BORELL AND LANDAU-SHEPP INEQUALITIES FOR CAUCHY-TYPE MEASURES

BY

TOMASZ BYCZKOWSKI (WROCŁAW) AND TOMASZ ŻAK (WROCŁAW)

Abstract. In the paper we investigate various inequalities for the one-dimensional Cauchy measure. We also consider analogous properties for one-dimensional sections of multidimensional isotropic Cauchy measures. The paper is a continuation of our previous investigations [1], where we found, among intervals with fixed measure, the ones with the extremal measure of the boundary. Here for the above mentioned measures we investigate inequalities that are analogous to those proved for Gaussian measures by Borell in [2] and by Landau and Shepp in [5]. We also consider a 1-symmetrization for Cauchy measures, analogous to the one defined for Gaussian measures by Ehrhard in [3], and we prove the concavity of this operation.

2010 AMS Mathematics Subject Classification: Primary: 60E05, 60E07.

Key words and phrases: Cauchy distribution, Borell inequality, Landau-Shepp inequality, Ehrhard symmetrization

* T. Byczkowski was supported by National Science Centre, Poland, grant no. 2015/17/ST1/01233

** T. Zak was supported by National Science Centre, Poland, grant no. 2015/17/ST1/01043
1. INTRODUCTION

Gaussian measures occupy central place in various areas of mathematics. They satisfy important inequalities due to Prekopa-Leindler ([8]), Borell ([2]), Ehrhard ([3]) and Landau-Shepp ([5]).

The aim of our research in this paper and in our previous paper [1] is to find appropriate analogues of these inequalities for rotationally invariant, standard Cauchy measures. The first step consists in examining of the one-dimensional case. Even here the situation is different than in the Gaussian case, as half-lines are no longer minimal sets (in the sense of the measure of the boundary). It turns out that there are three types of minimal sets, depending on the measures (compare [1]). Further on, we consider one-dimensional sections of \(n\)-dimensional Cauchy measure (we call them "Cauchy-type measures") and carry out a suitable version of the Ehrhard symmetrization procedure (see [3]), which turns out to be a very effective tool for our goals. The culmination of this consists of the proof that the 1-symmetrization is a concave operation on convex subsets of \(\mathbb{R}^n\), which is the first step in the direction of \(n\)-dimensional setting.

The classical isoperimetric theorem on the plane states that among all Borel sets with fixed Lebesgue measure the circle has the smallest perimeter. The multidimensional version of the theorem states that in every finite dimension there exists a set with the smallest measure of the boundary and this minimum is attained for the ball. Here by "the measure of the boundary" we mean the following: if \(A\) is a Borel set and \(B_h = \{x \in \mathbb{R}^n : \|x\| < h\}\) we put \(A^h = A + B_h = \{x \in \mathbb{R}^n : \text{dist}(x, A) < h\}\). Then the measure of the boundary is equal to
\[
\limsup_{h \to 0^+} \frac{|A^h| - |A|}{h},
\]
where \(|A|\) denotes the Lebesgue measure of \(A\). For simplicity of the language let us call this limit (whenever exists, finite or not), the perimeter of the set \(A\).

Let us start with the definition of the (additive) perimeter for probability mea-
sures. To avoid problems with the existence, we restrict our consideration to convex Borel sets. Let A be such a set. Put

$$\text{per}(A) = \limsup_{h \to 0^+} \frac{\mu(A^h) - \mu(A)}{h},$$

whenever the limit is finite.

For a different (multiplicative) kind of measuring of the boundary, and the corresponding isoperimetric problem, see the papers [4], [6], where the so-called S-hypothesis was solved.

Fifty years ago mathematicians generalized the isoperimetric theorem. Because the Gaussian distribution is one of the most important probability measures, this problem was investigated first for it. It turned out (compare [9] and [2]) that among all convex Borel sets in \mathbb{R}^n with the same fixed measure, the half-space $\{x \in \mathbb{R}^n : x_n > a\}$ has the smallest Gaussian perimeter.

During investigation of these isoperimetric properties of Gaussian measures in \mathbb{R}^n many interesting and useful inequalities were found. For instance C. Borell proved the following theorem (Theorem 3.1 in [2]):

Let γ be the standard Gaussian measure in \mathbb{R}^n, let A be a Borel subset of \mathbb{R}^n and let B be the unit ball. Let $\gamma(A) = \Phi(\alpha)$, where Φ is the distribution function of the standard one-dimensional Gaussian distribution $\mathcal{N}(0, 1)$. Then for all $\varepsilon > 0$ there holds

$$\gamma(A + \varepsilon B) \geq \Phi(\alpha + \varepsilon).$$

Equivalently, using Φ^{-1}, the inverse function of Φ, one can formulate the above inequality as follows:

$$\Phi^{-1}(\gamma(A + \varepsilon B)) - \Phi^{-1}(\gamma(A)) \geq \varepsilon.$$

H.J. Landau and L.A. Shepp proved the following (Theorem 4 in [5]):

Let γ be the Gaussian measure in \mathbb{R}^n, C a convex set and let s be any number such
that $\gamma(C) \geq \Phi(s)$. If $s > 0$ then for every $a > 1$ there holds

$$
\gamma(aC) \geq \Phi(as).
$$

Equivalently, in terms of Φ^{-1}, the Landau-Shepp inequality can be formulated as follows:

$$
\Phi^{-1}(\gamma(aC)) \geq a\Phi^{-1}(\gamma(C)).
$$

The most complete approach to the Gaussian isoperimetric theory was presented in the paper of A. Ehrhard [3], where the author constructed a family of the so-called k-symmetrizations, $1 \leq k \leq n$, in \mathbb{R}^n equipped with the standard n-dimensional Gaussian distribution γ_n. Ehrhard established various basic properties of these symmetrizations, among other things, a convexity of these operations. He started with the Borell Inequality for 1-dimensional Gaussian measure, applied this inequality to 1-symmetrization and then via certain induction procedure with respect to k, he managed to transfer this inequality to k-symmetrizations, for $k = 2, \ldots, n$. This finally resulted in the Borell Inequality for Gaussian measures in \mathbb{R}^n. Ehrhard’s symmetrization preserves the measure γ_n of a set and does not increase its perimeter. Using this symmetrization Ehrhard proved also the following deep result:

*Let γ be the standard Gaussian measure in \mathbb{R}^n, A and B two Borel convex sets in \mathbb{R}^n and let Φ^{-1} be the inverse of the distribution function of the standard one-dimensional Gaussian measure $N(0, 1)$. Then for all $0 \leq \lambda \leq 1$

$$
\Phi^{-1}(\gamma(\lambda A + (1 - \lambda)B)) \geq \lambda\Phi^{-1}(\gamma(A)) + (1 - \lambda)\Phi^{-1}(\gamma(B)).
$$

All the above-mentioned inequalities have very interesting and deep consequences for Gaussian processes (compare [2], [5], [3]). In this paper we examine analogous inequalities for the one-dimensional Cauchy and "Cauchy-type" measures. "Cauchy-type" measures arise as one-dimensional sections of the standard rota-
tionally invariant multi-dimensional Cauchy distributions. Therefore, to generalize the one-dimensional case, we have to deal with such measures.

