REMARKS ON BANACH SPACES OF S-COTYPE p

BY

DANG HUANG THANG (HANOI)*

Abstract. The paper continues the work of [10]. There are examined the relations between the class of Banach spaces of S-cotype p, the class of Banach spaces of M-cotype p in the sense of Mouchta-ri [7] and the class V_p of Banach spaces defined by Tien and Werorn [11].

1. Introduction. Let E be a Banach space with dual E'. E is said to be of stable type p ($0 < p \leq 2$) if, for every sequence (x_n) in E with $\sum \|x_n\|^p < \infty$, $\sum x^* \theta_n^{(p)}$ converges a.s., where $\theta_n^{(p)}$ are i.i.d. symmetric p-stable random variables. For $p = 2$ stable type 2 is equivalent to type 2. E is said to be of cotype 2 if, for every sequence (x_n) in E such that $\sum x_n \theta_n^{(2)}$ converges a.s., $\sum \|x_n\|^2 < \infty$. It is known that an analogous definition of stable cotype p ($0 < p < 2$) by replacing the sequence $\{\theta_n^{(2)}\}$ by the sequence $\{\theta_n^{(p)}\}$ does not restrict the class of Banach spaces, since the a.s. convergence of $\sum x_n \theta_n^{(p)}$ implies that $\sum \|x_n\|^p$ is finite for $p < 2$.

Our aim is to examine the relation between the class M_p of spaces of M-cotype p, the class S_p of spaces of S-cotype p and the class V_p. The main result of the paper, the inclusions $M_p \subset V_p \subset S_p \subset \bigcap_{e > 0} M_{p+\varepsilon}$ ($1 < p < 2$), allows us to obtain the conclusion $V_p \subset V_q$ for $p < q$ (going up phenomenon). By this phenomenon we can refer to a Banach space in the class V_p as a Banach space of V-cotype p. It is interesting to know whether the three possible notions of cotype coincide.

2. Preliminaries and notation. Let E be a Banach space with dual E'. We say that E is a Sazonov space if there exists a topology \mathcal{T} on E such that a

* Partially written during the author's stay at the Institute of Mathematics of the University of Wroclaw (Poland) in the last quarter of 1985.
positive definite function f with $f(0) = 1$ is \mathcal{T}-continuous iff it is a characteristic function (ch. f.) of a probability measure on E. It has been shown [6] that every Sazonov space can be embedded into L_0 and, conversely, if a Banach space with the metric approximation property embeds in L_0, then it is a Sazonov space. In particular, every closed subspace of L_p, $1 \leq p \leq 2$, is a Sazonov space, while, for $p > 2$, L_p is not a Sazonov space.

For a real number p ($0 < p \leq 2$) we denote by X_p a closed subspace of L_p. $\mathcal{A}_p(E', X_p)$ denotes the set of linear continuous operators T from E into X_p for which the function $f(a) = \exp \{-||Ta||^p\}$, $a \in E'$, is the ch. f. of a probability measure on E. An operator T in $\mathcal{A}_p(E', X_p)$ for some X_p is called a \mathcal{A}_p-operator on E'.

Let \mathcal{T}_p denote the coarsest topology on E for which all the ch. f. of symmetric p-stable measure are continuous. A Banach space E is said to be of M-cotype p ($0 < p \leq 2$), provided the function $f: E' \to C$ is the ch. f. of a probability measure on E, if it is positive definite, \mathcal{T}_p-continuous and $f(0) = 1$. Equivalently, a Banach space E is of M-cotype p iff any \mathcal{T}_p-continuous linear mapping A from E' into $L_0(\Omega, P)$ is decomposable.

We remind that a linear mapping A from E' into $L_0(\Omega, P)$ is said to be decomposable if there exists an E-valued random variable φ such that $\mathbb{P}\{w: A\varphi(w) = (\varphi(\omega), a)\} = 1$ for all $a \in R$.

Mouchtari [7] has shown that M-cotype 2 spaces are exactly cotype 2 spaces, and M-cotype p spaces, for some $p < 1$, are exactly Sazonov spaces.

Following [11] we say that a Banach space E is in the class V_p ($0 < p \leq 2$) if for every symmetric p-stable measure μ and for every symmetric p-stable cylindrical measure v the inequality $|1 - \tilde{\mu}(a)| \leq |1 - \hat{\mu}(a)|$ for all $a \in E'$ implies that v is a Radon measure, where $\tilde{\mu}(a)$ and $\hat{\mu}(a)$ are the ch. f. of μ and v, respectively.

Finally, a Banach space E is said to be of S-cotype p ($0 < p \leq 2$) if for every sequence (x_n) in E and every symmetric p-stable measure μ on E the inequality

$$1 - \exp \left\{ - \sum |\langle x_n, a \rangle|^p \right\} \leq 1 - \hat{\mu}(a)$$

implies $\sum ||x_n||^p$ is finite.

In [10] it was shown that E is of S-cotype 2 iff it is of cotype 2. A Banach space with the approximation property is of S-cotype p for $p < 1$ iff it is a Sazonov space.

