HAAR SYSTEM AND NONPARAMETRIC DENSITY ESTIMATION IN SEVERAL VARIABLES

BY

Z. CIESIELSKI (Sopo)
$P_m: D(Q) \to D(Q)$, where $D(Q)$ is the set of all probability densities concentrated on Q, i.e.

$$D(Q) = \{f \in L^1(Q): f \geq 0 \text{ on } Q, \int_Q f = 1\}.$$

It is also clear from (1.2) that $P_m(x, \cdot) \in D(Q)$ for fixed $x \in Q$.

We assume that we are given a probability space $(\Omega, \mathcal{F}, \Pr)$ and a simple sample of size n, i.e. a sequence X_1, X_2, \ldots of i.i.d. random vectors with values in Q and such that their common distribution has a density $f \in D(Q)$. The standard way of producing estimators for f is given by formula (1.5)

$$f_{m,n}(x) = \frac{1}{n} \sum_{j=1}^{n} P_m(x, X_j),$$

which can be written in the form (1.6)

$$f_{m,n}(x) = \sum_{J \in \mathcal{Q}_m} n(J) h_J(x)$$

with

$$n(J) = \frac{1}{n} |\{j: X_j \in J\}|, \quad h_J(x) = \frac{1}{|J|} \chi_J(x).$$

Thus, the diagram of $f_{m,n}: Q \to R$ is simply the histogram. Our aim is to investigate the rate of convergence of $f_{m,n}$ to f as m and n go to infinity and f is a Lipschitz class. For those classes the optimal relation between m and n will be described. The first results in this direction we find in Glivenko's book [7] (see also [10]).

2. Preliminaries. We are going to discuss probability densities from $D(Q) \cap C(Q)$ and from $D(Q) \cap L^p(Q)$ with $1 \leq p < \infty$. To this end we need some properties of the operator P_m. The most elementary are the following:

$$P_m \geq 0,$$

$$P_m^2 = P_m,$$

$$P_m 1 = 1,$$

$$\|P_m f\|_p \leq \|f\|_p \quad \text{for } 1 \leq p \leq \infty, f \in L^p(Q),$$

where

$$\|f\|_p = \|f\|_{L^p(Q)} = (\int_Q |f|^p)^{1/p}, \quad \|f\|_\infty = \|f\|_{L^\infty(Q)} = \text{ess sup } \{|f(x)|: x \in Q\}.$$

The modulus of smoothness of $f \in L^p(Q)$ is defined as

$$\omega_p(f; \delta) = \sup_{|h|_\infty \leq \delta} \left(\int_{Q(h)} (f(x + h) - f(x))^p \, dx \right)^{1/p},$$
where $Q(h) = \{ x \in Q : x+h \in Q \}$ and, for $f \in C(Q)$,

$$\omega_p(f; \delta) = \sup_{|x-y|_\infty < \delta, x, y \in Q} |f(x) - f(y)|,$$

where $|x|_\infty = \max(|x_1|, \ldots, |x_d|)$.

Proposition 2.5. For $f \in C(Q)$ we have

$$\|f - P_m f\| \leq \omega_\infty \left(f; \frac{1}{2^m} \right). \quad (2.6)$$

Conversely, let for some nondecreasing $\omega : R_+ \to R_+$

$$\|f - P_m f\|_\infty \leq \omega \left(\frac{1}{2^m} \right) \quad \text{for } m = 0, 1, \ldots \quad (2.7)$$

Then

$$\omega_\infty(f; \delta) \leq 4d \omega(2\delta) \quad \text{for } \delta > 0. \quad (2.8)$$

Proof. Inequality (2.6) is a simple consequence of (1.1). The converse can be proved as follows. If for some $J \in Q_m$ the points x', x'' are in J, then $P_m f(x') = P_m f(x'')$ and, by (2.7),

$$|f(x') - f(x'')| \leq |f(x') - P_m f(x')| + |f(x'') - P_m f(x'')| \leq 2 \omega \left(\frac{1}{2^m} \right). \quad (2.9)$$

Since f is continuous, it follows that (2.9) holds for $x', x'' \in J$. Let now $x', x'' \in Q$ be arbitrary two different points and let m be such that

$$\frac{1}{2^m} \geq |x' - x''|_\infty > \frac{1}{2^{m+1}}. \quad (2.10)$$

Since

$$x'' - x' = \sum_{j=1}^d (y^{(j)} - y^{(j-1)}), \quad \text{where } y^{(j)} = \sum_{k=1}^f (x'_k - x''_k) e_k,$$

with e_k being the k-th unit vector in R^d, we find by (2.10) that $y^{(j)}$ and $y^{(j-1)}$ belong to two neighbouring cubes from Q_m and therefore, by (2.9),

$$|f(x') - f(x'')| \leq 4d \omega(2 |x' - x''|_\infty).$$

The converse part of Proposition 2.5 for $d = 1$ was proved in [2].

