ON THE EXACT DIMENSION OF MANDELBROT MEASURE

BY

NAJMEDDINE ATTIA (Tunisia)

Abstract. We develop, in the context of the boundary of a supercritical Galton-Watson tree, a uniform version of the argument used by Kahane in [16] on homogeneous trees to estimate almost surely and simultaneously the Hausdorff and packing dimensions of the Mandelbrot measure over a suitable set J. As an application, we compute, almost surely and simultaneously, the Hausdorff and packing dimensions of the level sets $E(\alpha)$ of infinite branches of the boundary of the tree along which the averages of the branching random walk have a given limit point.

2010 AMS Mathematics Subject Classification: Primary: 11K55; Secondary: 60G57.

Key words and phrases: Mandelbrot measure, Hausdorff dimension.

1. INTRODUCTION AND MAINS RESULTS

Let (N,W_1,W_2,\ldots) be a random vector taking values in $\mathbb{N}_+ \times \mathbb{R}^{+\mathbb{N}_+}$. Then consider, $\{(N_{u0}, W_{u1}, W_{u2}, \ldots)\}_{u \in \bigcup_{n \geq 0} \mathbb{N}_+^n}$, a family of independent copies of this random vector indexed by the finite sequences $u = u_1 \ldots u_n$, $n \geq 0$, $u_i \in \mathbb{N}_+$ ($n = 0$ corresponds to the empty sequence denoted \emptyset). Let T be the Galton-Watson tree with defining element $\{N_u\}$: we have $\emptyset \in T$ and, if $u \in T$ and $i \in \mathbb{N}_+$, then ui, the concatenation of u and i, belongs to T if and only if $1 \leq i \leq N_u$. Similarly, for each $u \in \bigcup_{n \geq 0} \mathbb{N}_+^n$, denote by $T(u)$ the Galton-Watson tree rooted at u and defined by $\{N_{uv}\}$, $v \in \bigcup_{n \geq 0} \mathbb{N}_+^n$.

For each $u \in \bigcup_{n \geq 0} \mathbb{N}_+^n$, we denote by $|u|$ its length, i.e. the number of letters of u, and $[u]$ the cylinder $u \cdot N_+^{+\mathbb{N}_+}$, i.e. the set of $t \in \mathbb{N}_+^n$ such that $t_1 \ldots t_{|u|} = u$. If $t \in \mathbb{N}_+^n$, we set $|t| = \infty$, and the set of prefixes of t consists of $\emptyset \cup \{t_1 \ldots t_n : n \geq 1\} \cup \{t\}$. Also we set $t_{|n|} = t_1 \ldots t_n$ if $n \geq 1$ and $t_{|0|} = \emptyset$.

The probability space over which the previous random variables are built is denoted (Ω, A, P), and the expectation with respect to P is denoted E.

We assume that $E(N) > 1$ so that the Galton-Watson tree is supercritical. Without loss of generality, we also assume that the probability of extinction equals
0, so that \(\mathbb{P}(N \geq 1) = 1 \).

The boundary of \(T \) is the subset of \(\mathbb{N}_+^N \) defined as \(\partial T = \bigcap_{n \geq 1} \bigcup_{u \in T_n} [u] \), where \(T_n = T \cap \mathbb{N}_+^n \). \(\mathbb{N}_+^n \) is endowed with the standard ultrametric distance

\[
d_1 : (s, t) \mapsto \exp(-|s \wedge t|),
\]

where \(s \wedge t \) stands for the longest common prefix of \(s \) and \(t \), and with the convention that \(\exp(-\infty) = 0 \). Endowed with the induced distance the set \(\partial T \) is almost surely (a.s.) compact.

For the sake of simplicity we will assume throughout that the logarithmic moment generating function

\[
\tau(q) = \log \mathbb{E} \left(\sum_{i=1}^{N} W_1^q \right)
\]
is finite over \(\mathbb{R} \). Then, we define, for \(u \in \bigcup_{n \geq 0} \mathbb{N}_+^n \), the random variable

\[
W_{q,u} = \frac{W_n^q}{\mathbb{E} \left(\sum_{i=1}^{N} W_1^q \right)} = W_n^q e^{-\tau(q)}.
\]

Consider the set

\[
J = \{ q \in \mathbb{R}, \ \tau(q) - q \tau'(q) > 0 \} = \{ q \in \mathbb{R}, \ \tau^*(\tau(q)) > 0 \},
\]

where \(\tau^* \) is the Legendre transform of the function \(\tau \) defined as, \(\forall \alpha \in \mathbb{R} \)

\[
\tau^*(\alpha) = \inf_{q \in \mathbb{R}} \left(\tau(q) - q\alpha \right).
\]

Let

\[
\Omega^1_\gamma = \text{int} \{ q : \mathbb{E}[\sum_{i=1}^{N} W_1^q] < \infty \}, \quad \Omega^1 = \bigcup_{\gamma \in (1,2]} \Omega^1_\gamma \quad \text{and} \quad \mathcal{J} = J \cap \Omega^1.
\]

Then, we define, for \(n \geq 1 \) and \(u \in \mathbb{N}_+^n \), the sequence \((Y_p(q, u))_{p \geq 1} \) defined as

\[
Y_p(q, u) = \sum_{v \in T_p(u)} \prod_{k=1}^{n} W_{q,u,v_1\ldots v_k},
\]