1. Theorem. Let M_p and S_p denote the class of spaces of M-cotype p and the class of spaces of S-cotype p, respectively. Then $M_p \subset V_p \subset S_p \subset \bigcap_{\varepsilon > 0} M_{p+\varepsilon}$ $(1 \leq p < 2)$.
Proof. (a) $M_p \subset V_p$. Let E be a Banach space of M-cotype p and suppose that μ is a symmetric p-stable measure on E, and ν is a symmetric p-stable cylindrical measure on E such that $|1 - \hat{\nu}(a)| \leq |1 - \hat{\mu}(a)|$ for all $a \in E'$. From this inequality it follows that $\hat{\nu}(a)$ is \mathcal{T}_p-continuous. Since E is of M-cotype p, $\hat{\nu}(a)$ is a ch. f. of a Radon measure on E. This shows that E belongs to the class V_p.

(b) $V_p \subset S_p$. Let E be in the class V_p and let (x_n) be a sequence in E such that

$$1 - \exp \left\{ - \sum |\langle x_n, a \rangle|^p \right\} \leq 1 - \hat{\mu}(a) \quad \text{for all } a \in E',$$

where μ is a symmetric p-stable measure on E.

Let ν be the p-stable cylindrical measure with the ch. f. $\hat{\nu}(a) = \exp \left\{ - \sum |\langle x_n, a \rangle|^p \right\}$.

By the assumption that E belongs to V_p, $\hat{\nu}(a)$ is a ch. f. of a Radon measure on E. From the Ito-Nisio theorem it follows that the series $\sum x_n \theta_n^{(p)}$ converges a.s. Since $p < 2$, we have $\sum \|x_n\|^p < \infty$. Hence E is of S-cotype p.

(c) $S_p \subset \bigcap_{\epsilon > 0} N_{p+\epsilon}$.

We split the proof into two steps.

Step one. Suppose that E is of S-cotype p ($1 \leq p < 2$). Then every symmetric q-stable measure on E ($q > p$) is the continuous image of a symmetric q-stable measure on some Sazonov space.

Indeed, let μ be a symmetric q-stable measure on E ($q > p$) with the ch. f. $\hat{\mu}(a) = \exp \left\{ - \|Ta\|^q \right\}$, where $T \in A_q(E', L_q)$. Because of $q > p$, by Theorem 2 in [7], the function $\exp \left\{ - \|Ta\|^p \right\}$ is also the ch. f. of a Radon measure on E. Thus $T \in A_p(E', L_2)$. Since E is of S-cotype p by Theorem 3.3 in [10], the adjoint $T^* \colon L_q' \to E$ is p-summing. By the Pietsch factorization theorem, there exists a factorization

$$T^* \colon L_q \overset{\mu}{\to} S \overset{\nu}{\to} E,$$

where S is a closed subspace of L_p, $V \colon S \to E$ is a linear continuous operator, and $U \colon L_q' \to S$ is a p-summing operator.

The operator U, being p-summing, is also r-summing for $1 \leq p < r < q$. Let γ_q be the canonical cylindrical q-stable measure on L_q with the ch. f. $\exp \left\{ - \|x\|^q \right\}$, $x \in L_q$. γ_q is of scalar order r, i.e.

$$\sup_{\|x\| \leq 1} \int \|\langle x, y \rangle\|^r d\gamma_q(y) < \infty.$$

As U is r-summing ($r > 1$) in view of the Schwartz Radonification theorem [9], $\nu = U(\gamma_q)$ is a Radon measure on S. We have $\mu = T^*(\gamma_q) = V[U(\gamma_q)] = V(\nu)$.
v is a symmetric q-stable measure on S and S is a Sazonov space (since every closed subspace of \(L_p \) (\(1 \leq p \leq 2 \)) is a Sazonov space).

Step two. Suppose that every symmetric p-stable measure on a Banach space E is a continuous image of a symmetric p-stable measure on some Sazonov space. Then E must be of M-cotype p.

Indeed, let A be a \(\mathcal{T}_p \)-continuous linear mapping from E' into \(L_0(\Omega, P) \). Then given \(\varepsilon > 0 \), there exists a \(A_p \)-operator \(T_\varepsilon \) on E' such that \(||T_\varepsilon a|| \leq 1 \) implies \(||Aa||_0 < \varepsilon \), where \(||\cdot||_0 \) is the F-norm in \(L_0(\Omega, P) \) metrizing the topology of convergence in probability.