Corollary 2.11. Let $0 < \alpha \leq 1$ and $f \in C(Q)$ be given. Then the following conditions are equivalent:

$$\|f - P_m f\|_\infty = O \left(\frac{1}{2^m} \right) \quad \text{as } m \to \infty, \quad (2.12)$$

$$\omega_\infty(f; \delta) = O(\delta^\alpha) \quad \text{as } \delta \to 0. \quad (2.13)$$
The L^p-case is little more complicated. We have the following direct result:

Proposition 2.14. Let $1 \leq p < \infty$ and let $f \in L^p(Q)$. Then

\begin{equation}
\|f - P_m f\|_p \leq 2^{d/p} \omega_p \left(f; \frac{1}{2^m} \right).
\end{equation}

Proof. For $J \in Q_m$ we have

\begin{equation}
\left\| \frac{1}{|J|} \int_J f(y) \, dy \right\|^p \lesssim \frac{1}{|J|^2} \int_J \int_J |f(x) - f(y)|^p \, dx \, dy.
\end{equation}

It follows that $J(h) = \{ x \in J : x + h \in J \}$. Then

\begin{equation}
\|f - P_m f\|_p \leq 2^{d/m} \int_{2^m \|h\|_\infty \leq 1} dh \int_{Q(h)} |A_h f(y)|^p \, dy \lesssim 2^d \left(\omega_p \left(f; \frac{1}{2^m} \right) \right)^p.
\end{equation}

The converse result depends on the following Bernstein type inequality (in case $d = 1$, see [3,4], and for $d > 1$, [5]).

Proposition 2.16. Define

\[S_m(Q) = \text{span} \{ \chi_J : J \in Q_m \}. \]

Then, for $1 \leq p < \infty$ and for $f \in S_m(Q)$, we have

\begin{equation}
\|A_h f\|_{L^p(Q(h))} \lesssim 2d \cdot 3^{d/p} (2^m \|h\|_\infty)^{1/p} \|f\|_{L^p(Q)} \quad \text{for } |h|_\infty \leq \frac{1}{2^m}.
\end{equation}

Proof. Let e_1, \ldots, e_d be the basic unit vectors in R^d and, for $h = (h_1, \ldots, h_d)$, let $h(j) = h_1 e_1 + \ldots + h_j e_j$. Since

\[A_h f(x) = \sum_{j=1}^d A_{h^j} f(x + h(j-1)), \quad h(0) = 0, \]

we obtain, for $J \in Q_m$,

\begin{equation}
\int_{Q(h)} |\Delta_h f|^p \lesssim d^{p-1} \sum_{j=1}^d \int_{J \cap Q(h)} |\Delta_{h^j} f(x + h(j-1))|^p \, dx
\end{equation}

\[= d^{p-1} \sum_{j=1}^d \int_{J \cap Q(h)} |f(x + h(j)) - f(x + h(j-1))|^p \, dx. \]

Now, $f(x + h(j)) = f(x + h(j-1))$ for $x \in (J - h(j)) \cap (J - h(j-1))$ and, therefore,

\begin{equation}
\int_{Q(h)} |f(x + h(j)) - f(x + h(j-1))|^p \, dx
\end{equation}

\[= \int_E |f(x + h(j)) - f(x + h(j-1))|^p \, dx \lesssim 2^{p-1} \left(\int_{E_{j-1}} |f|^p + \int_{E_j} |f|^p \right), \]

for $E_{j-1} \cap E_j = \emptyset$.

where
\[E = J \cap Q(h) \backslash (J - h(j)) \cap (J - h(j-1)) \]
and
\[E_j = E + h(i) = (J \cap Q(h) + h(j)) \backslash J \cap (J + h_e) \].