when \(u = \emptyset \) this quantity will be denoted by \(Y_1(q) \) and, when \(n = 0 \), its value equal 1.
Since, for all \(q \in J \), we have
\[
\begin{align*}
\mathbb{E} \left(\sum_{i=1}^{N} W_{q,i} \right) &= 1 \\
\mathbb{E} \left(\sum_{i=1}^{N} W_{q,i} \log W_{q,i} \right) &= q \tau'(q) - \tau(q) < 0 \\
\mathbb{E} \left(\sum_{i=1}^{N} W_{q,i} \log^+ \left(\sum_{i=1}^{N} W_{q,i} \right) \right) &< \infty,
\end{align*}
\]
then, with probability 1, \((Y_p(q, u))\) converges to a positive limit \(Y(q, u) \), while the limit exists and vanishes if the condition is violated. This fact was proven by Kahane in [15] when \(N \) is constant and Biggins in [5] in general. Then, we can associate the Mandelbrot measure defined on the \(\sigma \)-field \(\mathcal{C} \) generated by the cylinders of \(\mathbb{N}_+^N \) as
\[
(1.1) \quad \mu_q([u]) = \begin{cases}
W_{q,u_1} W_{q,u_2} \cdots W_{q,u_n} Y(q, u) & \text{if } u \in T_n \\
0 & \text{otherwise}
\end{cases}
\]
and supported on \(\partial T \). Moreover, under the property \(E(Y(q) \log^+ Y(q)) < \infty \), hence in particular when \(E(Y(q)^h) < \infty \) for some \(h > 1 \), where \(Y(q) = Y(q, \emptyset) \), we have, following [15], [19], [3], for all \(q \in J \), a.s., for \(\mu_q \)-almost every \(t \in \partial T \),
\[
\liminf_{n \to \infty} \frac{\log \mu_q([t_n])}{-n} \geq \tau(q) - q \tau'(q).
\]
Hence, for all \(q \in J \), a.s., the lower Hausdorff dimension of \(\mu_q \):
\[
\dim \mu_q \geq \tau(q) - q \tau'(q),
\]
see section 6 for the definition.

The Mandelbrot measure \(\mu_q \) is naturally considered when studying the multifractal analysis of some random sets [7, 10, 13, 3, 7, 1, 2]. By exploiting the simultaneous construction of the Mandelbrot measure \(\mu_q, q \in J \) and using a uniform version of the argument used by Kahane in [16] on homogeneous trees we get the following result.

Theorem 1.1. With probability 1, for all \(q \in J \), \(\dim \mu_q \geq \tau(q) - q \tau'(q) \).

As an application we study, for \(q \in J \), the set \(E(\tau'(q)) \) associated with the branching random walk with \((X_i = \log(W_i))_{1 \leq i \leq N} \) (see section 4). Since, with probability 1, for all \(q \in J \), the set \(E(\tau'(q)) \) is supported by \(\mu_q \) and its packing dimension is smaller than \(\tau^*(\tau'(q)) \) (see proposition 2.7 in [2]), we get
\[
a.s., \forall q \in J, \quad \dim \mu_q \leq \tau(q) - q \tau'(q),
\]
where \(\dim \mu_q \) is the upper packing dimension of \(\mu_q \) (see section 6 for the definition). As a consequence, we get that the measure are exact dimensional.
COROLLARY 1.1. With probability 1, for all \(q \in J \),
\[
\dim \mu_q = \dim \mu_q = \tau(q) - q^{\tau(q)},
\]
where \(\dim \mu_q \) and \(\dim \mu_q \) denote receptively the Hausdorff and packing dimension of \(\mu_q \).

REMARK 1.1. These results are known (see [1], [3]). Using a uniform version of a percolation argument, we will give a new proof of the sharp lower bounds for the lower Hausdorff dimension of these measures.

2. PRELIMINARY

Given an increasing sequence \(\{A_n\}_{n \geq 1} \) of sub-\(\sigma \)-fields of \(\mathcal{A} \) and a sequence of random functions \(\{P_n(t, \omega)\}_{n \geq 1} \) \((t \in \partial T) \) such that

1. \(P_n(t) = P_n(t, \omega) \) are non-negative and independent process; \(P_n(\cdot, \omega) \) is borelian for almost all \(\omega \); \(P_n(t, \cdot) \) is \(A_n \)-mesurable for each \(t \).

2. \(\mathbb{E}(P_n(t)) = 1 \) for all \(t \in \partial T \).

such a sequence \(\{P_n\} \) is called a sequence of weights adopted to \(\{A_n\} \). Let

\[
Q_n(t) = Q_n(t, \omega) = \prod_{k=1}^{n} P_k(t, \omega).
\]

For any \(n \geq 1 \) and any positive Radon measure \(\sigma \) on \(\partial T \) (we write \(\sigma \in \mathcal{M}^+(\partial T) \)), we consider the random measures \(Q_n \sigma \) defined as

\[
Q_n\sigma(A) = \int_A Q_n(t) d\sigma(t) \quad (A \in \mathcal{B}(\partial T)),
\]

where \(\mathcal{B}(\partial T) \) is the Borel field on \(\partial T \). For all \(A \in \mathcal{B}(\partial T) \), \(Q_n\sigma(A) \) is a positive martingale so it converges almost surely. Also we have, for all \(\sigma \in \mathcal{M}^+(\partial T) \), almost surely, the random measure \(Q_n \sigma \) converge weakly to random measure \(Q \sigma \).

There are two possible extreme cases. The first one is that \(Q_n(\partial T) \) converges almost surely to zero, i.e. \(Q \sigma = 0 \) a.s.. In this case, we say that \(Q \) degenerates on \(\sigma \) or \(\sigma \) is said to be \(Q \)-singular. The second one is that \(Q_n(\partial T) \) converges in \(L^1 \) so that \(\mathbb{E}(Q_n(\partial T)) = \sigma(\partial T) \). In this case we say that \(Q \) fully acts on \(\sigma \) or \(\sigma \) is said to be \(Q \)-regular.

THEOREM 2.1. Let \(\alpha \) be a positive number such that \(\mathcal{H}^\alpha(\partial T) < \infty \) where \(\mathcal{H}^\alpha \) denote the \(\alpha \)-dimensional Hausdorff measure. Let \(0 < h < 1 \) and \(C > 0 \). Suppose

\[
(2.1) \quad \sup_{t \in B}(Q_n(t)^h) \leq C |B|^{(1-h)\alpha}
\]

for all balls \(B \) and some \(n = n(B) \) depending on \(B \). Then \(Q \) is completely degenerate, that is \(Q \sigma = 0 \) a.s. for all \(\sigma \in \mathcal{M}^+(\partial T) \).
This provides a good tool to verify the Q–singularity of σ. Indeed, if a measure is not killed, it means that it has a lower Hausdorff dimension at least α.