Our main results are given in Theorems 3 and 8 (analogues of the Borell inequality) and Theorems 4 and 9 (analogues of the Landau-Shepp inequality). In Theorems 10 and 11 we show that if we deal with the standard isotropic (rotation invariant) Cauchy measure μ_n in \mathbb{R}^n, then it is still possible to define an analogue of Ehrhard’s 1-symmetrization for μ_n and that this symmetrization preserves convexity of sets.

For a different kind of measures and related very interesting results, see the paper [7].

2. CAUCHY MEASURES

The standard Cauchy distribution $\mu = \mu_1$ on the real line \mathbb{R}^1 has the density function

$$f(x) = \frac{1}{\pi(1 + x^2)}, \quad x \in \mathbb{R},$$

and the rotationally invariant Cauchy distribution μ_n in \mathbb{R}^n has the following one:

$$f_n(x) = \frac{c_n}{(1 + |x|^2)^{(n+1)/2}}, \quad x \in \mathbb{R}^n, \quad c_n = \frac{\pi^{n/2}}{\Gamma(n/2)}.$$

We will use the distribution function of the one-dimensional standard Cauchy measure

$$F(t) = \int_{-\infty}^{t} \frac{1}{\pi(1 + x^2)} \, dx = \frac{1}{2} + \frac{1}{\pi} \arctan t$$

and its inverse, F^{-1}, given for $0 < t < 1$ by the following formula $F^{-1}(t) = -\cot(\pi t)$.

Let μ be the standard one-dimensional Cauchy measure. For $a < b$ we define $g := g(a, b)$ by the following equality

$$\mu(-\infty, g) = \mu(a, b),$$
\(g^* := g^*(a, b) \) is defined by the identity:

\[(2.3) \quad \mu(-g^*, g^*) = \mu(a, b). \]

We obtain

Lemma 1. We have

\[
 g(a, b) = -\frac{1 + ab}{b - a},
 \quad (g^*)^2(a, b) = \sqrt{1 + g^2(a, b)} + g(a, b) = \frac{\sqrt{1 + a^2} \sqrt{1 + b^2} - 1 - ab}{b - a}.
\]

Proof. By the definition of \(g \) we have \(\mu(-\infty, g) = \mu(a, b) \), hence formula (2.1) implies \(F(g) = F(b) - F(a) \). But \(F(g) = \frac{1}{2} + \frac{1}{2} \arctan g \) and \(F(b) - F(a) = \frac{1}{\pi} (\arctan b - \arctan a) \), hence

\[
 g = \tan \left(\arctan b - \arctan a - \frac{\pi}{2} \right) = -\cot(\arctan b - \arctan a) = -\frac{1 + ab}{b - a}.
\]

In order to prove the second formula, we observe that

\[
 2 \arctan g^*(a, b) = \frac{\pi}{2} + \arctan g(a, b), \quad \text{hence} \quad \frac{2 g^*(a, b)}{1 - (g^*(a, b))^2} = -\frac{1}{g(a, b)}.
\]

Solving for \(g^* \), we get

\[
 (g^*)^2(a, b) = \sqrt{1 + g^2(a, b)} + g(a, b) = \frac{\sqrt{1 + a^2} \sqrt{1 + b^2} - 1 - ab}{b - a}.
\]

Remark 1. Observe that \(g(a, b) = F^{-1}(\mu(-\infty, g(a, b))) = F^{-1}(\mu(a, b)) \), hence all facts concerning \(g(a, b) \) could be formulated in terms of \(F^{-1}(\mu(a, b)) \).

For the standard Cauchy measure on \(\mathbb{R}^1 \) the extremality of intervals or half-lines was explained in ([III], Theorem 2.1) as follows:

Theorem 2.1 (Extremal intervals for Cauchy measure).

- If \(\mu(a, b) > 1/2 \), then
 \[
 \text{per}(-g^*, g^*) < \text{per}(a, b) < \text{per}(-\infty, g) .
 \]

- If \(\mu(a, b) < 1/2 \), then
 \[
 \text{per}(-\infty, g) < \text{per}(a, b) < \text{per}(-g^*, g^*).
 \]
• If \(\mu(a, b) = 1/2 \) (and then \(-a = 1/b > 0\)), then

\[
\text{per}(-\infty, 0) = \text{per}(-1/b, b) = \text{per}(-1, 1) = 1/\pi.
\]

2.1. Borell-type inequality. Now we prove an analogue of the Borell inequality for the standard Cauchy distribution in \(\mathbb{R} \).

Theorem 2.2. For every \(a < b \) and every \(r > 0 \) the following holds:

\[
g(a - r, b + r) - g(a, b) \geq r/2.
\]

When \(\mu(a, b) < 1/2 \), then

\[
g(a - r, b + r) - g(a, b) \geq r,
\]

for all \(r > 0 \), which are small enough. In fact, for \(r \leq 2/\sqrt{3} \), the last inequality holds whenever \(\mu(a, b) < 1/3 \).

An equivalent formulation of (2.4) in terms of \(F^{-1} \) is as follows:

\[
F^{-1}(\mu(a - r, b + r)) - F^{-1}(\mu(a, b)) \geq r/2.
\]

Proof. Taking into account the formula (2.2) we obtain

\[
g(a - r, b + r) - g(a, b) = -\frac{1 + (a - r)(b + r)}{(b + r) - (a - r)} + \frac{1 + ab}{b - a}
\]

\[
= -\frac{(b + r)b + (a - r)a + 2}{((b + r) - (a - r))(b - a)}
\]

hence it is enough to prove

\[
\frac{(b + r)b + (a - r)a + 2}{((b + r) - (a - r))(b - a)} \geq \frac{(b + r)b + (a - r)a}{((b + r) - (a - r))(b - a)} \geq \frac{1}{2}.
\]

The last inequality is true, because

\[
2(b + r)b + 2(a - r)a - ((b + r) - (a - r))(b - a)
\]

\[
= 2(b + r)b - (b + r)(b - a) + 2(a - r)a + (a - r)(b - a)
\]

\[
= (b + r)[2b - b + a] + (a - r)[2a + b - a] = (b + a)^2 \geq 0.
\]
To justify (2.5) we have to solve the inequality
\[
\frac{(b + r)b + (a - r)a + 2}{((b + r) - (a - r))(b - a)} \geq 1,
\]
equivalent to
\[
2 \frac{1 + ab}{b - a} \geq r.
\]
This, by Lemma 1, is equivalent to
\[
g(a, b) \leq -r/2,
\]
which justifies the first statement of (2.5), because for \(\mu(a, b) < 1/2 \) there holds \(g(a, b) < 0 \).

