ON THE DOBRUSHIN’S HYPOTHESIS

BY

B. S. NAGHAPETIAN (YEREVAN)

Abstract. The central limit theorem for the stationary random processes under generalized mixing conditions is proved. The well-known Ibragimov’s results are given as a special case of the theorem received.

1. In [3] Dobrushin has introduced certain weak dependence conditions for random fields, which form natural generalization of the known mixing conditions to be found in [4]. In the same paper Dobrushin has suggested that under these generalized mixing conditions it is possible to prove a central limit theorem which would contain the well-known results as special cases. Here we prove the Dobrushin hypothesis for 1-dimensional case.

2. Let \(X \) be a metric space with metric \(d(x, \bar{x}) \), \(x, \bar{x} \in X \), \(\mathcal{B} \) be its Borel \(\sigma \)-algebra, and \(P \) and \(Q \) be the probability distribution on \(\mathcal{B} \).

The quantity \(R(P, Q) = \inf E d(\eta, \xi) \), where the “\(\inf \)” is taken over all 2-dimensional random vectors \((\eta, \xi)\) which marginal distributions coincide with \(P \) and \(Q \), respectively, is a metric on the space of probability distributions on \((X, \mathcal{B})\) and is called the Wasserstein or, sometimes, the Kantorovich-Rubinstein distance [6].

In [3] it is shown that if

\[
q(x, \bar{x}) = \begin{cases}
1, & x \neq \bar{x}, \\
0, & x = \bar{x},
\end{cases}
\]

then

\[
R(P, Q) = \sup_{B \in \mathcal{B}} |P(B) - Q(B)|,
\]

i.e. \(R \) becomes the well-known variation metric.
If $X = R^k$, where k is any positive integer and

$$q^{(k)}(x, \bar{x}) = \sum_{i=1}^{k} |x_i - \bar{x}_i|, \quad x, \bar{x} \in R^k,$$

then (cf. [5])

$$R(P, Q) = \int_{R^k} |F(x) - G(x)| \, dx,$$

where $F(x)$ and $G(x)$ are the distribution functions of P and Q, respectively.

Let $\{\xi_t\} = \{\xi_t, t \in Z\}$ be a stationary process which takes values in the space X, where Z is the set of the integers, and let $P = \{P_V, V \subset Z\}$ be the set of its finite-dimensional distributions. Here every P_V is a probability measure on the σ-algebra of Borel subsets of the metric space $X^{|V|} = \{(x_1, \ldots, x_V), x_i \in X, i = 1, 2, \ldots, |V|\},$

$$q_V(x, \bar{x}) = \sum_{i=1}^{|V|} q(x_i, \bar{x}_i), \quad x, \bar{x} \in X^{|V|},$$

where $|V|$ denotes the number of points in a (finite) set V.

We say that a random process $\{\xi_t\}$ satisfies the generalized strong mixing condition (g.m.c.) if

$$(3) \quad R(P_{(-k,0)\cup(n,n+m)}, P_{(-k,0) \times P_{(n,n+m)}}) \leq \alpha_q(n) \quad \text{for any } k, m, n \in N,$$

where $\alpha_q(n) \to 0$ as $n \to \infty$. Here (a, b) denotes the set of integers between a and b, $a < b$ (a, b $\in Z$).

It is clear that if $X = R$ and the metric ρ is discrete, i.e. coincides with (1), then (3) is the usual Rosenblatt strong mixing condition

$$(4) \quad |P(AB) - P(A) P(B)| \leq \alpha(n)$$

for any $A \in \sigma(\xi_t, t \leq 0)$ and $B \in \sigma(\xi_t, t \geq n)$, $n = 1, 2, \ldots$ and $\alpha(n) \to 0$ as $n \to \infty$.

By changing the space X and the metric ρ one can obtain various new mixing conditions. For instance, if $X = R$ and $q(x, \bar{x}) = |x - \bar{x}|, x, \bar{x} \in R$, then (3) reduces to

$$(5) \quad \left\{ \int_{R^{k+m}} |P(\bigcap_{t \in V_1, V_2} (\xi_t < x_t)) - P(\bigcap_{t \in V_1} (\xi_t < x_t)) P(\bigcap_{t \in V_2} (\xi_t < x_t))| \, dx_1 \cdots dx_k \right\} \times \prod_{t \in V_1 \cup V_2} dx_t \leq \hat{\alpha}(n),$$

where $V_1 = (-k, 0), V_2 = (n, n+m), \hat{\alpha}(n) \to 0$ as $n \to \infty$ independently of $k, m \in N$.