3. PROOF OF THEOREM 1.1

For each $\beta \in (0, 1]$, let W_β be a random variable taking the value $1/\beta$ with probability β and the value 0 with probability $1 - \beta$. Then let $\{W_\beta,u\}_{u \in \bigcup_{n \geq 0} N^n_+}$ be a family of independent copies of W_β. Denote by $(\Omega_\beta, \mathcal{A}_\beta, \mathbb{P}_\beta)$ the probability space on which this family is defined.

We naturally extend to $(\Omega_\beta \times \Omega, \mathcal{A} \otimes \mathcal{A}, \mathbb{P} \otimes \mathbb{P})$ the random variables $W_{\beta,u}$ and the random vectors (N_0, W_{u1}, \ldots) as

$W_{\beta,u}(\omega, \omega) = W_{\beta,u}(\omega)$

and

$(N_0(\omega, \omega), W_{u1}(\omega, \omega), \ldots) = (N_0(\omega), W_{u1}(\omega), \ldots)$,

so that the families $\{W_{\beta,u}\}_{u \in \bigcup_{n \geq 0} N^n_+}$ and $\{(N_0, W_{u1}, \ldots)\}_{u \in \bigcup_{n \geq 0} N^n_+}$ are independent.

The expectation with respect to $\mathbb{P} \otimes \mathbb{P}$ will be also denoted by \mathbb{E}. For $n \geq 1$ and $\beta \in (0, 1]$, we set $\mathcal{F}_n = \sigma((N_u, W_{u1}, W_{u2}, \ldots) : u \in \bigcup_{k=0}^n N_{k+1}^n)$ and $\mathcal{F}_{\beta,n} = \sigma((W_{\beta,u1}, W_{\beta,u2}, \ldots) : u \in \bigcup_{k=0}^n N_{k+1}^n)$. We denote by \mathcal{F}_0 and $\mathcal{F}_{\beta,0}$ the trivial σ-field.

If $\beta \mathbb{E}(N) > 1$, the random variables $N_{\beta,u}(\omega, \omega) = \sum_{i=1}^{N_u(\omega)} 1_{\{\beta^{-1}\}}(W_{\beta,u}(\omega))$ define a new supercritical Galton-Watson process to which are associated the trees $T_{\beta,n} \subset T_n$ and $T_{\beta,u}(u) \subset T_n(u)$, $u \in \bigcup_{n \geq 0} N^n_+$, $n \geq 1$, as well as the infinite tree $T_{\beta} \subset T$ and the boundary $\partial T_{\beta} \subset \partial T$ conditional on non extinction.

For $u \in \bigcup_{n \geq 0} N^n_+$, $1 \leq i \leq N(u)$ and $q \in \mathcal{J}$, we define

$W_{\beta,q,ui} = W_{\beta,u1} W_{q,ui}$.

For $q \in \mathcal{J}$, $\beta \mathbb{E}(N) > 1$, and $n \geq 0$ and $u \in \bigcup_{n \geq 0} N^n_+$, we define

$Y_n(\beta, q, u) = \sum_{v_1 \ldots v_n \in T_n(u)} \prod_{k=1}^n W_{\beta,q,uv_1 \ldots v_k}$.

When $u = 0$ this quantity will be denoted by $Y_n(\beta, q)$ and, when $n = 0$, its value equal 1.

3.1. A family of measures indexed by \mathcal{J}. For $\beta \in (\mathbb{E}(N)^{-1}, 1]$ and $\epsilon > 0$ we set

$\mathcal{J}_{\beta, \epsilon} = \{q \in \mathcal{J} : \tau^*(\tau(q)) > -\log \beta + \epsilon\}$.
Notice that \(\tau^*(\tau'(q)) \) takes values between 0 and \(\tau(0) = \log(E(N)) \) over \(\mathcal{J} \), then
\[
(3.1) \quad \mathcal{J} = \bigcup_{\beta \in (E(N)^{-1}, 1], \epsilon > 0} \mathcal{J}_{\beta, \epsilon}.
\]

The following propositions will be established in section 5.

Proposition 3.1.
1. For all \(u \in \bigcup_{n \geq 0} \mathbb{N}_+^n \), the sequence of continuous functions \(Y_n(\cdot, u) \) converges uniformly, almost surely and in \(L^1 \) norm, to a positive limit \(Y(\cdot, u) \) on \(\mathcal{J} \).
2. With probability 1, for all \(q \in \mathcal{J} \), the mapping
\[
(3.2) \quad q \mapsto e^{Y_n(q; u)} = \sum_{u \in T_n} \left(\prod_{k=1}^n W_{\beta, u_1 \ldots u_k} \right) q(u) \mu_q(|u|)
\]
defines a positive measure on \(\partial T \).

Proposition 3.2. Let \(\beta \in (0, 1] \) such that \(\beta E(N) > 1 \). For all \(\epsilon \in \mathbb{Q}_+^* \)
1. the sequence of continuous functions \(Y_n(\beta, \cdot) \) converges uniformly, almost surely and in \(L^1 \) norm, to a positive limit \(Y(\beta, \cdot) \) on \(\mathcal{J}_{\beta, \epsilon} \).
2. the sequence of continuous functions
\[
q \mapsto \tilde{Y}_n(\beta, q) = \sum_{u \in T_n} \left(\prod_{k=1}^n W_{\beta, u_1 \ldots u_k} \right) \mu_q(|u|)
\]
converges uniformly, almost surely and in \(L^1 \) norm, towards \(Y(\beta, \cdot) \) on \(\mathcal{J}_{\beta, \epsilon} \).

3.2. Proof of Theorem 1.1. Let \(\epsilon \in \mathbb{Q}_+^* \) and \(\beta \in (0, 1] \) such that \(\beta E(N) > 1 \). For every \(t \in \partial T \) and \(\omega_{\beta} \in \Omega_{\beta} \) set
\[
Q_{\beta, n}(t, \omega_{\beta}) = \prod_{k=1}^n W_{\beta, t_{\epsilon_k}}
\]
so that for \(q \in \mathcal{J}_{\beta, \epsilon} \), \(\tilde{Y}_n(\beta, q) \) is the total mass of the measure \(Q_{\beta, n}(t, \omega_{\beta}) \cdot d\mu_q(|u|) \).