For the last part observe that if \(r \leq 2/\sqrt{3} \), then \(g(a, b) \leq -1/\sqrt{3} \) implies \(g(a, b) \leq -r/2 \), which yields the inequality (2.5). The inequality \(g(a, b) \leq -1/\sqrt{3} \) is, in turn, equivalent to the inequality
\[
\mu(a, b) \leq \int_{-\infty}^{-1/\sqrt{3}} \frac{dt}{\pi(1 + t^2)} = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{-1}{\sqrt{3}} \right) = \frac{1}{3}.
\]

\[\square\]

Comparison between Gaussian and Cauchy cases

By the Borell inequality we have for the standard \(n \)-dimensional Gaussian measure \(\gamma \), every Borel set \(A \) and every \(r \geq 0 \)
\[
\Phi^{-1}(\gamma(A + r)) - \Phi^{-1}(\gamma(A)) \geq r.
\]

By contrast, for the one-dimensional Cauchy measure \(\mu \), every interval \(A \) and every \(r \geq 0 \)
\[
F^{-1}(\mu(A + r)) - F^{-1}(\mu(A)) \geq r/2.
\]

Comment. For Gaussian measures it is absolutely crucial that we have the same value ”\(r \)” on both sides of the inequality for all Borel sets. Ehrhard ([3]) makes this property the cornerstone of his version of ”Gaussian symmetrization”. For the one-dimensional Cauchy measure and all intervals we only have ”\(r/2 \)” on the right.
2.2. Landau-Shepp-type inequality.

Theorem 2.3. For every $a < b$ and every $r > 0$ the following holds:

$$g(ra, rb) \geq r g(a, b) \quad \text{if and only if} \quad r \geq 1.$$

Equivalently, for $r \geq 1$

$$F^{-1}(\mu(ra, rb)) \geq r F^{-1}(\mu(a, b)).$$

Proof. By straightforward computation:

$$g(ra, rb) - r g(a, b) = -\frac{1 + r^2ab}{r(b-a)} + r \frac{1 + ab}{b-a} = \frac{r^2 - 1}{r(b-a)}.$$

2.3. Concavity of $g(a, b)$.

Theorem 2.4. The function $g(a, b) = F^{-1}(\mu(a, b))$ is a concave function of (a, b) for $a < b$.

Proof. Let us start with the explicit formulas for the second derivatives:

$$\frac{\partial^2 g}{\partial a^2} = -2 \frac{1 + b^2}{(b-a)^3}, \quad \frac{\partial^2 g}{\partial b^2} = -2 \frac{1 + a^2}{(b-a)^3}, \quad \frac{\partial^2 g}{\partial a \partial b} = 2 \frac{1 + ab}{(b-a)^3}.$$

Computing the determinant of the Hessian matrix of $g(a, b)$, we obtain

$$\det \text{Hess}(g)(a, b) = (b-a)^{-6} [(1 + a^2)(1 + b^2) - (1 + ab)^2] = (b-a)^{-4} \geq 0,$$

which, together with $\frac{\partial^2 g}{\partial a^2} < 0$, shows that the Hessian matrix is negative-definite.

3. ONE-DIMENSIONAL SECTIONS OF MULTIDIMENSIONAL CAUCHY MEASURES

3.1. Concavity of $g(a, b)$. For a probability density function f define $g(a, b)$ as a function of intervals (a, b), $-\infty \leq a < b < \infty$, by the following formula

$$\int_{a}^{b} f(t) \, dt = \int_{-\infty}^{g(a,b)} f(t) \, dt.$$

(3.1)
Assume that the function \(f \) is differentiable and denote for simplicity \(\chi(x) = (1/f(x))' \).

In the lemma below we formulate a basic condition on the probability densities we investigate, which is equivalent to concavity of our function \(g(a, b) \) with respect to variables \((a, b)\).

Lemma 2. Assume that the probability density \(f \) is differentiable, strictly decreasing on \((0, \infty)\) and \(f(-x) = f(x) \). We also assume that \(1/f \) is strictly convex and denote by \(\chi(x) = (1/f(x))' \) its derivative. Then the function \(g(a, b) \) is strictly concave (as a function of \(a, b \), for \(a < b \)) if and only if the following inequality holds

\[
\frac{\chi(a) \chi(b)}{\chi(a) - \chi(b)} \geq \chi(g(a, b)).
\]

Proof. Differentiating the defining equality (3.1), we obtain

\[
\frac{\partial g}{\partial a} = -\frac{f(a)}{f(g(a, b))}, \quad \frac{\partial g}{\partial b} = \frac{f(b)}{f(g(a, b))},
\]

\[
f(g(a, b)) \frac{\partial^2 g}{\partial a^2} = -f'(a) - f'(g(a, b)) \frac{f^2(a)}{f^2(g(a, b))},
\]

\[
f(g(a, b)) \frac{\partial^2 g}{\partial b^2} = f'(b) - f'(g(a, b)) \frac{f^2(b)}{f^2(g(a, b))},
\]

\[
f(g(a, b)) \frac{\partial^2 g}{\partial a \partial b} = f'(g(a, b)) \frac{f(a) f(b)}{f^2(g(a, b))}.
\]

We check that the Hessian matrix of the function \(g \) is negative definite.

For all \(a < b \), by (3.1), we obtain \(g(a, b) < b \). The strict convexity of \(1/f \) implies that \(-f'(x)/f^2(x) \) is strictly increasing, so that

\[
-\frac{f'(b)}{f^2(b)} > -\frac{f'(g(a, b))}{f^2(g(a, b))}, \quad \text{hence} \quad \frac{\partial^2 g}{\partial b^2} < 0.
\]

Moreover, \(f^2(g(a, b)) \) det Hess\((g)(a, b) =

\[
\frac{f'(g(a, b))}{f^2(g(a, b))} \left[f'(a) f^2(b) - f'(b) f^2(a) \right] - f'(a) f'(b),
\]
and the condition for non-negativity of the above expression is equivalent to

\[
\frac{f'(g(a, b))}{f^2(g(a, b))} \left[\frac{f'(a)}{f^2(a)} - \frac{f'(b)}{f^2(b)} \right] \geq \frac{f'(a)}{f^2(a)} \frac{f'(b)}{f^2(b)}.
\]

Taking into account the definition of the function \(\chi \), we rewrite the above inequality as follows:

\[
\chi(g(a, b)) (\chi(a) - \chi(b)) \geq \chi(a) \chi(b).
\]

By the requirement that \(1/f(x) \) is strictly convex, we obtain that \(\chi(x) = -f'(x)/f^2(x) \) is strictly increasing, so the expression within the bracket on the left-hand side of the above inequality is negative. Dividing by this expression, we obtain (3.3), which concludes the proof.