We will use mixing conditions (4) and (5) to illustrate our general proposition.
Note that various conditions under which the random field satisfies g.m.c. have been presented in [3].

3. Let $f(x), x \in X$, be a continuous function on (X, \mathfrak{g}) and let $\tau^f(\gamma)$, $\gamma \in \mathbb{R}_+$, denote the continuity modulus of f, i.e.

$$\tau^f(\gamma) = \sup_{(x, \overline{x}) \neq (x, \overline{x}) < \gamma} |f(x) - f(\overline{x})|.$$

We say that the process $\{\xi_t\}$ satisfies the central limit theorem (CLT) with function f if, for any $s \in \mathbb{R}$,

$$\lim_{n \to \infty} P\left(\sqrt{\sigma^2} \sum_{i=1}^{n} f(\xi_i)^{-1/2} \sum_{i=1}^{n} (f(\xi_i) - E f(\xi_i)) < s\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{s} e^{-u^2/2} du,$$

where σ^2 stands for the variance.

Our main result is as follows:

Theorem. Suppose that the stationary random process $\{\xi_t\}$ satisfies the g.m.c. and:

1. for some $\delta > 0$, $E |f(\xi_t)|^{2+\delta} < \infty$ (or, with probability 1, $|f(\xi_t)| < C < \infty$);

2. there exists a decreasing sequence $\gamma_n \in \mathbb{R}_+, \gamma_n \downarrow 0$ as $n \to \infty$, such that $\gamma_n^{-1} \alpha_\delta(n) \downarrow \beta(n)$, and

$$\sum_{n=1}^{\infty} \tau^f(\gamma_n) < \infty, \quad \sum_{n=1}^{\infty} \beta^{\delta(2+\delta)}(n) < \infty \quad (or \sum_{n=1}^{\infty} \beta(n) < \infty).$$

Then the series

$$\sigma^2 = E(f(\xi_t) - E f(\xi_t))^2 + 2 \sum_{n=2}^{\infty} E(f(\xi_t) - E f(\xi_t))(f(\xi_t) - E f(\xi_t))$$

converges and, if $\sigma^2 \neq 0$, then the process satisfies the CLT with the function f.

Note that, in case of $X = \mathbb{R}$ and discrete metric \mathfrak{g}, the continuity modulus $\tau^f(\gamma)$, $\gamma \in \mathbb{R}_+$, of any function f on X is equal to zero for $\gamma < 1$ and so the well-known Ibragimov's result [2] on CLT for stationary random processes becomes a special case of our theorem for $f(x) = x, x \in \mathbb{R}$. It has been shown in [5] and [6] that these results of Ibragimov practically cannot be improved.

If $X = \mathbb{R}$ and $\mathfrak{g}(x, \overline{x}) = |x - \overline{x}|, x, \overline{x} \in \mathbb{R}, f(x) = x$, then $\tau^f(\gamma) = \gamma, \gamma \in \mathbb{R}_+$, and we have the following

Corollary. Suppose that the stationary random process $\{\xi_t\}$ with values in \mathbb{R} satisfies the mixing condition (5) and, for some $\delta > 0$, $E |\xi_t|^{2+\delta} < \infty$. If for some $\varepsilon > 0$ the series

$$\sum_{n=1}^{\infty} n^{1+\varepsilon} \alpha^{\delta(2+\delta)}(n) < \infty$$

If $\sigma^2 \neq 0$, then the process satisfies the CLT with $f(x) = x, x \in \mathbb{R}$.