Let now \(J^* = \bigcup \{ J_e : \varepsilon = (\varepsilon_1, \ldots, \varepsilon_d), \varepsilon_j = 0, 1, -1 \} \cap Q \), where \(J_e = J + \varepsilon / 2^m \). It should be clear that \(E_j = J^* \cap E_j = \bigcup J_e \cap E_j \). Now \(J_e = J \) for \(\varepsilon = (0, \ldots, 0) \) and then
\[|J \cap E_j| \leq |J| - |J \cap (J + |h|_\infty \varepsilon_j)| = |J| 2^m |h|_\infty \]

For \(\varepsilon \neq 0, |J_e \cap J| = 0 \) and
\[|J \cap E_j| = |J \cap Q(h) \cap h(i)) \cap J_e| \]
\[\leq |(J + h(j)) \cap J_e| \leq \frac{|h|_\infty}{2^{(d-1)m}} = |J| (2^m |h|_\infty) \]

therefore, for \(J_e \subset Q \),
\[\int_{J \cap E_j} |f|^p \leq \frac{|E_j \cap J_e|}{|J|} \int_{J_e} |f|^p \leq (|h|_{\infty} 2^m) \int_{J_e} |f|^p \]

whence we infer that
\[\int_{Q(h)} |D_h f|^p \leq (2d)^{p-1} |h|_{\infty} \sum_{j=1}^{d} \sum_{J_e \subset Q} \left(\int_{J \cap E_j} |f|^p + \int_{J \cap E_{j-1} \cap J_e} |f|^p \right) \]
\[\leq (2d)^{p} 3d |h|_{\infty} 2^m \int_{Q(h)} |f|^p \]

We are now in position, using a standard method from approximation theory, to prove the main converse result.

Theorem 2.18. Let \(1 \leq p < \infty \) and let \(f \in L^p(Q) \). Then
\[\omega_p \left(f; \frac{1}{2^m} \right) \leq \frac{6d \cdot 3^{d/p}}{2^{m/p}} \sum_{i=0}^{m} 2^{i/p} \| f - P_m f \|_p. \]

Proof. We have
\[f = P_1 f + \sum_{j=1}^{m} f_j + (f - P_m f) \]
with \(f_j = P_j f - P_{j-1} f \), whence, for \(|h|_{\infty} \leq 1/2^m \),
\[D_h f = \sum_{j=1}^{m} D_h f_j + D_h (f - P_m f), \]
\[\| D_h f \|_{L^p(Q(h))} \leq \sum_{j=1}^{m} \| D_j f \|_{L^p(Q(h))} + 2 \| f - P_m f \|_p. \]
Now, (2.17) gives

\[\|\Delta_k f\|_{L^p(Q(n))} \leq 2d \cdot 3d/p (|h| \|f\|_{L^p(Q(n))}) \leq 2d \cdot 3d/p (|h| \|f\|_{L^p(Q(n))}) \leq 2d \cdot 3d/p (|h| \|f\|_{L^p(Q(n))}) \]

Combining these inequalities, we get (2.19).

Corollary 2.20. Let \(f \in L^p(Q) \) and let \(\alpha \) and \(p \) be such that \(0 < \alpha < 1/p \leq 1 \). Then the following conditions are equivalent:

(i) \[\omega_p(f; \delta) = O(\delta^\alpha) \quad \text{as} \quad \delta \to 0^+ , \]

(ii) \[\|f - P_m f\|_p = O \left(\frac{1}{2^m} \right) \quad \text{as} \quad m \to \infty . \]

This result in the 1-dimensional case we find in [8] and in [4]. It should be also mentioned here that Properties (2.2) and (2.4) imply

(2.21) \[E_{m,p}(f) \leq \|f - P_m f\|_p \leq 2E_{m,p}(f) \quad \text{for} \quad 1 \leq p \leq \infty , \]

where \(E_{m,p}(f) = \inf \{ \|f - g\|_p : g \in S_m(Q) \} \).