Remark 1. Observe that if \(a < 0 < b \) and \(g(a, b) < 0 \), then the left-hand side of (3.3) is positive, while the right-hand side is negative and the inequality holds automatically.

In all the remaining cases we have \(\chi(g(a, b)) \chi(a) \chi(b) \leq 0 \) and

\[
\frac{\chi(a) - \chi(b)}{\chi(g(a, b)) \chi(a) \chi(b)} \geq 0.
\]

Multiplying both sides of (3.3) by this expression, we obtain

\[
\frac{1}{\chi(b)} - \frac{1}{\chi(a)} \leq \frac{1}{\chi(g(a, b))},
\]

with the exception for the case when \(a < 0 < b \) and simultaneously \(g(a, b) < 0 \).

The next theorem is crucial for all the presentation that follows. It consists of an indirect verification that the condition (3.3) holds for the one-dimensional sections of multidimensional isotropic Cauchy measures. The main difficulty to overcome is the lack of explicit formulas, which are available in the case of one-dimensional Cauchy measure. We proceed in two steps: in the first one we reduce the problem, via application of Lagrange method, to the case of symmetric intervals \((-p, p)\), \(p > 0 \). In the next, more essential step, we compare the function \(g(-p, p) \) with an auxiliary function \(x(p) \), introduced by the condition \(\chi(x(p)) = \chi(p)/2 \). Again, a direct comparison seems to be out of reach, and we apply for this purpose compositions with a distribution function \(H \).
Theorem 3.1. Suppose that $\nu_{\alpha,n}$, $\alpha \geq 0$, $n = 2, 3, \ldots$, is the probability measure with the density $f_{\alpha,n}$:

\[
 f_{\alpha,n}(x) = \frac{c_{\alpha,n}}{(1 + \alpha^2 + x^2)^{(n+1)/2}}, \quad c_{\alpha,n} = (1 + \alpha^2)^{n/2} \Gamma\left(\frac{n+1}{2}\right) / \left(\sqrt{\pi} \Gamma\left(\frac{n}{2}\right)\right).
\]

Then the function $g(a, b) := g_{\alpha}(a, b)$, defined by (3.1), is a concave function of two variables a, b, for $a < b$.

Proof. Denote $\chi(x) = \frac{d}{dx} f_{\alpha,n}(x)$. We will check that the inequality (3.3) holds. We rewrite (3.3) in the equivalent form

\[
 \left(\frac{1}{\chi(b)} - \frac{1}{\chi(a)}\right)^{-1} \geq \chi(g(a, b)).
\]

Assumptions of the previous lemma are satisfied and $\chi(x) = \frac{(1 + n)}{c_{\alpha,n}} x (1 + \alpha^2 + x^2)^{\frac{n-1}{2}}$.

Observe that if we multiply both sides of the equation (3.1) by a positive constant, then the value $g(a, b)$ remains unchanged. Moreover, the inequality (3.5) is homogeneous, that is invariant under the multiplication of χ by a positive constant. Therefore, we put $c_{\alpha,n} = 1 + n$ in the remaining part of the proof. We note that $\lim_{x \to \infty} \chi(x) = \infty$.

First, let us observe that $\lim_{a \to -\infty} g(a, b) = g(-\infty, b) = b$ and $\lim_{a \to -\infty} \chi(a) = -\infty$, so we obtain equality in (3.5) for $a = -\infty$. Analogously, $\lim_{b \to \infty} g(a, b) = g(a, \infty) = -a$. Since $\chi(-a) = -\chi(a)$, we also get the equality for $b = \infty$. For $a = b$ we have $g(a, a) = -\infty$ hence (3.5) obviously holds. To prove (3.5) in the whole generality we use the Lagrange method to find extremal values of the function $F(a, b) = \frac{1}{\chi(b)} - \frac{1}{\chi(a)}$ under the condition $g(a, b) = t$, with $t \in (-\infty, \infty)$ fixed:

\[
 F(a, b) + \lambda g(a, b) = \frac{1}{\chi(b)} - \frac{1}{\chi(a)} + \lambda g(a, b).
\]

We obtain

\[
 \frac{\partial F(a, b)}{\partial a} + \lambda \frac{\partial g(a, b)}{\partial a} = 0, \quad \frac{\partial F(a, b)}{\partial b} + \lambda \frac{\partial g(a, b)}{\partial b} = 0.
\]

By the equation (3.1) we infer that

\[
 \frac{\partial g(a, b)}{\partial a} = -\frac{f_{\alpha,n}(a)}{f_{\alpha,n}(g(a, b))} \quad \text{and} \quad \frac{\partial g(a, b)}{\partial b} = \frac{f_{\alpha,n}(b)}{f_{\alpha,n}(g(a, b))}.
\]
hence
\[
\left(\frac{1}{\chi(a)} \right)' = \frac{-\lambda}{f_{\alpha,n}(g(a,b))} \quad \text{and} \quad \left(\frac{1}{\chi(b)} \right)' = \frac{-\lambda}{f_{\alpha,n}(g(a,b))},
\]
which implies
\[
\left(\frac{1}{\chi(a)} \right)' f_{\alpha,n}(a) = \left(\frac{1}{\chi(b)} \right)' f_{\alpha,n}(b) = -\frac{\lambda}{f_{\alpha,n}(g(a,b))}.
\]
Now let us compute the explicit form of the function \((1/\chi(x))' \):
\[
\left(\frac{1}{\chi(x)} \right)' = \frac{1}{x(1 + \alpha^2 + x^2)^{(n-1)/2}} \cdot \frac{(1 + \alpha^2 + x^2)^{(n+1)/2} - (1 + \alpha^2 + nx^2)}{(n+1)x^2}.
\]
Thus, this function is equal to \(-n/(n+1) - (1 + \alpha^2)/(x^2(n+1))\), and is obviously even and injective on \((0, \infty)\). Hence, the extremal values of the function \(F \) can only be attained at \(a = \pm b \). Thus, it is sufficient to check the inequality for \(a = -b \). By the Remark 1 we may and will assume throughout the remaining part of the proof that \(g(a,b) > 0 \).