4. We state now some necessary estimates for the covariance of random variables.

Lemma 1. Suppose that a stationary random process \{ξ_t\} satisfies the g.m.c., \(V_1 = (-k, 0) \), \(V_2 = (n, n + m) \) and \(ξ_t = (ξ_i, t ∈ I), I ∈ \mathbb{Z} \). Let the functions \(φ_i(x, t ∊ V_i) \), \(i = 1, 2 \), be continuous with respect to the metric \(ϑ_ρ_i \), \(i = 1, 2, \) respectively, and \(τ_ρ_i(y), i = 1, 2, \) be their continuity moduli. Suppose also that, for some \(s, u > 1 \) \((1/s + 1/u < 1)\) the moments \(E|φ_1(ξ_i)|^s \) and \(E|φ_2(ξ_i)|^u \) exist. Then, for any \(γ > 0 \),

\[
(4') \quad \tau_ρ_i(y) E|φ_2(ξ_i)| + \tau_ρ_i(y) E|φ_1(ξ_i)| + \frac{2C_1 C_2 χ_ρ(n)}{γ}.
\]

If, with probability 1, \(|φ_i(ξ_i)| ≤ C_i < ∞, i = 1, 2, \) then the right-hand side of (4) may be replaced by

\[
(4) \quad \tau_ρ_i(y) E|φ_2(ξ_i)| + \tau_ρ_i(y) E|φ_1(ξ_i)| + \frac{2C_1 C_2 χ_ρ(n)}{γ}.
\]

Proof. Let \(φ(x, t ∊ V_1 ∪ V_2) = φ_1(x, t ∊ V_1) φ_2(x, t ∊ V_2) \). Suppose the random vector \(η_{V_1 ∪ V_2} = (η_i, t ∊ V_1 ∪ V_2) \) has the distribution \(P_{V_1} × P_{V_2}, P_{V_i} ∈ P, i = 1, 2, \)

\(A_γ = \{ η_{V_1 ∪ V_2}(ξ_i), η_{V_1 ∪ V_2} < γ \}, \)

\(\bar{A}_γ \) is the complement of \(A_γ \) and, with probability 1,

\[|φ_i(ξ_i, t ∊ V_i)| ≤ C_i < ∞, \quad i = 1, 2. \]

Then

\[
|Eφ_1(ξ_i) φ_2(ξ_i)| ≤ |Eφ_1(ξ_i) φ_2(η_i)|
\]

\[
≤ |Eφ_1(ξ_i) φ_2(η_i) - Eφ_1(ξ_i) φ_2(η_i)| + |Eφ_1(ξ_i) φ_2(η_i) - Eφ_1(ξ_i) φ_2(η_i)|
\]

\[
≤ E_{A_γ} |φ_1(ξ_i) φ_2(η_i)| + E_{A_γ} |φ_1(ξ_i) φ_2(η_i) - φ_1(η_i)| + E_{A_γ} |φ_1(ξ_i) φ_2(η_i) - φ_1(η_i) φ_2(ξ_i)| + \frac{2C_1 C_2 χ_ρ(n)}{γ}
\]

\[
≤ \tau_ρ_i(y) E|φ_1(ξ_i)| + \tau_ρ_i(y) E|φ_2(ξ_i)| + \frac{2C_1 C_2 χ_ρ(n)}{γ}.
\]

Thus inequality (4') is proved \((1)\).

\((1)\) We acknowledge that the idea of this inequality should be attributed to Dobrushin (see inequality (3.8) in [3]; note that inequality (3.8) contains a misprint: \(γ \) and \(δ(γ) \) should be interchanged).
Let us prove now inequality (4). Let
\[\phi_i^K(x) = \begin{cases} \phi_i(x) & \text{if } |\phi_i(x)| \leq K_i, \\ K_i & \text{if } \phi_i(x) > K_i, \\ -K_i & \text{if } \phi_i(x) < -K_i, \end{cases} \]

where \(K_i \in \mathbb{R}_+ \), \(\phi_i^K(x) = \phi_i(x) - \phi_i^{K_i}(x), \) for \(x \in X', i = 1, 2, \) and \(\tau_i^{K_i}(\gamma) \) be the continuity modulus of \(\phi_i^{K_i}(x) \). It is easy to see that
\[\tau_i^{K_i}(\gamma) \leq \tau_{
u_i}(\gamma), \quad |\phi_i^{K_i}(x)| \leq K_i, \quad i = 1, 2. \]

