $D_{\delta}(\varepsilon) = \{i: (1-\delta)n < i < (1+\delta)n\}$, then by a simple estimation we obtain

$$
\max_{i \in D_{\delta}(\varepsilon)} |Z_n - Z_i| = \max_{i \in D_{\delta}(\varepsilon)} \left| \frac{S_n - b \log n}{b \sqrt{2 \log n}} - \frac{S_i - b \log i}{b \sqrt{2 \log i}} \right|
\leq \max_{i \in D_{\delta}(\varepsilon)} \left| \frac{S_n}{b \sqrt{2 \log n}} - \frac{S_i}{b \sqrt{2 \log i}} \right| + \max_{i \in D_{\delta}(\varepsilon)} \left| \frac{\log n}{\sqrt{2 \log n}} - \frac{\log i}{\sqrt{2 \log i}} \right|
\leq \max_{i \in D_{\delta}(\varepsilon)} \left(\frac{S_n}{b \sqrt{2 \log n}} - \frac{S_i}{b \sqrt{2 \log i}} + \frac{\log n}{\sqrt{2 \log n}} - \frac{\log i}{\sqrt{2 \log i}} \right)
+ \frac{1}{\sqrt{2}} \max_{i \in D_{\delta}(\varepsilon)} \left(\sqrt{\log n} - \sqrt{\log i}, \sqrt{\log i} - \sqrt{\log n} \right)
\leq \max \left(\frac{S_n}{b \sqrt{2 \log n}} - \frac{S_{[n(1-\delta)]}}{b \sqrt{2 \log n}} + \frac{S_{[n(1+\delta)]}}{b \sqrt{2 \log (n(1+\delta))}} - \frac{S_n}{b \sqrt{2 \log n}} \right)
+ \frac{1}{\sqrt{2}} \max \left(\sqrt{\log n} - \sqrt{\log (n(1-\delta))}, \sqrt{\log (n(1+\delta))} - \sqrt{\log n} \right)
\begin{align*}
&\leq \max \left(S_{[m(1-\delta)]} \left(\frac{1}{b \sqrt{2 \log n}} - \frac{1}{b \sqrt{2 \log n(1+\delta)}} \right) + \sum_{k=[m(1-\delta)]+1}^{n} \frac{Y_k^*}{b \sqrt{2 \log n(1-\delta)}} \right) + \\
&\quad \left(\frac{1}{b \sqrt{2 \log n(1-\delta)}} - \frac{1}{b \sqrt{2 \log n(1+\delta)}} \right) \sum_{k=n+1}^{[n(1+\delta)]} \frac{Y_k^*}{b \sqrt{2 \log n(1-\delta)}} + \max \left(\frac{S_{[m(1-\delta)]} - b_n}{b \log n(1-\delta)}, \frac{S_n - b_n'}{b \log n(1-\delta)} \right) + c_n,
\end{align*}

where

\begin{align*}
b_n &= \log n(1-\delta) \left[\frac{1}{\sqrt{2 \log n}} - \frac{1}{\sqrt{2 \log n(1+\delta)}} \right], \\
b_n' &= \log n \left[\frac{1}{\sqrt{2 \log n(1-\delta)}} - \frac{1}{\sqrt{2 \log n}} \right], \\
c_n &= \frac{1}{\sqrt{2}} (\sqrt{\log n(1+\delta)} - \sqrt{\log n(1-\delta)}).
\end{align*}

It is easy to see that \(b_n \to 0, b_n' \to 0 \) and \(c_n \to 0 \) as \(n \to \infty \).

Now let \(\{X_n, n \geq 1\} \) be a sequence of independent random variables uniformly distributed on \([0, 1]\).

Put \(G(t) = \inf \{x \geq 0: F(x) \geq t\} \). Then, by [6], the sequences \(\{G(X_n), n \geq 1\} \) and \(\{Y_n, n \geq 1\} \) are the same in law.