Now, Proposition 3.2 claims that there exists a measurable subset \(A \) of \(\Omega \times \Omega_\beta \) of full probability in the set of those \((\omega, \omega_{\beta}) \) such that \((T_{\beta, n})_{n \geq 1} \) survives and for all \((\omega, \omega_{\beta}) \in A \), for all \(q \in \mathcal{J}_{\beta, \epsilon} \), \(\tilde{Y}_n(\beta, q) \) does not converge to 0. Moreover, since the branching number of the tree \(T \) is \(\mathbb{P} \)-almost surely equal to the constant \(E(N) \) and \(\beta E(N) > 1 \), conditional on \(T \), the \(\mathbb{P}_{\beta} \)-probability of non extinction of \((T_{\beta, n})_{n \geq 1} \) is positive ([12, Th. 6.2]). Thus, the projection of \(A \) to \(\Omega \) has \(\mathbb{P} \)-probability 1, and there exists a measurable subset \(\Omega(\beta, \epsilon) \) of \(\Omega \), such that \(\mathbb{P}(\Omega(\beta, \epsilon)) = 1 \) and for all \(\omega \in \Omega(\beta, \epsilon) \), there exists \(\Omega_{\beta} \subseteq \Omega_{\beta} \) of positive probability such that for all \(\omega \in \Omega(\beta, \epsilon) \), for all \(q \in \mathcal{J}_{\beta, \epsilon} \), for all \(\omega_{\beta} \in \Omega_{\beta} \), \(\tilde{Y}_n(\beta, q) \) does not converge to 0. In terms of the multiplicative chaos theory developed in [17],
this means, that for all \(\omega \in \Omega(\beta, \epsilon) \) and \(q \in \mathcal{J}_{\beta, \epsilon} \), the set of those \(\omega_{\beta} \) such that the multiplicative chaos \((Q_{\beta, n}(\cdot, \omega))_{n \geq 1} \) has not killed \(\mu_q \) on the compact set \(\partial T \) has a positive \(\mathbb{P}_\beta \)-probability. Now, the good property of \((Q_{\beta, n}(\cdot, \omega))_{n \geq 1} \) is that
\[
\mathbb{E}_\beta \left(\sup_{t \in B} (Q_{\beta, n}(t))^{h} \right) = e^{n(1-h)\log(\beta)} = (|B|)^{-(1-h)\log(\beta)}
\]
for any \(h \in (0, 1) \) and any ball \(B \) of generation \(n \) in \(\partial T \), where \(|B| \) stands for the diameter of \(B \) and \(\mathbb{E}_\beta \) stands for the expectation with respect to \(\mathbb{P}_\beta \). Thus, we can apply Theorem 3 of [17] and claim that for all \(\omega \in \Omega(\beta, \epsilon) \) and all \(q \in \mathcal{J}_{\beta, \epsilon} \), no piece of \(\mu_q \) is carried by a Borel set of Hausdorff dimension less than \(-\log(\beta) \).

Let \(\Omega' = \bigcap_{\beta \in (\mathbb{E}(N))^{1-1}} \bigcap_{Q^* \in \mathcal{Q}^*_+} \Omega(\beta, \epsilon) \). This set is of \(\mathbb{P} \)-probability 1. Let \(q \in \mathcal{J} \), by (5.1), there exists a sequence of points \((\beta_n, \epsilon_n) \in (\mathbb{E}(N))^{1-1} \times \mathcal{Q}^*_+ \) such that \(\tau(q) - q\tau(q) > -\log(\beta_n) + \epsilon_n / 2 \) for all \(n \geq 1 \), and \(\lim_{n \to \infty} -\log(\beta_n) = \tau(q) - q\tau(q) \), \(\lim_{n \to \infty} \epsilon_n = 0 \) and \(q \in \bigcap_{n \geq 1} \mathcal{J}_{\beta_n, \epsilon_n} \). Consequently, the previous paragraph implies that for all \(\omega \in \Omega' \),
\[
\dim(\mu^\omega_q) \geq \limsup_{n \to \infty} -\log(\beta_n) = \tau(q) - q\tau(q).
\]

4. APPLICATION

Let \((N, X_1, X_2, \ldots)\) be a random vector taking values in \(\mathbb{N}^+ \times (\mathbb{R})^\mathbb{N}^+ \). Then consider \(\{ (N_u, X_{u1}, X_{u2}, \ldots) \}_{u \in \mathbb{N}^+_1} \) a family of independent copies of the vector \((N, X_1, X_2, \cdots)\) indexed by the set of finite words over the alphabet \(\mathbb{N}^+ \). We assume that \(\mathbb{E}(N) > 1 \) and \(\mathbb{P}(N > 1) = 1 \). Suppose that, for all \(u \in T \), \(X_u \) is integrable and the sequence \((X_u)_{u \in \mathbb{N}^+_1} \) are i.i.d. Given \(t \in \partial T \), by the strong law of large numbers, we have \(\lim \frac{1}{n} S_n(t) = \mathbb{E}(X_1) \) almost surely, where
\[
S_n(t) = \sum_{k=1}^{n} X_{t_{k1} \cdots t_k}.
\]
Since \(\partial T \) is not countable, the following question naturally arises: are there some \(t \in \partial T \) so that \(\lim_{n \to \infty} \frac{1}{n} S_n(t) = \alpha \neq \mathbb{E}(X_1) \) ? Multifractal analysis is a framework adapted to answer this question. Consider the set \(I \) of those \(\alpha \in \mathbb{R} \) such that
\[
E(\alpha) = \{ t \in \partial T : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} X_{u_{1} \cdots u_k} = \alpha \} \neq \emptyset.
\]
These level sets can be described geometrically through their Hausdorff dimensions. They have been studied by many authors, see [9, 10, 13, 14, 17, 18, 19]; all these papers also deal with the multifractal analysis of associated Mandelbrot measures (see also [15, 20, 21, 22] for the study of Mandelbrot measures dimension).
Take, for \(u \in \bigcup_{n \geq 0} \mathbb{N}_1^n \), the random variable \(W_u = e^{X_u} \) and we set

\[I = \{ \tau'(q) ; \ q \in \mathcal{J} \}. \]

Theorem 4.1. With probability 1, for all \(\alpha \in I \), the multifractal formalism holds at \(\alpha \), i.e.,

\[\dim E(\alpha) = \dim E(\alpha) = \tau^*(\alpha), \]

in particular, \(E(\alpha) \neq \emptyset \).