3. Estimation of continuous densities. As in Introduction, we are given a sequence \((X_1, X_2, \ldots) \) of i.i.d. random vectors with values in \(Q \) and with the common density \(f \in C(Q) \cap D(Q) \). The random function \(f_{m,n} \) is defined as in (1.5). It will be shown that, for suitable dependence of \(n \) on \(m \), the function \(f_{m,n} \) is a good estimator for \(f \). In what follows it is assumed that the sample size \(n \) is a dyadic natural. For given positive \(\beta \) the dependence of \(m \) on \(n \) is defined by

(3.1) \[n = 2^v \quad \text{and} \quad m = [\beta v/d] , \]

where \(v \) is natural and \([x]\) is the integer part of \(x \). In this particular situation the \(f_{m,n} \) is denoted by \(f_{\nu,\beta} \). It is important that \(\beta \) is asymptotically \(\log N/\log n \) for large \(v \), \(N \) being the number of elements in \(Q_m \) and \(n \) the size of the sample. Our aim is, given properties of \(f \), to determine the best \(\beta \) and then to compute \(N \).

The main tool in the following discussion is the Bernstein inequality (cf. [9], p. 19);

Lemma 3.2. Let \(Y_j (j = 1, 2, \ldots , n) \) be independent random variables such that \(\Pr \{ Y_k = 1 \} = y, \Pr \{ Y_k = 0 \} = z, y + z = 1 \). Then

\[\Pr \left\{ \left| \sum_{j=1}^{n} (Y_j - y) \right| \geq 2\omega (n y z)^{1/2} \right\} \leq 2e^{-\omega^2} \quad \text{for} \quad 0 \leq \omega \leq \frac{3}{2} (n y z)^{1/2} . \]

The rate of convergence of \(\|f - f_{\nu,\beta}\|_\infty \) to zero as \(\nu \to \infty \) can be investigated with the help of inequalities (\(m = [\beta v/d] , 1 \leq \beta \leq \infty \))

(3.4) \[\frac{1}{2}\|f - P_m f\|_p \leq E_{m,p} \leq \|f - f_{\nu,\beta}\|_p \leq \|f - P_m f\|_p + \|P_m f - f_{\nu,\beta}\|_p , \]

which hold with probability 1 by the definition of \(E_{m,p} \) and by (2.21).
Lemma 3.5. Let \(f \in C(Q) \cap D(Q) \) and let \(k > 0, \lambda > 0, 0 < \beta < \frac{1}{2} \). Then

\[
\Pr \left\{ \left\| \frac{P_m f - f_{\gamma, \beta}}{P_m f} \right\|_\infty > \lambda \right\} = O(\varepsilon + \varepsilon^k 2^{md}), \quad m = \left[\frac{\beta \varepsilon}{d} \right],
\]

where \(\varepsilon = \lambda^{-1} \cdot 2^{md(1-1/2\beta)} \) and the big \(O \) is independent of \(\lambda \).

Proof. Note that

\[
\left\| \frac{P_m f - f_{\gamma, \beta}}{P_m f} \right\|_\infty = \sup_{J \in Q_m} \left\{ \frac{\int f - n^{-1} \sum_{j=1}^n \chi_j(X_j)}{\int f} \right\}.
\]

Now, for \(J \in Q_m \), we put \(Y_j = \chi_j(X_j) \), \(y = \int f \), \(y + \varepsilon = 1 \), and then apply Lemma 3.2 to get (3.3) with \(\omega = \lambda ny/2\sqrt{nyz} \leq \frac{3}{2} \sqrt{nyz} \), provided that \(\lambda \leq 3z \). This condition holds in particular for \(\lambda \) and \(m \) satisfying

\[
2^{md} \geq \frac{3}{2} \|f\|_\infty, \quad \lambda \leq 1.
\]

Now,

\[
\omega^2 = \frac{\lambda^2 \gamma}{4z} \geq \lambda_1 \frac{1}{|J|} \left\{ \int f \right\} \lambda_1 = \frac{\lambda^2 n}{4 \cdot 2^{md}},
\]

and, therefore, by Jensen's inequality

\[
\sum_{J \in Q_m} \exp(-\omega^2) \leq \sum_{J \in Q_m} \exp\left(-\lambda_1 J/J \right) f^2 \leq 2^{md} \sum_{J \in Q_m} \int e^{-\lambda_1 f(a)} dx
\]

\[
= 2^{md} \int e^{-\lambda_1 f(a)} dx = 2^{md} \int_0^\infty e^{-\lambda_1 s} dF_f(s),
\]