Further,
\[
|E[\phi_1(\xi_{\nu_1}) \phi_2(\xi_{\nu_2})] - E[\phi_1(\xi_{\nu_1})]E[\phi_2(\xi_{\nu_2})]| \\
\leq E[|\phi_1^{K_1}(\xi_{\nu_1}) \phi_2^{K_2}(\xi_{\nu_2}) - \phi_1^{K_1}(\eta_{\nu_1}) \phi_2^{K_2}(\eta_{\nu_2})|] + E[|\phi_1^{K_1}(\xi_{\nu_1}) \phi_2^{K_2}(\xi_{\nu_2}) - \phi_1^{K_1}(\xi_{\nu_1}) \phi_2^{K_2}(\xi_{\nu_2}) + \\
+ E[|\phi_1^{K_1}(\xi_{\nu_1}) \phi_2^{K_2}(\xi_{\nu_2})|] + E[|\phi_1^{K_1}(\xi_{\nu_1}) \phi_2^{K_2}(\xi_{\nu_2})|] + \\
+ E[|\phi_1^{K_1}(\xi_{\nu_1})| \phi_2^{K_2}(\xi_{\nu_2})|] + E[|\phi_1^{K_1}(\xi_{\nu_1})| E[\phi_2^{K_2}(\xi_{\nu_2})]| + \\
+ E[|\phi_1^{K_1}(\xi_{\nu_1})| E[\phi_2^{K_2}(\xi_{\nu_2})]]].
\]

Now it is enough to put
\[K_1 = \left(\frac{\gamma E[|\phi_1(\xi_{\nu_1})|^n]}{\alpha_0(n)} \right)^{1/s}, \quad K_2 = \left(\frac{\gamma E[|\phi_2(\xi_{\nu_2})|^n]}{\alpha_0(n)} \right)^{1/u} \]

and by proceeding in the same way as in [2] (§ 2, p. 390) one can prove (4).

In the sequel the following statement will be important:

Lemma 2. Let \((\zeta_1, \zeta_2, \ldots, \zeta_n) \) be a vector such that
\[|E \prod_{s=1}^{n} \zeta_s| < \infty, \quad i = 1, 2, \ldots, n-1; \quad |E \zeta_i| \leq 1, \quad i = 1, 2, \ldots, n. \]

Then
\[
|E \prod_{s=1}^{n} \zeta_s - E \prod_{s=1}^{n} E \zeta_s| \\
\leq \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} |E(\zeta_i - 1)(\zeta_j - 1) \prod_{s=j+1}^{n} \zeta_s - E(\zeta_i - 1) E(\zeta_j - 1) \prod_{s=j+1}^{n} \zeta_s|. \]

Proof. It is well-known ([2], § 4, p. 429) that, under the conditions of Lemma 2,
\[
|E \prod_{s=1}^{n} \zeta_s - E \prod_{s=1}^{n} E \zeta_s| \\
\leq \sum_{i=1}^{n-1} |E \zeta_i \prod_{s=i+1}^{n} \zeta_s - E \zeta_i E \prod_{s=i+1}^{n} \zeta_s|. \]
We can write
\[|E_s \prod_{s=i+1}^{n} \zeta_s - E_s E \prod_{s=i+1}^{n} \zeta_s| \]
\[= |E(\zeta_1 - 1) \zeta_{i+1} + \prod_{s=i+2}^{n} \zeta_s - E(\zeta_1 - 1)E \zeta_{i+1} \prod_{s=i+2}^{n} \zeta_s| \]
\[\leq |E(\zeta_1 - 1)(\zeta_{i+1} - 1) \prod_{s=i+2}^{n} \zeta_s - E(\zeta_1 - 1)E(\zeta_{i+1} - 1) \prod_{s=i+2}^{n} \zeta_s| + \]
\[+ |E(\zeta_1 - 1) \zeta_{i+2} \prod_{s=i+3}^{n} \zeta_s - E(\zeta_1 - 1)E \zeta_{i+2} \prod_{s=i+3}^{n} \zeta_s| \]

Continuing this procedure we obtain

(7) \[|E_s \prod_{s=i+1}^{n} \zeta_s - E_s E \prod_{s=i+1}^{n} \zeta_s| \]
\[\leq \sum_{j=i+1}^{n} |E(\zeta_1 - 1)(\zeta_j - 1) \prod_{s=j+1}^{n} \zeta_s - E(\zeta_1 - 1)E(\zeta_j - 1) \prod_{s=j+1}^{n} \zeta_s| \]

Substituting (7) into (6) we get Lemma 2.