Denote \(b = -a = p \) and \(h(p) = g(-p,p) \). Since \(\chi(-p) = -\chi(p) \), in order to prove (3.5) it is enough to show that for \(p > 0 \) the following holds:
\[
(3.6) \quad 2\chi(h(p)) \leq \chi(p).
\]
Observe that if \(h(p) < 0 \), then \(\chi(h(p)) < 0 \), while \(\chi(p) \geq 0 \), so that (3.6) is satisfied, hence we will assume further that \(h(p) \geq 0 \). We also note that for \(n > 2 \) no explicit formula for the function \(g \) (or \(h \)) is available and no direct verification of (3.6) seems to be possible. To overcome this difficulty, we introduce an auxiliary function \(x(p) \) by the formula
\[
(3.7) \quad \chi(x(p)) = \frac{1}{2} \chi(p).
\]
Since the function \(\chi \) is increasing on \((0, \infty)\) and \(\chi(x) \geq 0 \) for \(x \geq 0 \), we obtain
\[
(3.8) \quad 0 \leq x(p) \leq p.
\]
Set \(H(z) = \int_{-\infty}^{z} f_{\alpha,n}(t) \, dt \). By the definition of \(h(p) \) we obtain
\[
(3.9) \quad H(h(p)) = \int_{-\infty}^{h(p)} f_{\alpha,n}(t) \, dt = \int_{-p}^{p} f_{\alpha,n}(t) \, dt = 2 \int_{0}^{p} f_{\alpha,n}(t) \, dt.
\]
In order to prove that \(h(p) \leq x(p) \), it is enough to show that
\[
H(h(p)) - H(x(p)) = \int_{-\infty}^{h(p)} f_{\alpha,n}(t) \, dt - \int_{-\infty}^{x(p)} f_{\alpha,n}(t) \, dt \leq 0.
\]
If we prove that the derivative of the left-hand side is non-negative, then this will justify the above statement. Indeed, the value of the above difference at $p = 0$ is $(-1/2)$; at ∞ the value is 0, as both values of $h(p)$ and $x(p)$ tend to infinity, if $p \to \infty$.

From the definition of $h(p)$ and (1.2) we obtain

$$
\frac{x(p)}{p} = \frac{1}{2} \left(\frac{1 + \alpha^2 + p^2}{1 + \alpha^2 + x^2(p)} \right)^{\frac{n-1}{2}}.
$$

Let us rewrite the above identity in the following form

$$
x(p)(1 + \alpha^2 + x^2(p))^{\frac{n-1}{2}} = \frac{1}{2} (1 + \alpha^2 + p^2)^{\frac{n-1}{2}}.
$$

Differentiating the left-hand side, we obtain

$$
x'(p)(1 + \alpha^2 + x^2(p))^{\frac{n-1}{2}} + (n - 1)x^2(p)x'(p)(1 + \alpha^2 + x^2(p))^{\frac{n-3}{2}}
$$

while the derivative of the right-hand side is equal to

$$
\frac{1}{2} (1 + \alpha^2 + p^2)^{\frac{n-3}{2}} (1 + \alpha^2 + np^2).
$$

Comparing (3.10) and (3.11), we get

$$
x'(p) = \frac{1}{2} \left(\frac{1 + \alpha^2 + p^2}{1 + \alpha^2 + x^2(p)} \right)^{\frac{n-3}{2}} \frac{1 + \alpha^2 + np^2}{1 + \alpha^2 + nx^2(p)}.
$$

By the definition of $h(p)$,

$$
\frac{d}{dp} H(h(p)) = \frac{2}{(1 + \alpha^2 + p^2)^{\frac{n+1}{4}}}.
$$

Taking into account the formula for $x'(p)$ and for $x(p)$, we obtain

$$
\frac{d}{dp} H(x(p)) = \frac{x'(p)}{(1 + \alpha^2 + x(p)^2)^{\frac{n+1}{4}}}
$$

$$
= \frac{1}{2} \left(\frac{1 + \alpha^2 + p^2}{1 + \alpha^2 + x^2(p)} \right)^{\frac{n-3}{2}} \frac{1 + \alpha^2 + np^2}{1 + \alpha^2 + nx^2(p)}
$$

$$
= \frac{2}{(1 + \alpha^2 + p^2)^{\frac{n-3}{2}} x^2(p)} \frac{1 + \alpha^2 + np^2}{p^2 (1 + \alpha^2 + p^2)^{\frac{n+3}{2}} 1 + \alpha^2 + nx^2(p)}.
$$
We thus obtain
\[
\frac{d}{dp} [H(h(p)) - H(x(p))] = 2 \frac{p^2 (1 + \alpha^2 + nx^2(p)) - x^2(p) (1 + \alpha^2 + nx^2(p))}{p^2 (1 + \alpha^2 + p^2)^{\frac{n+2}{2}} (1 + \alpha^2 + np^2)}
\]
\[
= \frac{p^2 (1 + \alpha^2 + p^2)^{\frac{n+2}{2}} (1 + \alpha^2 + np^2)}{p^2 (1 + \alpha^2 + p^2)^{\frac{n+2}{2}} (1 + \alpha^2 + np^2)} \geq 0.
\]
In view of (3.8), that means that \(0 \leq h(p) \leq x(p) \leq p\). The proof is now complete.

3.2. Borell-type inequality for measures with densities \(f_{\alpha,n}\).

In this section we formulate and prove the main result of the paper. It is contained in the inequality (3.14) and the authors believe that this is the appropriate analogue of the Borell inequality in the case of the measures \(\nu_{\alpha,n}\). Observe that in the Gaussian case, on the right-hand side of the analogous inequality we have the value \(r\), while in our case we only have \(r = 2^{1/n}\) and the inequality is strict.

Theorem 3.2. For \(a < b\) and every \(r > 0\) the following inequality holds:

\[
(3.12) \quad g_{\alpha}(a-r, b+r) - g_{\alpha}(a, b) \geq \frac{r}{2^{1/n}},
\]

where \(g_{\alpha} := g\) is defined by the density \(f_{\alpha,n}\). If \(\nu_{\alpha}(a, b) < 1/2\), then

\[
(3.13) \quad g_{\alpha}(a-r, b+r) - g_{\alpha}(a, b) \geq r
\]

for all \(r > 0\), which are small enough.

In terms of \(F^{-1}\) we can write down (3.12) as

\[
(3.14) \quad F^{-1}(\nu_{\alpha,n}(a-r, b+r)) - F^{-1}(\nu_{\alpha,n}(a, b)) \geq \frac{r}{2^{1/n}}.
\]

The proof of the theorem essentially goes along lines indicated in the proof of Theorem 7. We first use Lagrange’s method to reduce the problem to finding extremal values of the appropriate function. Next, we consider various cases of these values to conclude finally the validity of our statement. Here again, as before, we rely on indirect method, introducing various auxiliary functions.
Proof. We first prove the differential form of the inequalities:

\[- \frac{\partial g_\alpha}{\partial a} + \frac{\partial g_\alpha}{\partial b} \geq \frac{1}{2^{1/n}} \quad \text{or, if } \nu_\alpha(a, b) < 1/2, \text{ then } \quad - \frac{\partial g_\alpha}{\partial a} + \frac{\partial g_\alpha}{\partial b} \geq 1.