Furthermore, the sequence \(S_n = \sum_{k=1}^{n} Y_k^* \) may be represented as \(\bar{S}_n \)

\[\bar{S}_n = \sum_{k=1}^{n} G(X_k^*), \] where \(X_k^* = \inf(X_1, X_2, \ldots, X_k), k \geq 1. \)

On the other hand, Höglund [9] proved that

\[\frac{\sum_{k=1}^{n} G(X_k^*) - b \log n}{b \sqrt{2 \log n}} = \frac{\sum_{k=1}^{n} X_k^* - \log n}{\sqrt{2 \log n}} + r_n \]

holds in law, where \(r_n \to^p 0 \) as \(n \to \infty \). Therefore, by Lemma 3.1,

\begin{equation}
\frac{\bar{S}_{[m(1-\delta)]}}{b \log n(1-\delta)} - b_n = \frac{\bar{S}_{[m(1-\delta)]}}{b \log n(1-\delta)} b_n + r_n b_n \to 0, \text{ a.s. as } n \to \infty
\end{equation}
and

\[\frac{S_n}{b \log n} b_n' = \frac{S_n}{\log n} b_n' + r_n b_n' \to 0 \text{ a.s. as } n \to \infty, \]

where \(S_n = \sum_{k=1}^{n} X_k^* \), \(n \geq 1 \). So, by (8)-(10) we get

\[\left[\max_{i \in D_n(\delta)} |Z_n - Z_i| \geq \varepsilon \right] \leq \left[\frac{\sum_{k=[n(1 - \delta)]+1}^{[n(1 + \delta)]} Y^*_k}{b \sqrt{2 \log n(1 - \delta)}} \geq \frac{\varepsilon}{2} \right] \]

for any \(\varepsilon > 0 \) and sufficiently large \(n \).

Observe that

\[\sum_{k=[n(1 - \delta)]+1}^{[n(1 + \delta)]} Y^*_k = \sum_{k=[n(1 - \delta)]+1}^{[n(1 + \delta)]} (Y^*_k - Y^*_{[n(1 - \delta)]}) + \sum_{k=[n(1 - \delta)]+1}^{[n(1 + \delta)]} Y^*_{[n(1 - \delta)]} \cdot \]

By Lemma 3.4 and the fact that the random variables \(\lambda \) and

\[\sum_{k=[n(1 - \delta)]+1}^{[n(1 + \delta)]} Y^*_{[n(1 - \delta)]} \]

are independent for sufficiently large \(n \), one can check that condition (7) is a consequence of the following well-known Anscombe condition:

\[\limsup_{n \to \infty} P \left(\max_{i \in D_n(\delta)} |Z_n - Z_i| \geq \delta \right) \leq \varepsilon. \]

By (11), Lemma 3.3, the Markoff inequality and Lemma 3.2 we obtain

\[P \left(\max_{i \in D_n(\delta)} |Z_n - Z_i| \geq \varepsilon \right) \leq \frac{\sum_{k=[n(1 - \delta)]+1}^{[n(1 + \delta)]} Y^*_k}{b \sqrt{2 \log n(1 - \delta)}} \geq \frac{\varepsilon}{2} \]

\[\leq P \left[\sqrt{2 \log n(1 - \delta)} \geq \frac{E \left(\sum_{k=[n(1 - \delta)]+1}^{[n(1 + \delta)]} X^*_k \right)}{3 \varepsilon \sqrt{2 \log n(1 - \delta)}} \right] = \frac{O(1)}{\sqrt{2 \log n(1 - \delta)}} \to 0 \text{ as } n \to \infty. \]

Hence, from Theorem 3 of [3], we immediately obtain (4) for every \(\{N_n, n \geq 1\} \) satisfying (3). This completes the proof of Theorem 1.