5. Now we are going to prove our theorem.

In the sequel \(p = p(n) \) and \(q = q(n), n \in \mathbb{N} \), denote the positive integer-valued functions.

Lemma 3. Let \(\{\eta_t\} \) be a real-valued stationary random process such that \(E\eta_t^2 < \infty \) and:

1. \(\mathcal{D} S_n \sim cn, n \to \infty \), where \(0 < c < \infty \), \(S_n = \sum_{i=1}^{n} \eta_i \);

2. for any function \(p = p(n), p(n) \to \infty, p = o(n), n \to \infty \), there exists a function \(q = q(n), q(n) \to \infty \), \(q = o(p), n \to \infty \), such that, for every real \(t \),

\[|E \prod_{j=1}^{k} \exp \{it\hat{S}_p^{(j)}\} - \prod_{j=1}^{k} E \exp \{it\hat{S}_p^{(j)}\}| \to 0, \quad n \to \infty, \]

where

\[\hat{S}_p^{(j)} = (\mathcal{D} S_n)^{-1/2} S_p^{(j)}, \quad S_p^{(j)} = \sum_{s=j+1}^{j+p+(j-1)q} (\eta_s - E\eta_s), \quad j = 1, 2, \ldots, k \]

and \(k = k(n) = \lfloor n/(p+q) \rfloor \).

Then for this process the CLT with identity function \(f \) holds.

Proof. It is clear that there exists a function \(p = p(n) \) such that \((\mathcal{D} S_p^{(1)})^{-1} |S_p^{(1)}|^2 dP \to 0 \) as \(n \to \infty \), integrating for \(|S_p^{(1)}| \geq \varepsilon \sqrt{\mathcal{D} S_n} \), where \(\varepsilon > 0, p(n) \to \infty, p = o(n), n \to \infty \).
Now, to complete the proof, it remains to apply the Bernstein method ([2], § 4, p. 426) for this \(p = p(n) \).

Thus, in order to prove our theorem it is sufficient to verify the conditions of Lemma 3 for the process \(\{ \eta_t \} = \{ f(\xi_t) \} \).

Let us verify condition 1. We have

\[
D \left(\sum_{t=1}^{n} f(\xi_t) \right) = \sum_{t,s=1}^{n} (E f(\xi_t) f(\xi_s) - E f(\xi_t) E f(\xi_s))
\]

\[= nE(f(\xi_1) - E f(\xi_1)) + 2 \sum_{t=2}^{n} (n-t+1) (E f(\xi_1) f(\xi_t) - E f(\xi_1) E f(\xi_t)) \]

and

\[
\lim_{n \to \infty} n^{-1} D \left(\sum_{t=1}^{n} f(\xi_t) \right) = E f(\xi_1)^2 - 2 \sum_{t=2}^{n} t (E f(\xi_1) f(\xi_t) - E f(\xi_1) E f(\xi_t)).
\]

By Lemma 1 we get

\[|E f(\xi_1) f(\xi_t) - E f(\xi_1) E f(\xi_t)| \leq 2C \tau(\gamma_t) + C \left(\frac{\alpha_{\phi}(t)}{\gamma_t} \right)^{\beta(2+\delta)}, \quad 0 < C < \infty,\]

hence

\[\sigma_f^2 \leq E f^2(\xi_1) + 2C \sum_{t=1}^{\infty} \tau(\gamma_t) + 2C \sum_{t=1}^{\infty} \beta^{2+\delta}(t).\]

The second summand in (8) vanishes as \(n \to \infty \) by the well-known Kronecker lemma.

It remains to check condition 2. Let

\[W_t(x) = \exp \left\{ itB \sum_{s=1}^{m} f(x_s) \right\} - 1, \quad m \in \mathbb{N}, \quad 0 < B < \infty, \quad x \in X^m,\]