By the form of the partial derivatives of \(g_\alpha\) we obtain the following form of these inequalities:

\[
\begin{align*}
\frac{f_{\alpha,n}(a) + f_{\alpha,n}(b)}{2^{1/n}} &= f_{\alpha,n}(g_\alpha(a, b)) \quad \text{for all } a < b, \\
\frac{f_{\alpha,n}(a) + f_{\alpha,n}(b)}{2^{1/n}} &= f_{\alpha,n}(g_\alpha(a, b)), \quad \text{if } \nu_\alpha(a, b) < \frac{1}{2}.
\end{align*}
\]

Let \(G(a, b) = f_{\alpha,n}(a) + f_{\alpha,n}(b)\). We seek extrema under the condition \(g_\alpha(a, b) = t\), with \(t \in (-\infty, \infty)\) fixed; in the second inequality we assume that \(g_\alpha(a, b) = t < 0\). Using the Lagrange method, we obtain

\[
\begin{align*}
\frac{\partial G}{\partial a} + \lambda \frac{\partial g_\alpha}{\partial a} &= 0, \quad \frac{\partial G}{\partial b} + \lambda \frac{\partial g_\alpha}{\partial b} = 0 \quad \text{or, equivalently,} \\
f'(a) - \lambda \frac{f(a)}{f(g_\alpha(a, b))} &= 0, \quad f'(b) + \lambda \frac{f(b)}{f(g_\alpha(a, b))} = 0.
\end{align*}
\]

We thus obtain

\[
\frac{f'(a)}{f(a)} = \frac{\lambda}{f(g_\alpha(a, b))} = - \frac{f'(b)}{f(b)}.
\]

Since \(\frac{f'(x)}{f(x)} = - \frac{(n+1)x}{1+\alpha x^2}\), we get

\[
\frac{a}{1 + \alpha^2 + a^2} = \frac{-b}{1 + \alpha^2 + b^2}, \quad \text{equivalently: } (a + b)(1 + \alpha^2 + ab) = 0.
\]

Now, we prove the first part of the theorem.

1. The case \(-a = b = p > 0\), \(h(p) = g_\alpha(-p, p)\). Our first inequality reduces to

\[
h'(p) = 2 \left(\frac{1 + \alpha^2 + h^2(p)}{1 + \alpha^2 + p^2} \right)^{\frac{n+1}{2}} \geq \frac{1}{2^{1/n}},
\]

or, equivalently, to

\[
\frac{1 + \alpha^2 + h^2(p)}{1 + \alpha^2 + p^2} \geq \frac{1}{2^{1/n}}.
\]

Define \(p_1 := p_1(\alpha)\) by the formula

\[
\frac{1 + \alpha^2}{1 + \alpha^2 + p_1^2} = \frac{1}{2^{1/n}}
\]
or, more explicitly, \(p_1^2 = (1 + \alpha^2)(2^{2/n} - 1) \). Note that for \(0 < p < p_1 \) we obtain

\[
2 \left(\frac{1 + \alpha^2 + h^2(p)}{1 + \alpha^2 + p^2} \right)^{\frac{n+1}{2}} > 2 \left(\frac{1 + \alpha^2}{1 + \alpha^2 + p_1^2} \right)^{\frac{n+1}{2}} = \frac{1}{2^{1/n}}.
\]

We thus assume that \(p > p_1 \). Define an auxiliary function \(z := z(p) > 0 \) such that

\[
2 \left(\frac{1 + \alpha^2 + z^2(p)}{1 + \alpha^2 + p^2} \right)^{\frac{n+1}{2}} = \frac{1}{2^{1/n}}.
\]

It is enough to show that \(z(p) \leq h(p) \). We obtain

\[
h'(p) = 2 \left(\frac{1 + \alpha^2 + h^2(p)}{1 + \alpha^2 + p^2} \right)^{\frac{n+1}{2}},
\]

hence

\[
\frac{h'(p)}{(1 + \alpha^2 + h^2(p))^{\frac{n+1}{2}}} = \frac{2}{(1 + \alpha^2 + p^2)^{\frac{n+1}{2}}}.
\]

On the other hand, \(z'(p) = p/(2^{2/n} z(p)) \) and, by the definition of \(z(p) \), we obtain

\[
\frac{z'(p)}{(1 + \alpha^2 + z^2(p))^{\frac{n+1}{2}}} = \frac{p}{z(p)} \frac{2^{1-\frac{1}{n}}}{(1 + \alpha^2 + p^2)^{\frac{n+1}{2}}}.
\]

Therefore, the following holds:

\[
\frac{d}{dp} \left[\frac{h(p)}{(1 + \alpha^2 + p^2)^{\frac{n+1}{2}}} - \frac{z(p)}{(1 + \alpha^2 + p^2)^{\frac{n+1}{2}}} \right] = \frac{2}{(1 + \alpha^2 + p^2)^{\frac{n+1}{2}}} \left(1 - \frac{1}{2^{1/n} z(p)} \right) \frac{2^{2/n} z^2(p) - p^2}{2^{1/n} z(p) (2^{1/n} z(p) + p)} < 0,
\]

since \(2^{2/n} z^2(p) - p^2 = -(1 + \alpha^2) (2^{2/n} - 1) < 0 \). Taking into account that the value of the function under the differential at \(\infty \) is 0, that is

\[
\int_{-\infty}^{\infty} \frac{dt}{(1 + \alpha^2 + t^2)^{\frac{n+1}{2}}} - \int_{-\infty}^{\infty} \frac{dt}{(1 + \alpha^2 + t^2)^{\frac{n+1}{2}}} = 0,
\]
we obtain that \(h(p) \geq z(p) \geq 0 \), for \(p \geq p_1 \). This ends the proof of the case 1 and shows that

\[h'(p) \geq \frac{1}{2^{1/n}}. \tag{3.17} \]

We note that the above observation also yields

\[h(p_1) \geq 0, \quad \text{hence} \quad \nu_\alpha(-p_1, p_1) \geq 1/2. \]

2. We now consider the case \(ab = -(1 + \alpha^2) \). Put \(a = -(1 + \alpha^2)/b, \ b > 0 \). Then the left-hand side of inequality \((3.15)\) takes on the following form

\[f_{\alpha,n}(-(1 + \alpha^2)/b) + f_{\alpha,n}(b), \]

while the right-hand side is equal to \(f(g_{\alpha,n}((-1 + \alpha^2)/b, b)). \) We multiply both sides of \((3.15)\) by the constant \((1 + \alpha^2)^{(n+1)/2}\) and put \(p = b/\sqrt{1 + \alpha^2}, \ h(p) = g_{\alpha,n}(-1/p, p). \) Taking into account the scaling property of the function \(G \), we obtain the following form of our inequality:

\[(1 + p^{n+1}) \left(\frac{1 + h^2(p)}{1 + p^2} \right)^{\frac{n+1}{2}} \geq \frac{1}{2^{1/n}}. \tag{3.18} \]