where \(F_f \) is the distribution of \(f \) on \((0, \infty) \) with respect to the Lebesgue measure on \(Q \). Now,

\[
\lambda_1 \geq \frac{\lambda^2}{4} 2^{md(1/\beta - 1)},
\]

whence, for \(\gamma > 0 \),

\[
\sum_{0}^{\infty} e^{-\lambda^2 N^{1/\beta - 1} s/4} dF_f(s) \leq N^{1-\gamma - 1} \sum_{N^{-\gamma \lambda - 1}}^{\infty} \left(\int_0^{\infty} e^{-\lambda^2 N^{1/\beta - 1} s/4} dF_f(s) \right)
\]

\[
\leq \frac{1}{\lambda} N^{1-\gamma} + Ne^{-\lambda N^{1/\beta - 1} - \gamma/4} \leq \frac{1}{\lambda} N^{1-\gamma} + N \left(\frac{\lambda}{4} N^{1/\beta - 1 - \gamma} \right)^{-k} \sup_{0 < \alpha < \infty} \alpha^k e^{-\alpha x}
\]

\[
= O \left(\frac{1}{\lambda} N^{1-\gamma} + \frac{1}{\lambda^k} N^{1+k(1+\gamma - 1/\beta)} \right),
\]
where \(N = 2^{md} \), \(k \) is any positive number and the \(O \) depends on \(\beta, d, \) and \(k \) only. Combining (3.7)-(3.10) with \(\gamma = 1/2\beta \) we obtain (3.6).

Proposition 3.11. Let \(f \in C(Q) \cap D(Q) \) and let \(0 < \beta < 1/2 \). Then

\[
\Pr \{ \| f - f_{v,\beta} \|_\infty = o(1) \text{ as } v \to \infty \} = 1.
\]

Proof. It follows by (3.6) that taking \(k > 0 \) such that \(1/2\beta - 1 > 1/k \), we obtain with probability 1 for large \(m \)

\[
\bigcap_{x \in Q} | P_m f(x) - f_{v,\beta}(x) | \leq \lambda | P_m f(x) |
\]

whence \(\| P_m f - f_{v,\beta} \|_\infty \leq \lambda \| f \|_\infty \), and therefore

\[
\Pr \{ \| P_m f - f_{v,\beta} \|_\infty = o(1) \text{ as } v \to \infty \} = 1.
\]

On the other hand, according to (2.15), \(\| f - P_m f \|_\infty = o(1) \) as \(m \to \infty \).

Thus, (3.4) implies (3.12).

Theorem 3.13. Let \(f \in C(Q) \cap D(Q) \). Then for \(0 < \alpha \leq 1 \), \(0 < \beta < d/2(\alpha + d) \) the following conditions are equivalent:

(i) \(\omega_\infty (f; \delta) = O(\delta^{\alpha}) \) \quad as \(\delta \to 0_+ \),

(ii) \(\Pr \left\{ \| f - f_{v,\beta} \|_\infty = O \left(\frac{1}{2^{ma}} \right) \text{ as } m \to \infty \right\} = 1, \quad m = \left[\frac{v\beta}{d} \right] \).

Proof. (i) \(\Rightarrow \) (ii). According to Corollary 2.5 we have \(\| f - P_m f \|_\infty = O(1/2^{ma}) \), and (3.6) with \(\lambda = 1/2^{ma} \) and \(k \) such that \((k-1)(1/2\beta - 1 - \alpha/d) \geq 1\) gives

\[
\Pr \left\{ \| P_m f - f_{v,\beta} \|_\infty > \frac{1}{2^{ma}} \right\} = O(2^{md(\alpha/d + 1 - 1/2\beta)}).
\]

Combining these inequalities with (3.4) we complete this part of the proof.

(ii) \(\Rightarrow \) (i). Using (3.4) we find that \(\| f - P_m \|_\infty = O(1/2^{ma}) \), whence by Proposition 2.5 the required result follows.

4. Estimation of densities in \(L^p \). Like in the previous section we consider densities concentrated on the \(d \)-dimensional cube \(Q \). It is also assumed that (3.1) is satisfied. The expectation of an r.v. \(Y \) with respect to the given probability space \((\Omega, \mathcal{F}, \Pr)\) is denoted by \(\mathbb{E} Y \).