\(X^m \) being a metric space with metric (2). Since

\[|W_t(x) - W_t(\tilde{x})| \leq B |t| \sum_{s=1}^{m} |f(x_s) - f(\tilde{x}_s)|, \quad x, \tilde{x} \in X^m,\]

we conclude that the continuity modulus of the function \(W_t(x) \) does not exceed \(B |t| \tau^f(\gamma) \), where \(\tau^f(\gamma) \) is the continuity modulus of \(f \). By Lemma 1
for \(j > r \) and \(s = u = 2 + \delta, \delta > 0 \), we have

\[
(9) \quad |E(\exp \{it\hat{S}_p^{(n)}\} - 1)\{\exp \{it\hat{S}_p^{(0)}\} - 1\} \prod_{s=j+1}^k \exp \{it\hat{S}_p^{(s)}\}| - E(\exp \{it\hat{S}_p^{(n)}\} - 1)E(\exp \{it\hat{S}_p^{(0)}\} - 1) \prod_{s=j+1}^k \exp \{it\hat{S}_p^{(s)}\}|
\]

\[
\leq B_1 \frac{|t|}{\sqrt{n}} \tau^f(\gamma_{\nu - 0q}) E|\exp \{it\hat{S}_p^{(1)}\} - 1| + B_2 E^{2(2+\delta)}|\exp \{it\hat{S}_p^{(1)}\} - 1|^{2+\delta} \left(\frac{\alpha_q((j-r)q)}{\gamma_{\nu - 0q}} \right)^{8(2+\delta)}
\]

\[
\leq B_3 \left[\frac{|t|}{\sqrt{n}} \frac{p \sqrt{p}}{n} \frac{p}{n} \sum_{j=1}^\infty \tau^f(\gamma_{jq}) + \frac{p^2}{n} \sum_{j=1}^\infty \frac{\alpha_q((j-r)q)}{\gamma_{jq}} \right], \quad 0 < B_i < \infty, \ i = 1, 2, 3.
\]

By Lemma 2 and (9) we get

\[
|E \prod_{j=1}^k \exp \{it\hat{S}_p^{(n)}\} - \prod_{j=1}^k E \exp \{it\hat{S}_p^{(j)}\}|
\]

\[
\leq B_4 \left[|t| \frac{p \sqrt{p}}{n} \frac{p}{n} \sum_{j=1}^\infty \tau^f(\gamma_{jq}) + p \sum_{j=1}^\infty \beta^{8(2+\delta)}(jq) \right].
\]

and then

\[
|E \prod_{j=1}^k \exp \{it\hat{S}_p^{(n)}\} - \prod_{j=1}^k E \exp \{it\hat{S}_p^{(j)}\} \leq B_4 \left[|t| \sqrt{p} \sum_{j=1}^\infty \tau^f(\gamma_{jq}) + p \sum_{j=1}^\infty \beta^{8(2+\delta)}(jq) \right].
\]

The monotonicity of the members of this series implies

\[
\tau(\gamma_{jq}) \leq \frac{2}{q \sup_{j \geq q/2} \tau(\gamma_k)},
\]

\[
\beta^{8(2+\delta)}(jq) \leq \frac{2}{q \sup_{j \geq q/2} \beta^{8(2+\delta)}(k), \quad j = 1, 2, \ldots,
\]

hence

\[
\sum_{j=1}^\infty \tau(\gamma_{jq}) \leq \frac{2}{q \sup_{j \geq q/2} \tau(\gamma_j)}, \quad \sum_{j=1}^\infty \beta^{8(2+\delta)}(jq) \leq \frac{2}{q \sup_{j \geq q/2} \beta^{8(2+\delta)}(j)}.
\]

Finally,

\[
(10) \quad |E \prod_{j=1}^k \exp \{it\hat{S}_p^{(n)}\} - \prod_{j=1}^k E \exp \{it\hat{S}_p^{(j)}\}|
\]

\[
\leq B_4 |t| \frac{2 \sqrt{p}}{q} \sum_{j \geq q/2} \tau(\gamma_j) + \frac{2p}{q} \sum_{j \geq q/2} \beta^{8(2+\delta)}(j),
\]
as it is obvious that one can choose the function \(q(n) \to \infty, q = o(p), n \to \infty \), such that the right-hand side of (10) tends to zero as \(n \to \infty \).

Acknowledgement. The author expresses his gratitude to Professor R. V. Ambartzumian and Professor R. L. Dobrushin for their useful comments and suggestions.

REFERENCES

Institute of Mathematics
Armenian Academy of Sciences
375019, Erevan - 19
Marshal Bagramian av., 24 B
USSR

Received on 9. 9. 1986