3. Lemmas. In this section we present some lemmas we needed in the proofs of Theorem 1.
lemma 3.1. Let \(\{X_n, n \geq 1\} \) be a sequence of independent random variables uniformly distributed on \([0, 1]\). Then \(S_n \log n \to 1 \) a.s. as \(n \to \infty \), where \(S_n = \sum_{k=1}^{n} X^*_k \) and \(X^*_k = \inf(X_1, X_2, \ldots, X_k) \), \(k \geq 1, n \geq 1 \).

lemma 3.2. \(EX^*_k = (k+1)^{-1} \) \((k \geq 1) \), \(E S_n - \log n = O(1) \).

lemma 3.3. Under the assumptions of Theorem 0

\[
\frac{n}{b \sqrt{2 \log n}} = \frac{X^*_k - \log n}{\sqrt{2 \log n}} + r_n \text{ in law,}
\]

where \(r_n \to 0 \) as \(n \to \infty \), and

\[
\sum_{k=1}^{n} y_k |G(X^*_k) - b X^*_k| < \sqrt{\log n} \to 0 \text{ as } n \to \infty,
\]

where, for \(0 < \delta < 1 \), \(y_k = 1 \) if \(X^*_k \leq \delta \) and \(y_k = 0 \) if \(X^*_k > \delta \), and \(G(t) = \inf\{x \geq 0 : F(x) \geq t\} \).

lemma 3.4. Let \(\{Y_n, n \geq 1\} \) be a sequence of positive independent random variables with the common distribution function \(F \) such that \(F(x) = 0 \) for \(x \leq 0 \), \(F(x) > 0 \) for \(x > 0 \). Let us put \(Y^*_n = \inf(Y_1, \ldots, Y_n) \), \(Y^*_{m,n} = \inf(Y_{m+1}, \ldots, Y_n) \), \(n > m, n \geq 1 \).

Then the sum \(\sum_{m+1}^{n} (Y^*_{m,n} - Y^*_n) \) converges almost surely.

Proof. We observe that

\[
0 \leq Y^*_{m,n} - Y^*_n \leq \begin{cases} 0 & \text{if } Y^*_{m,n} \leq Y^*_n, \\ Y^*_n & \text{if } Y^*_{m,n} > Y^*_n.
\end{cases}
\]

Then

\[
\sum_{n=m+1}^{\infty} (Y^*_{m,n} - Y^*_n) \leq \sum_{n=m+1}^{\infty} \sum_{n=m+1}^{\infty} Y^*_{m,n} \mathbb{1}_{[Y^*_{m,n} > Y_n]}.
\]

Now, it is sufficient to show that

\[
\lim_{K \to \infty} P(\sum_{n=m+1}^{\infty} Y^*_{m,n} \mathbb{1}_{[Y^*_{m,n} > Y_n]} \geq K) = 0.
\]

Indeed,

\[
\lim_{K \to \infty} P(\sum_{n=m+1}^{\infty} Y^*_{m,n} \mathbb{1}_{[Y^*_{m,n} > Y_m]} \geq K)
= \left(\lim_{K \to \infty} P(\sum_{n=m+1}^{\infty} Y^*_{m,n} \mathbb{1}_{[Y^*_{m,n} > c]} \geq K) \right) P_{Y^*_m}(dC) = 0
\]
by

\[
\lim_{K \to \infty} \mathbb{P}\left(\sum_{n=m+1}^{\infty} Y_{m,n}^* \mathbb{1}_{Y_{m,n}^* > C} \geq K \right) = 0 \quad \text{for every } C > 0,
\]

and \(\mathbb{P}(Y_m = C) = 0 \) for \(C = 0 \).

Acknowledgement. The author wishes to express his gratitude to the referee for valuable remarks and comments improving the previous version of this paper. Especially Lemma 3.4 belongs to him.

REFERENCES

Instytut Matematyki UMCS
Plac Marii Curie-Sklodowskiej 1
20-031 Lublin, Poland

Received on 3. 12. 1984;
revised version on 10. 9. 1985