By Lemma 5.2 in [3], we can choose a single \(A_p \)-operator T on E' satisfying the following condition:

\[
(1.1) \text{For every } \varepsilon > 0 \text{ there exists a } \delta > 0 \text{ such that } ||Aa||_0 < \varepsilon, \text{ whenever } ||Ta|| < \delta.
\]

Let \(\mu \) be a symmetric p-stable measure generated by T, i.e. \(\tilde{\mu}(a) = \exp\{ -||Ta||^p \} \), \(a \in E' \). By the assumption, there exists a Sazonov space S, a linear continuous operator \(V : S \rightarrow E \) and a symmetric p-stable measure \(\nu \) on S such that \(\mu = V(\nu) \). Without loss of generality we can assume that V is 1-1. Let H be a \(A_p \)-operator on S' generating \(\nu \), i.e. \(\tilde{\nu}(b) = \exp\{ -||Hb||^p \} \), \(b \in S' \). We have \(\tilde{\mu}(a) = V(\nu)(a) = \tilde{\nu}(V^* a) = \exp\{ -||HV^* a||^p \} \). Hence

\[
(1.2) ||Ta|| = ||HV^* a|| \quad \text{for all } a \in E'.
\]

Define a linear mapping G from \(V^*(E') \) into \(L_0(\Omega, P) \) by \(G(V^* a) = Aa \). G is well-defined on \(V^*(E') \). Indeed, if \(V^* a_1 = V^* a_2 \), then by (1.2) we have \(||T(a_1 - a_2)|| = 0 \), which, together with (1.1), enables us to conclude that \(||A(a_1 - a_2)||_0 = 0 \), i.e. \(Aa_1 = Aa_2 \) in \(L_0(\Omega, P) \). In view of (1.1), for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that \(||G(b)||_0 < \varepsilon \), whenever \(||Hb|| < \delta \) for all \(b \in V^*(E') \). In other words, G is \(\mathcal{T}_p \)-continuous on \(V^*(E') \). The linearity of G is obvious. Since \(V^*(E') \) is dense in \(S' \), G admits a \(\mathcal{T}_p \)-continuous linear extension on the entire \(S' \). As S is of M-cotype p (every Sazonov space is of M-cotype p for all p), G is decomposed by an S-valued random variable \(\varphi \), i.e. \(G(b)(\omega) = \langle \varphi(\omega), b \rangle \) P-a.s. for all \(b \in S' \). Hence, for all \(a \in E' \),

\[
A(a)(\omega) = G(V^* a)(\omega) = \langle \varphi(\omega), V^* a \rangle = \langle V\varphi(\omega), a \rangle \quad \text{P-a.s.,}
\]

which shows that A is decomposable, as desired.

Thus the proof of Theorem 1 is completed.

From Theorem 1 we derive:

2. **Corollary.** If a Banach space E belongs to the class \(V_p \), then it also belongs to the class \(V_q \) for \(1 \leq p < q \).

3. **Corollary.** The space \(l_s(l_t) \), where \(1 \leq p < t < s < q \), is in the class \(V_q \) but is not in the class \(V_p \).
Proof. By Theorem 7 in [7], $l_q (l_t)$ is of M-cotype q, hence it is in the class V_q by Theorem 1. Assume that $l_q (l_t)$ is in the class V_p. By Proposition 8 in [7], $l_q (l_t)$ is of stable type p, so it imbeds in L_p by Theorem 4.5 in [10]. But this contradicts the Proposition 9 in [7].

Thus, it is reasonable to refer to a Banach space in the class V_p as a Banach space of V-cotype p.

4. Concluding remarks. 1. If E is of stable type p ($1 \leq p < 2$), then, by Proposition 4.8 in [10] and Theorem 1, the following statements are equivalent:

1) E is of M-cotype p.
2) E is of V-cotype p.
3) E is of S-cotype p.

It is natural to ask

Problem 1. Are the three possible notions of cotype equivalent in general?

2. Garling [2] characterized spaces of cotype 2 by the following property:

A Banach space E is of cotype 2 iff every symmetric Gaussian measure on E is the continuous image of a symmetric Gaussian measure on a Hilbert space.

It is known that every Hilbert space is a Sazonov space. On the other hand, since every Sazonov space S is of cotype 2, every symmetric Gaussian measure on S is the continuous image of a symmetric Gaussian measure on a Hilbert space. Then Garling's theorem can be stated as follows:

A Banach space E is of cotype 2 iff every symmetric Gaussian measure on E is the continuous image on a symmetric Gaussian measure on a Sazonov space.

We want to extend this fact to spaces of S-cotype p.

Problem 2. Is it true that a Banach space E is of S-cotype p iff every symmetric p-stable measure on E is the continuous image of a symmetric p-stable measure on a Sazonov space?

In the proof of Theorem 1 we have shown that:

1° if every symmetric p-stable measure on E is the continuous image of a symmetric p-stable measure on a Sazonov space, then E must be of S-cotype p;

2° if E is of S-cotype $p - \varepsilon$ ($p > 1$), then every symmetric p-stable measure on E is the continuous image of a symmetric p-stable measure on a Sazonov space.

It should be noted that if the answer to Problem 2 is positive, then the answer to Problem 1 is also positive.

Acknowledgment. I am indebted to Professor Aleksander Weron for many valuable discussions during the preparation of this paper.
REFERENCES

Department of Mathematics
Hanoi University
Hanoi, Vietnam

Received on 22. 1. 1986