Proof. A simple covering argument yields, with probability 1, for all \(\alpha \in I \),

\[\dim E(\alpha) \leq \tau^*(\alpha) \] (see for example Proposition 2.7 in [2]). In addition consider the Mandelbrot measure \(\mu_q, q \in \mathcal{J} \), defined by (1.1). It is known (see for example Corollary 2.5 in [1]) that with probability 1,

\[\mu_q(E(\tau'(q))) = 1. \] In addition, according to Theorem 1.1, we have, with probability 1, for all \(q \in \mathcal{J} \),

\[\dim \mu_q \geq \tau(q) - q \tau'(q). \] We deduce the result from the mass distribution principle (Theorem 6.2).

Remark 4.1. This result has been proved when \(N \) is not random in [3], and in the weaker form, for each fixed \(\alpha \in I \), almost surely \(\dim E(\alpha) = \tau^*(\alpha) \), when \(N \) is random in [7, 10, 13].

Remark 4.2. Using Cauchy formula we can prove Theorem 1.1 (see [1]). Then our result gives a new approach to estimate, almost surely and simultaneously the lower Hausdorff dimension of the Mandelbrot measure over \(\mathcal{J} \).

5. PROOF OF PROPOSITIONS 3.1 AND 3.2

Define, for \((q, p, \beta) \in \mathcal{J} \times [1, \infty) \times (0, 1] \), the function

\[\varphi_\beta(p; q) = \exp (\tau(pq) - p \tau(q) + (1 - p) \log \beta). \]

Lemma 5.1. For all nontrivial compact \(K \subset \mathcal{J}_{\beta, \epsilon} \) there exists a real number

\[1 < p_K < 2 \] such that for all \(1 < p \leq p_K \) we have

\[\sup_{q \in K} \varphi_\beta(p_K, q) < 1. \]

Proof. Let \(q \in \mathcal{J}_{\beta, \epsilon} \), one has \(\frac{\partial \varphi_\beta}{\partial p}(1^+, q) < 0 \) and there exists \(p_q > 1 \) such that \(\varphi_\beta(p_q, q) < 1 \). Therefore, in a neighborhood \(V_q \) of \(q \), one has \(\varphi_\beta(p_q, q') < 1 \) for all \(q' \in V_q \). If \(K \) is a nontrivial compact of \(\mathcal{J}_{\beta, \epsilon} \), it is covered by a finite number of such \(V_q \). Let \(p_K = \inf_{q \in K} p_q \). If \(1 < p \leq p_K \) and \(\sup_{q \in K} \varphi_\beta(p, q) \geq 1 \), there exists \(q \in K \) such that \(\varphi_\beta(p, q) \geq 1 \), and \(q \in V_{q_i} \) for some \(i \). By log-convexity of the mapping \(p \mapsto \varphi_\beta(p, q) \) and the fact that \(\varphi_\beta(1, q) = 1 \), since \(1 < p \leq p_q \), we have \(\varphi_\beta(p, q) < 1 \), which is a contradiction. \(\blacksquare \)
Lemma 5.2. For all compact \(K \subset J \), there exists \(\tilde{p}_K > 1 \) such that

\[
\sup_{q \in K} \mathbb{E}((\sum_{i=1}^N W_i^q)^{	ilde{p}_K}) < \infty.
\]

Proof. Since \(K \) is compact and the family of open sets \(J \cap \Omega_1^\gamma \) increases to \(J \) as \(\gamma \) decreases to 1, there exists \(\gamma \in (1, 2] \) such that \(K \subset \Omega_1^\gamma \). Take \(\tilde{p}_K = \gamma \). The conclusion comes from the fact that the function \(q \mapsto \mathbb{E}((\sum_{i=1}^N W_i^q)^{	ilde{p}_K}) \) is continuous over \(\Omega_1^\gamma \).

Lemma 5.3. ([6]) If \(\{X_i\} \) is a family of integrable and independent complex random variables with \(\mathbb{E}(X_i) = 0 \), then \(\mathbb{E}|\sum X_i|^p \leq 2^p \sum \mathbb{E}|X_i|^p \) for \(1 \leq p \leq 2 \).

The same lines as in Lemma 2.11 in [1], we get the following lemma.

Lemma 5.4. Let \((N, V_1, V_2, \ldots) \) be a random vector taking values in \(\mathbb{N}_+ \times \mathbb{C}^{\mathbb{N}_+} \) and such that \(\sum_{i=1}^N V_i \) is integrable and \(\mathbb{E}(\sum_{i=1}^N V_i) = 1 \). Consider a sequence \(\{(N_u, V_{u1}, V_{u2}, \ldots)\}_{u \in \bigcup_{n \geq 0} \mathbb{N}_+} \) of independent copies of \((N, V_1, \ldots, V_N) \). We define the sequence \((Z_n)_{n \geq 0} \) by \(Z_0 = 1 \) and for \(n \geq 1 \)

\[
Z_n = \sum_{u \in T_n} (\prod_{k=1}^n V_{uk}).
\]

Let \(p \in (1, 2] \). There exists a constant \(C_p \) depending on \(p \) only such that for all \(n \geq 1 \),

\[
\mathbb{E}(|Z_n - Z_{n-1}|^p) \leq C_p \left(\mathbb{E}\left(\sum_{i=1}^N |V_i|^p\right)^{n-1}\left(\mathbb{E}\left(\sum_{i=1}^N |V_i|^p\right) + 1\right)\right).
\]

Proof of Proposition 5.2. (1) Recall that the uniform convergence result uses an argument developed in [6]. Fix a compact \(K \subset J_{\beta, \epsilon} \). By Lemma 5.2, we can fix a compact neighborhood \(K' \) of \(K \) and \(\tilde{p}_{K'} > 1 \) such that

\[
\sup_{q \in K'} \mathbb{E}((\sum_{i=1}^N W_i^q)^{	ilde{p}_{K'}}) < \infty.
\]