Define

\[\phi(p) = \frac{1 + p^{n+1}}{(1 + p^2)^{\frac{n+1}{2}}}. \]

Then

\[\phi'(p) = \frac{p(n + 1)}{(1 + p^2)^{\frac{n+1}{2}}} (p^{n-1} - 1). \]

Therefore, \(\phi \) is decreasing on \((0, 1)\), increasing on \((1, \infty)\), attains minimum at \(p = 1 \) and \(\phi(1) = 2/2^{(n+1)/2} \leq 1/2^{1/n} \) for \(n = 2, 3, \ldots \). Observe that the left-hand side of the inequality \((3.18)\) is invariant with respect to the mapping \(p \to 1/p. \) Therefore, we consider only \(p \geq 1. \) For such values of \(p \) we define yet another auxiliary function \(y(p) \geq 0 \) by the identity

\[(1 + p^{n+1}) \left(\frac{1 + y^2(p)}{1 + p^2} \right)^{\frac{n+1}{2}} = \frac{1}{2^{1/n}}. \]

Differentiating, we obtain

\[y'(p) = \frac{p}{y(p)} \frac{1 + y^2(p)}{1 + p^2} (1 - p^{n-1}), \]
hence \(y(p) \) is decreasing on \((1, \infty)\), while \(h(p) \) is increasing, since

\[
\frac{h'(p)}{(1 + h^2(p))^{n+1/2}} = \frac{1 + p^{n+1}}{(1 + p^2)^{\frac{n+1}{2}}}.
\]

Moreover, for \(p = 1 \) we obtain from Case 1, that \(y(1) = z(1) \), so from the monotoncity of \(y(p) \) and \(h(p) \) we obtain

\[
y(p) \leq y(1) = z(1) \leq h(1) \leq h(p),
\]

which implies that

\[
(1 + p^{n+1}) \left(\frac{1 + h^2(p)}{1 + p^2} \right)^{\frac{n+1}{2}} \geq (1 + p^{n+1}) \left(\frac{1 + y^2(p)}{1 + p^2} \right)^{\frac{n+1}{2}} = \frac{1}{2^{1/n}}.
\]

This ends the proof of Case 2 for the differential form of inequality (3.12).

In order to prove (3.13) we use the concavity of the function \(g \). Denote

\[
\psi_{a,b}(r) = g(a - r, b + r).
\]

By virtue of Theorem 2.4, the function \(\psi_{a,b}(r) \) is concave for \(r > 0 \). The concavity implies

\[
\frac{\psi_{a,b}(r) - \psi_{a,b}(0)}{r} \geq \psi'_{a,b}(r) = \psi'_{a-r, b+r}(0).
\]

However, by the expressions for the derivatives of the function \(g \) and the inequality (3.14), we obtain

\[
\psi'_{a-r, b+r}(0) = \frac{f_{a,n}(a - r)}{g(a - r, b + r)} + \frac{f_{a,n}(b + r)}{g(a - r, b + r)} \geq \frac{1}{2^{1/n}},
\]

which finally gives (3.14) and ends the proof of the first part of the theorem.

In order to prove the inequality (5.13), observe that from Lemma 5.1 in [I] we know that if \(ab = -(1 + \alpha^2) \), then \(\nu_a(a, b) > 1/2 \), consequently \(g_a(a, b) = t > 0 \) for such pairs \((a, b) \), thus we exclude that case from our further considerations. What remains, is the case \(-a = b = p > 0\) and, as in Case 1, we put \(h(p) = g_a(-p, p) \). We note that our inequality reduces to

\[
h'(p) = 2 \left(\frac{1 + \alpha^2 + h^2(p)}{1 + \alpha^2 + p^2} \right)^{\frac{n+1}{2}} \geq 1,
\]

or, equivalently,

\[
\frac{1}{(1 + \alpha^2 + h(p)^2)^{\frac{n+1}{2}}} \leq \frac{2}{(1 + \alpha^2 + p^2)^{\frac{n+1}{2}}}.
\]
However, this means that

\[\text{per}(-p, p) \geq \text{per}(-\infty, g_{\alpha}(-p, p)) \]

and the fundamental Lemma 5.2 in [II] proves that the above inequality holds whenever \(\nu_{\alpha}(-p, p) < 1/2 \), ending the proof of the second part of the theorem in the differential form. The general version can again be obtained from the concavity of the function \(g \).

3.3. Landau-Shepp-type inequality for measures with densities \(f_{\alpha,n} \).

Theorem 3.3. For every \(a < b \) and every \(\alpha \geq 0 \) the following holds:

(3.19) \[g_{\alpha}(ra, rb) \geq r g_{\alpha}(a, b) \quad \text{if and only if} \quad r \geq 1. \]

Proof. We write the differential form of the above inequality. To do this, we rewrite (3.19) in the form:

\[\frac{g_{\alpha}(ra, rb) - g_{\alpha}(a, b)}{r - 1} \geq g_{\alpha}(a, b) \]

and, when \(r \to 1 \), we obtain

\[\left. \frac{d}{dr} g_{\alpha}(ra, rb) \right|_{r=1} \geq g_{\alpha}(a, b), \]

or, equivalently,

(3.20) \[\frac{\partial g_{\alpha}(a, b)}{\partial a} a + \frac{\partial g_{\alpha}(a, b)}{\partial b} b \geq g_{\alpha}(a, b). \]

Taking into account the form of the partial derivatives of \(g_{\alpha} \), we obtain

\[\frac{-f_{\alpha}(a)}{f_{\alpha}(g(a, b))} a + \frac{f_{\alpha}(b)}{f_{\alpha}(g(a, b))} b \geq g_{\alpha}(a, b), \]

or, equivalently,

(3.21) \[-f_{\alpha}(a) a + f_{\alpha}(b) b \geq g_{\alpha}(a, b) f_{\alpha}(g(a, b)). \]

We show that the inequality (3.21) holds, again using the Lagrange method. We put

\[F(a, b) = -f_{\alpha}(a) a + f_{\alpha}(b) b + \lambda g_{\alpha}(a, b) \]
and obtain

\[
\frac{\partial F(a, b)}{\partial a} = -f'_a(a) - f_a(a) + \lambda \frac{\partial g_a(a, b)}{\partial a} = 0,
\]

\[
\frac{\partial F(a, b)}{\partial b} = f'_a(b) + f_a(b) + \lambda \frac{\partial g_a(a, b)}{\partial b} = 0.
\]

Taking again into account the form of partial derivatives of \(g_a \), we obtain

\[
-f'_a(a) - f_a(a) - \lambda \frac{f(a)}{f(g_a(a, b))} = 0,
\]

\[
f'_a(b) + f_a(b) + \lambda \frac{f(b)}{f(g_a(a, b))} = 0,
\]

which implies

\[
\frac{f'_a(a)}{f(a)} = \frac{f'_a(b)}{f(b)}.
\]

Thus, if

\[
\frac{-(n+1)a^2}{1+a^2+a^2} = \frac{-(n+1)b^2}{1+a^2+b^2},
\]

then \(a = \pm b \). We now put \(p = -a = b > 0 \) and \(h(p) = g_a(-p, p) \), and consider (3.21) for these values of \(a \) and \(b \):

\[
2f_a(p)p \geq f_a(h(p))h(p).
\]

Taking into account the formula (3.16) for \(h'(p) \), we obtain an equivalent form of the desired inequality:

\[
h'(p) \geq \frac{h(p)}{p}.
\]

We will show that the following holds

(3.22)

\[
\frac{h(p)}{p} \leq \frac{1}{2^{1/n}}.
\]

In view of the inequality (3.17), this will end the proof of the theorem.