The following result from Lorentz and Berens [1] plays an important role in our considerations:

Proposition 4.1. Let \(g \in C(I), I = (0, 1) \). Then, for \(x \in I \),

\[
\left| g(x) - \sum_{j=0}^{n} g \left(\frac{j}{n} \right) \binom{n}{j} x^j (1-x)^{n-j} \right| \leq 3\omega_{2,\infty} \left(g; \frac{x}{n} \right) \left(1 - x \right) \sqrt{\frac{1}{n}}.
\]
where

\begin{equation}
\omega_{2,\alpha}(g; \delta) = \sup_{x_1, x_2 \in I, \delta < \frac{1}{2}} \left| g \left(\frac{x_1 + x_2}{2} \right) - \frac{g(x_1) + g(x_2)}{2} \right|, \quad 0 < \delta \leq \frac{1}{2}.
\end{equation}

The following elementary inequalities are well known.

Proposition 4.3. Let \(I = (-1, 1), R = (-\infty, \infty) \). Then

(i) \(0 \leq |x + h|^p + |x - h|^p - 2|x|^p \leq 2|h|^p \) for \(1 \leq p \leq 2, x + h, x - h \in R \),

(ii) \(0 \leq |x + h|^p + |x - h|^p - 2|x|^p \leq (p-1)|h|^2 \) for \(p > 2, x + h, x - h \in I \).

Proposition 4.4. Let \(\beta > 0, 1 \leq p < \infty \) and let \(f \in L^p(Q) \cap D(Q) \). Then

\begin{equation}
\|f - P_m f\|_p \leq (E \|f - f_{v, \beta}\|_p^p)^{1/p} \leq \|f - P_m f\|_p + (E \|P_m f - f_{v, \beta}\|_p^p)^{1/p}.
\end{equation}

Proof. Since \(E f_{v, \beta}(x) = P_m f(x) \), Jensen's inequality implies the first inequality in (4.5). The second one follows by the triangle inequality.

Lemma 4.6. Let \(1 \leq p < \infty, p^{-1} + q^{-1} = 1, \beta > 0 \) and let \(f \in L^p(Q) \cap D(Q) \).

Then, under (3.1),

\begin{equation}
(E \|P_m f - f_{v, \beta}\|_p^p)^{1/p} \leq C \cdot 2^{-md}\gamma \text{ for } v \to \infty,
\end{equation}

where

\[\gamma = \frac{1}{\beta} \frac{1}{2 \vee p} - \frac{1}{2 \wedge q} \]

\((a \wedge b = \min(a, b), a \vee b = \max(a, b)), and C depends on p only. \)

Proof. Notice that with \(N = 2^m \) we have

\begin{equation}
E \|P_m f - f_{m, \beta}\|_p^p = N^{p-1} \sum_{J \in \mathcal{Q}_m} E \left(\frac{1}{n} \sum_{j=1}^n (Y_j(J) - y(J))^p \right),
\end{equation}

where \(Y_j(J) = \chi_f(x_j), y(J) = \text{Pr}(Y_j(J) = 1) = EY_j(J) = \int f \). Applying Propositions 4.1 and 4.3 to \(g(x) = |x - y(J)|^p \), we obtain

\begin{equation}
E \left(\frac{1}{n} \sum_{j=1}^n (Y_j(J) - y(J))^p \right)^{1/p} \leq C_1 \left(\frac{y(J)(1 - y(J))}{n} \right)^{(2 \wedge p)/2}.
\end{equation}

The combination of (4.9) and (4.8) gives

\begin{equation}
E \|P_m f - f_{m, \beta}\|_p^p \leq C_2 N^{p-1} n^{-\frac{(2 \wedge p)}{2}} \sum_{J \in \mathcal{Q}_m} (y(J)(1 - y(J)))^{(2 \wedge p)/2}.
\end{equation}

Now, \(1 - y(J) \leq 1 \) and in addition, by concavity, for \(1 \leq p \leq 2 \) we have

\[\sum_{J \in \mathcal{Q}_m} y(J)(1 - y(L))^{(2 \wedge p)/2} \leq \sum_{J \in \mathcal{Q}_m} y(J)^{p/2} \leq N^{1-p/2} \left(\sum_{J \in \mathcal{Q}_m} y(J)^{p/2} \right) \leq N^{1-p/2}, \]
and, for $p > 2$,
\[
\sum_{J \in \Omega_m} (y(J)(1-y(J)))^{2 \wedge p/2} \leq \sum_{J \in \Omega_m} y(J) = 1.
\]