By Lemma 5.1, we can fix \(1 < p_K \leq \min(2, \tilde{p}_{K'}) \) such that \(\sup_{q \in K} \varphi_\beta(p_K, q) < 1 \). Then for each \(q \in K \), there exists a neighborhood \(V_q \subset \mathbb{C} \) of \(q \), whose projection to \(\mathbb{R} \) is contained in \(K' \), and such that for all \(u \in T \) and \(z \in V_q \), the random variable

\[
W_{\beta, z, u} = W_{\beta, u} \frac{e^{z \log W_u}}{\mathbb{E}(\sum_{i=1}^N e^{z \log W_i})}
\]
is well defined, and we have
\[
\sup_{z \in V_q} \varphi_\beta(p_K, z) < 1,
\]
where for all \(z \in \mathbb{C} \)
\[
\varphi_\beta(p_K, z) = \beta^{1-p_K} \mathbb{E}\left(\sum_{i=1}^N e^{z \log W_i |p_K|} \right)^{-p_K} \mathbb{E}\left(\sum_{i=1}^N e^{z \log W_i |p_K|} \right).
\]
By extracting a finite covering of \(K \) from \(\bigcup_{q \in K} V_q \), we find a neighborhood \(V \subset \mathbb{C} \) of \(K \) such that \(\sup_{z \in V} \varphi_\beta(p_K, z) < 1 \).
Since the projection of \(V \) to \(\mathbb{R} \) is included in \(K' \) and the mapping \(z \mapsto \mathbb{E}\left(\sum_{i=1}^N e^{z \log W_i} \right) \) is continuous and does not vanish on \(V \), by considering a smaller neighborhood of \(K \) included in \(V \) if necessary, we can assume that
\[
A_V = \sup_{z \in V} \mathbb{E}\left(\sum_{i=1}^N e^{z \log W_i |p_K|} \right)^{-p_K} < \infty.
\]
Now, for \(u \in T \), we define the analytic extension to \(V \) of \(Y_n(\beta, q, u) \) given by
\[
Y_n(\beta, z, u) = \sum_{v \in T(u)} \prod_{k=1}^n W_{\beta, z, v_1, \ldots, v_k}.
\]
We denote also \(Y_n(\beta, z, 0) \) by \(Y_n(\beta, z) \). Now, applying Lemma 5.4 with \(V_i = W_{\beta, z, i} \), we obtain
\[
\mathbb{E}\left(|Y_n(\beta, z) - Y_{n-1}(\beta, z)|^{p_K} \right) \leq C_{p_K} \left(\mathbb{E}\left(\sum_{i=1}^N |V_i|^{p_K} \right) \right)^{n-1} \left(\mathbb{E}\left(|\sum_{i=1}^N V_i|^{p_K} \right) + 1 \right).
\]
Notice that \(\mathbb{E}\left(\sum_{i=1}^N |V_i|^{p_K} \right) = \varphi_\beta(p_K, z) \). Then,
\[
\mathbb{E}\left(|Y_n(\beta, z) - Y_{n-1}(\beta, z)|^{p_K} \right) \leq C_{p_K} A_V \sup_{z \in V} \varphi(p_K, z)^{n-1}.
\]
With probability 1, the functions \(z \in V \mapsto Y_n(\beta, z), n \geq 0, \) are analytic. Fix a closed disc \(D(z_0, 2\rho) \subset V \). Theorem (6.1) gives
\[
\sup_{z \in D(z_0, \rho)} |Y_n(\beta, z) - Y_{n-1}(\beta, z)| \leq 2 \int_{[0,1]} |Y_n(\beta, \zeta(\theta)) - Y_{n-1}(\beta, \zeta(\theta))| \, d\theta,
\]
where, for \(\theta \in [0, 1], \ z(\theta) = z_0 + 2\rho e^{2\pi \theta}. \) Furthermore Jensen’s inequality and Fubini’s theorem give

\[
\mathbb{E}\left(\sup_{z \in D(z_0, \rho)} |Y_n(\beta, z) - Y_{\beta, n-1}(z)|^{p_K} \right) \\
\leq \mathbb{E}\left((2 \int_{[0,1]} |Y_n(\beta, \zeta(\theta)) - Y_{n-1}(\beta, \zeta(\theta))| \, d\theta)^{p_K} \right) \\
\leq 2^{p_K} \mathbb{E}\left(\int_{[0,1]} |Y_n(\beta, \zeta(\theta)) - Y_{n-1}(\beta, \zeta(\theta))|^{p_K} \, d\theta \right) \\
\leq 2^{p_K} \int_{[0,1]} \mathbb{E}|Y_n(\beta, \zeta(\theta)) - Y_{n-1}(\beta, \zeta(\theta))|^{p_K} \, d\theta \\
\leq 2^{p_K} C_{p_K} A_V \sup_{z \in V} \varphi(\beta, p_K, z)^{n-1}.
\]

Since \(\sup_{z \in V} \varphi(p_K, z) < 1, \) it follows that

\[
\sum_{n \geq 1} \left\| \sup_{z \in D(z_0, \rho)} |Y_n(\beta, z) - Y_{\beta, n-1}(z)| \right\|_{p_K} < \infty.
\]

This implies, \(z \mapsto Y_n(\beta, z) \) converge uniformly, almost surely and in \(L^{p_K} \) norm over the compact \(D(z_0, \rho) \) to a limit \(z \mapsto Y(\beta, z). \) This also implies that

\[
\left\| \sup_{z \in D(z_0, \rho)} Y(\beta, z) \right\|_{p_K} < \infty.
\]

Since \(K \) can be covered by finitely many such discs \(D(z_0, \rho) \) we get the uniform convergence, almost surely and in \(L^{p_K} \) norm, of the sequence \((q \in K \mapsto Y_n(\beta, q))_{n \geq 1} \) to \(q \in K \mapsto Y(\beta, q). \) Moreover, since \(J_{\beta, \epsilon} \) can be covered by a countable union of such compact \(K \) we get the simultaneous convergence for all \(q \in J_{\beta}. \) The same holds simultaneously for all the function \(q \in J_{\beta} \mapsto Y_n(\beta, q, u), \ u \in \bigcup_{n \geq 0} \mathbb{N}_+^*, \) because \(\bigcup_{n \geq 0} \mathbb{N}_+^* \) is countable.