Both these inequalities and (4.10) give
\[
\text{E}\|P_m f - f_{v, \beta}\|_p^p \leq C_0^p N^{-p'}. \tag{4.11}
\]

Now, we are in position to state our main theorem for the L^p-case, namely

Theorem 4.12. Assume (3.1) and

\[
0 < \alpha \leq 1, \quad 1 \leq p < \infty, \quad 0 < \beta < \frac{d}{(2 \vee p) + ((2 \vee p) - 1)d}. \tag{4.13}
\]

Then, for $f \in L^p(\Omega) \cap D(\Omega)$, the following conditions are equivalent:

(i) \quad $\|f - P_k f\|_p = O\left(\frac{1}{2^{\alpha k}}\right)$ as $k \to \infty$,

(ii) \quad $\text{E}\|f - f_{v, \beta}\|_p^{1/p} = O\left(\frac{1}{2^{\beta v/d}}\right)$ as $v \to \infty$.

Moreover, next condition implies (i):

(iii) \quad $\omega_p(f; \delta) = O(\delta^p)$ as $\delta \to 0_+$.

If, in addition to (4.13), $0 < \alpha < 1/p$, then also (i) implies (iii).

Proof. In view of Corollary 2.7 it is sufficient to show that (a) the model is regular, and (b) each limit of UBE’s is admissible.

\[
\frac{1}{2} \|f - P_k f\|_p \leq \text{E}\|f - f_{v, \beta}\|_p^{1/p} \leq 2 (\|f - P_m f\|_p + \text{E}\|P_m f - f_{v, \beta}\|_p^{1/p}). \tag{4.14}
\]

This, (3.1), (i) and Lemma 4.6 imply

\[
\text{E}\|f - f_{v, \beta}\|_p^{1/p} \leq O\left(\frac{1}{2^{\alpha k}} + \frac{1}{2^{\beta v/d}}\right),
\]

where $\gamma = 1/(2 \vee p)/\beta - 1/(2 \wedge q)$. From this (ii) follows.

(ii) \Rightarrow (i). It follows by (4.14) that (i) is satisfied for $k = m = [\beta v/d]$. However, by (4.13), $\beta/d < 1$ and therefore each k is of the form $[\beta v/d]$.

(iii) \Rightarrow (i). This implication holds true by Proposition 2.14. Its converse in case $0 < \alpha < 1/p$ follows by Corollary 2.20.

Corollary 4.15. Let $f \in L^p(\Omega) \cap D(\Omega)$ for some $p (1 \leq p < \infty)$ and let (iii) hold for some α ($0 < \alpha \leq 1$). Then, for each β satisfying (4.13), we have

\[
\Pr \{\|f - f_{v, \beta}\|_p \to 0 \text{ as } v \to \infty\} = 1.
\]
Corollary 4.16. For given α, p and β satisfying (4.13) the best choice for β with respect to (ii) is

$$\beta = \frac{d}{(2 \vee p) \alpha + ((2 \vee p) - 1)d}.$$

Examples. 1. Let α, β and p be as in (4.13). Let $f \in W^1_p(Q)$ for some p' satisfying the inequalities $1 \leq p' \leq p < \infty$ and $d(1/p' - 1/p) < 1$. Then $\omega_p(f; \delta) = O(\delta^\alpha)$ with $\alpha = 1 - d(1/p' - 1/p)$, and the β can be easily computed. This is actually an embedding theorem which can be derived for instance from [6].

2. Let $d = 1$ and $1 \leq p < 2$. Then the density for the arcsin law is given by the formula

$$f(x) = \frac{1}{\pi} \frac{1}{\sqrt{x(1-x)}}, \quad x \in Q = \langle 0, 1 \rangle.$$

One checks that $f \in L^p, f \notin L^2$ and $\omega_p(f; \delta) = O(\delta^{1/p - 1/2})$. In this case $\alpha = 1/p - 1/2$ and $\beta = p/2$.

References

Instytut Matematyczny PAN
ul. Abrahama 18
81-825 Sopot
Poland

Received on 28. 3. 1987