To finish the proof of (1), we must show that a.s., \(q \in K \mapsto Y(\beta, q) \) does not vanish. Without loss of generality we can suppose that \(K = [0, 1]. \) If \(I \) is a dyadic closed subinterval of \([0, 1], \) we denote by \(E_I \) the event \(\{ \exists q \in I : Y(\beta, q) = 0 \}. \) Let \(I_0, I_1 \) stand for the 2 dyadic subintervals of \(I \) in the next generation. The event \(E_I \) being a tail event of probability 0 or 1, if we suppose that \(P(E_I) = 1, \) there exists \(j \in \{0, 1\} \) such that \(P(E_{I_j}) = 1. \) Suppose now that \(P(E_K) = 1. \) The previous remark allows to construct a decreasing sequence \((I(n))_{n \geq 0} \) of dyadic subintervals of \(K \) such that \(P(E_{I(n)}) = 1. \) Let \(q_0 \) be the unique element of \(\cap_{n \geq 0} I(n). \) Since \(q \mapsto Y(\beta, q) \) is continuous we have \(P(Y(\beta, q_0) = 0) = 1, \) which contradicts the fact that \((Y_n(\beta, q_0))_{n \geq 1} \) converge to \(Y(\beta, q_0) \) in \(L^1. \)
(2) Here we develop, in the context of the boundary of a supercritical Galton-Watson tree, a uniform version of the argument used by Kahane in [16] on homogeneous trees, and written in complete rigor in [24]. Fix $\epsilon > 0$ and a compact set K in $\mathcal{J}_{\beta,\epsilon}$. Denote by E the separable Banach space of the real valued continuous functions over K endowed with the supremum norm.

For $n \geq m \geq 1$ and $q \in K$ let

$$Z_{m,n}(\beta, q) = \sum_{u \in \Omega_m} Y_{n-m}(q,u) \prod_{k=1}^{m} W_{\beta;u_1,...,u_k}.$$

Notice that $Z_{m,n}(\beta, q) = Y_n(\beta, q)$. Moreover, since $Y_n(\beta, \cdot)$ converges a.s. and in L^1 norm to $Y(\beta, \cdot)$ as $n \to \infty$, $Y_n(\beta, \cdot)$ belongs to $L^1_E = L^1_E(\Omega_\beta \times \Omega, \mathcal{A}_\beta \times \mathcal{F}_\beta \times \mathcal{P})$ (where we use the notations of [13, Section V-2]), so that the continuous random function $E(Z_{n,n}(\beta, q) | \mathcal{F}_{\beta,m} \otimes \mathcal{F}_n)$ is well defined by [13, Proposition V-2-5]; also, for any fixed $q \in K$, we can deduce from the definitions and the independence assumptions that

$$Z_{m,n}(\beta, q) = E(Z_{n,n}(\beta, q) | \mathcal{F}_{\beta,m} \otimes \mathcal{F}_n)$$

almost surely. By [13, Proposition V-2-5] again, since $g \in E \mapsto g(q)$ is a continuous linear form over E, we thus have

$$Z_{m,n}(\beta, q) = E(Z_{n,n}(\beta, \cdot) | \mathcal{F}_{\beta,m} \otimes \mathcal{F}_n)(q)$$

almost surely. By considering a dense countable set of q in K, we can conclude that the random continuous functions $Z_{m,n}(\beta, \cdot)$ and $E(Z_{n,n}(\beta, \cdot) | \mathcal{F}_{\beta,m} \otimes \mathcal{F}_n)$ are equal almost surely.

Similarly, since for each $q \in K$ the martingale $(Y_n(\beta, q), \mathcal{F}_{\beta,n} \otimes \mathcal{F}_n)$ converges to $Y(\beta, q)$ almost surely and in L^1, and $Y(\beta, \cdot) \in L^1_E$, by using [13, Proposition V-2-5] again we can get almost surely

$$Z_{n,n}(\beta, \cdot) = E(Y(\beta, \cdot) | \mathcal{F}_{\beta,n} \otimes \mathcal{F}_n), \text{ hence } Z_{m,n}(\beta, \cdot) = E(Y(\beta, \cdot) | \mathcal{F}_{\beta,m} \otimes \mathcal{F}_n).$$

Moreover, it follows from Proposition (1) and the definition of $\mu_q([u])$ that $Z_{m,n}(\beta, \cdot)$ converges almost surely uniformly and in L^1 norm, as $n \to \infty$, to $Y_m(\beta, \cdot)$. This and (5.1) yield, using [13, Proposition V-2-6],

$$\overline{Y}_m(\beta, \cdot) = \lim_{n \to \infty} Z_{m,n}(\beta, \cdot) = E(Y(\beta, \cdot) | \mathcal{F}_{\beta,m} \otimes \sigma(\bigcup_{n \geq 1} \mathcal{F}_n))$$

and finally

$$\lim_{m \to \infty} \overline{Y}_m(\beta, \cdot) = E(Y(\beta, \cdot) | \sigma(\bigcup_{m \geq 1} \mathcal{F}_{\beta,m}) \otimes \sigma(\bigcup_{n \geq 1} \mathcal{F}_n)) = Y(\beta, \cdot),$$
almost surely (since by construction $Y(\beta, \cdot)$ is $\sigma(\bigcup_{m \geq 1} F_{\beta,m}) \otimes \sigma(\bigcup_{n \geq 1} F_n)$ measurable), where the convergences hold in the uniform norm.

Moreover, since $J_{\beta,\epsilon}$ can be covered by a countable union of such compact K, we get the simultaneous convergence for all $q \in J_{\beta,\epsilon}$. ■

Proof of Proposition 3.1. The proof of the first point is similar to the proof of Proposition 3.2 (1) ($\beta = 1$). The second point is a consequence of the branching property:

$$Y_{n+1}(q, u) = \sum_{i=1}^{N} W_{q, u_i} Y_n(q, u_i).$$

6. APPENDICES

APPENDIX 1 — CAUCHY FORMULA

Definition 6.1. Let $D(\zeta, r)$ be a disc in \mathbb{C} with centre ζ and radius r. The set ∂D is the boundary of D. Let $g \in C(\partial D)$ a continuous function on ∂D. We define the integral of g on ∂D as

$$\int_{\partial D} g(\zeta) d\zeta = 2i\pi r \int_{[0,1]} g(\zeta(t)) e^{i2\pi t} dt,$$

where $\zeta(t) = \zeta + re^{i2\pi t}$.

Theorem 6.1. Let $D = D(a, r)$ be a disc in \mathbb{C} with a radius $r > 0$, and f be a holomorphic function in a neighborhood of D. Then, for all $z \in D$

$$f(z) = \frac{1}{(2i\pi)} \int_{\partial D} \frac{f(\zeta)d\zeta}{\zeta - z}.$$

It follows that

$$\sup_{z \in D(a, r/2)} |f(z)| \leq 2 \int_{[0,1]} |f(\zeta(t))| dt.$$

APPENDIX 2 — MASS DISTRIBUTION PRINCIPLE

Theorem 6.2. [B] Let ν be a positive and finite Borel probability measure on a compact metric space (X, d). Assume that $M \subseteq X$ is a Borel set such that $\nu(M) > 0$ and

$$M \subseteq \{ t \in X, \lim_{r \to 0^+} \frac{\log \nu(B(t, r))}{\log r} \geq \delta \}.$$

Then the Hausdorff dimension of M is bounded from below by δ.
APPENDIX 3 — HAUSDORFF AND PACKING MEASURES AND DIMENSIONS

Given a subset K of \mathbb{N}_+^+ endowed with a metric d making it σ-compact, $g : \mathbb{R}_+ \to \mathbb{R}_+$ a continuous non-decreasing function near 0 and such that $g(0) = 0$, and E a subset of K, the Hausdorff measure of E with respect to the gauge function g is defined as

$$H^g(E) = \lim_{\delta \to 0^+} \inf \left\{ \sum_{i \in \mathbb{N}} g(\text{diam}(U_i)) \right\},$$

the infimum being taken over all the countable coverings $(U_i)_{i \in \mathbb{N}}$ of E by subsets of K of diameters less than or equal to δ.

If $s \in \mathbb{R}_+^*$ and $g(u) = u^s$, then $H^g(E)$ is also denoted $H^s(E)$ and called the s-dimensional Hausdorff measure of E. Then, the Hausdorff dimension of E is defined as

$$\dim E = \sup \{ s > 0 : H^s(E) = \infty \} = \inf \{ s > 0 : H^s(E) = 0 \},$$

with the convention $\sup \emptyset = 0$ and $\inf \emptyset = \infty$.

Packing measures and dimensions are defined as follows. Given g and $E \subset K$ as above, one first defines

$$P^g(E) = \lim_{\delta \to 0^+} \sup \left\{ \sum_{i \in \mathbb{N}} g(\text{diam}(B_i)) \right\},$$

the supremum being taken over all the packings $(B_i)_{i \in \mathbb{N}}$ of E by balls centered on E and with diameter smaller than or equal to δ. Then, the packing measure of E with respect to the gauge g is defined as

$$P^g(E) = \lim_{\delta \to 0^+} \inf \left\{ \sum_{i \in \mathbb{N}} P^g(E_i) \right\},$$

the infimum being taken over all the countable coverings $(E_i)_{i \in \mathbb{N}}$ of E by subsets of K of diameters less than or equal to δ. If $s \in \mathbb{R}_+^*$ and $g(u) = u^s$, then $P^g(E)$ is also denoted $P^s(E)$ and called the s-dimensional packing measure of E. Then, the packing dimension of E is defined as

$$\text{Dim} E = \sup \{ s > 0 : P^s(E) = \infty \} = \inf \{ s > 0 : P^s(E) = 0 \},$$

with the convention $\sup \emptyset = 0$ and $\inf \emptyset = \infty$. For more details the reader is referred to [9].

If μ is a positive and finite Borel measure supported on K, then its lower Hausdorff and packing dimensions is defined as

$$\dim(\mu) = \inf \{ \dim F : F \text{ Borel}, \mu(F) > 0 \},$$

$$\text{Dim}(\mu) = \inf \{ \text{Dim} F : F \text{ Borel}, \mu(F) > 0 \},$$
and its upper Hausdorff and packing dimensions are defined as
\[
\overline{\dim}(\mu) = \inf \{ \dim F : F \text{ Borel, } \mu(F) = \|\mu\| \}
\]
\[
\overline{\text{Dim}}(\mu) = \inf \{ \text{Dim} F : F \text{ Borel, } \mu(F) = \|\mu\| \},
\]
We have (see [8], [11])
\[
\dim(\mu) = \operatorname{ess \inf}_\mu \lim_{r \to 0^+} \frac{\log \mu(B(t, r))}{\log(r)},
\]
\[
\overline{\dim}(\mu) = \operatorname{ess \inf}_\mu \lim_{r \to 0^+} \frac{\log \mu(B(t, r))}{\log(r)},
\]
and
\[
\overline{\text{Dim}}(\mu) = \operatorname{ess \sup}_\mu \lim_{r \to 0^+} \frac{\log \mu(B(t, r))}{\log(r)},
\]
\[
\overline{\text{Dim}}(\mu) = \operatorname{ess \sup}_\mu \lim_{r \to 0^+} \frac{\log \mu(B(t, r))}{\log(r)},
\]
where \(B(t, r)\) stands for the closed ball of radius \(r\) centered at \(t\). If \(\dim(\mu) = \overline{\dim}(\mu)\) (resp. \(\overline{\text{Dim}}(\mu) = \overline{\text{Dim}}(\mu)\)), this common value is denoted \(\dim \mu\) (resp. \(\overline{\text{Dim}}(\mu)\)), and if \(\dim \mu = \overline{\text{Dim}} \mu\), one says that \(\mu\) is exact dimensional.

REFERENCES

Najmeddine Attia
Faculté de sciences de Monastir- Avenue de l’environnement-5000- Monastir
E-mail: najmeddine.attia@gmail.com

Received on 12.7.2017;
revised version on 22.2.2018