The scaling property implies that it is enough to prove the inequality (3.22) only for \(f_{0, n} \). For this purpose, define

\[
\Lambda(p) = 2 \int_0^p \frac{dt}{(1+t^2)^{\frac{n+1}{2}}} - \int_{-\infty}^p \frac{dt}{(1+t^2)^{\frac{n+1}{2}}}.
\]
We obtain

$$\Lambda(0) < 0, \quad \Lambda(\infty) = 2 \int_0^\infty \frac{dt}{(1 + t^2)^{\frac{n+1}{2}}} - \int_{-\infty}^\infty \frac{dt}{(1 + t^2)^{\frac{n+1}{2}}} = 0.$$

Moreover,

$$\Lambda'(p) = \frac{2}{(1 + p^2)^{\frac{n+1}{2}}} - \frac{1}{2^{1/n}} \frac{1}{(1 + p^2/2^{2/n})^{\frac{n+1}{2}}} = \frac{2}{(1 + p^2)^{\frac{n+1}{2}}} - \frac{2}{(2^{2/n} + p^2)^{\frac{n+1}{2}}} > 0,$$

hence $\Lambda(p) \leq 0$, which means that

$$h(p) \frac{dt}{(1 + t^2)^{\frac{n+1}{2}}} = 2 \int_0^p \frac{dt}{(1 + t^2)^{\frac{n+1}{2}}} \leq \int_{-\infty}^p \frac{dt}{(1 + t^2)^{\frac{n+1}{2}}} ,$$

and this proves the inequality (3.20). To finish the proof, observe that (3.20) holds for all a, b, with $a < b$. We rewrite this putting ra in place of a and rb in place of b to obtain

$$\frac{\partial g_o(ra, rb)}{\partial (ra)} (ra) + \frac{\partial g_o(ra, rb)}{\partial (rb)} (rb) \geq g_o(ra, rb).$$

The above inequality, however, can in turn be written down as

$$\frac{d}{dr} \left[\frac{g_o(ra, rb)}{r} \right] \geq 0,$$

which means that

$$\frac{g_o(ra, rb)}{r}$$

is increasing as a function of r.

The proof of the theorem is now complete.

3.4. Concavity of the function $g_y(a, b)$. Let $y \in \mathbb{R}^{n-1}$ and consider the following density

$$f_{|y|, n}(t) = \frac{c}{(1 + |y|^2 + t^2)^{\frac{n+1}{2}}} ,$$

being a one-dimensional section of the n-dimensional isotropic Cauchy distribution in the direction of y. We denote this density as $f_{a, n}(t)$ with $\alpha = |y|$. As before, for $z_1 < z_2$, we define the function $g(z_1, z_2) := g_o(z_1, z_2)$ by the identity

$$\int_{z_1}^{z_2} \frac{dt}{(1 + \alpha^2 + t^2)^{\frac{n+1}{2}}} = \frac{g_o(z_1, z_2)}{r} \int_{-\infty}^r \frac{dt}{(1 + \alpha^2 + t^2)^{\frac{n+1}{2}}}.$$
Introducing a new variable u by the formula $t = \sqrt{1 + \alpha^2} u$, we obtain the following important scaling identity for functions g_α:

$$(3.23) \quad g_\alpha(z_1, z_2) = \sqrt{1 + \alpha^2} g_0\left(\frac{z_1}{\sqrt{1 + \alpha^2}}, \frac{z_2}{\sqrt{1 + \alpha^2}}\right).$$

We prove the following:

Theorem 3.4. The function

$$\mathbb{R}^{n-1} \times \mathbb{R}^2 \ni (y, a, b) \to g_\alpha|y|(a, b), \quad a < b,$$

is concave, as a function of $(n + 1)$ variables, for $a < b$.

Proof. We begin by computing the derivatives, using the identity (3.23):

$$\frac{\partial g_\alpha}{\partial z_1} \big|_{(z_1, z_2)} = \frac{\partial g_0}{\partial z_1} \left(\frac{z_1}{\sqrt{1 + \alpha^2}}, \frac{z_2}{\sqrt{1 + \alpha^2}}\right); \quad \frac{\partial g_\alpha}{\partial z_2} \big|_{(z_1, z_2)} = \frac{\partial g_0}{\partial z_2} \left(\frac{z_1}{\sqrt{1 + \alpha^2}}, \frac{z_2}{\sqrt{1 + \alpha^2}}\right);$$

$$\frac{\partial g_\alpha}{\partial \alpha} = \frac{\alpha}{1 + \alpha^2} \left[g_\alpha - z_1 \frac{\partial g_\alpha}{\partial z_1} - z_2 \frac{\partial g_\alpha}{\partial z_2} \right].$$

Differentiating once again with respect to α, we obtain

$$\frac{\partial^2 g_\alpha}{\partial \alpha^2} = \frac{1 - \alpha^2}{(1 + \alpha^2)^2} \left[g_\alpha - z_1 \frac{\partial g_\alpha}{\partial z_1} - z_2 \frac{\partial g_\alpha}{\partial z_2} \right] + \frac{\alpha}{1 + \alpha^2} \left[\frac{\partial g_\alpha}{\partial \alpha} - \frac{\partial^2 g_\alpha}{\partial z_1^2} \left(\frac{z_1}{1 + \alpha^2}\right)^{3/2} \alpha \right] + \frac{\partial^2 g_\alpha}{\partial z_1 \partial z_2} \left(\frac{z_2}{1 + \alpha^2}\right)^{3/2} \left(-\frac{z_2}{2}\right) + \frac{\partial^2 g_\alpha}{\partial z_1 \partial z_2} \left(\frac{z_1}{1 + \alpha^2}\right)^{3/2} \left(-\frac{z_1}{2}\right).$$

Taking into account the form of $\frac{\partial g_\alpha}{\partial \alpha}$, we obtain

$$\frac{\partial^2 g_\alpha}{\partial \alpha^2} = \frac{1}{\alpha (1 + \alpha^2)} \frac{\partial g_\alpha}{\partial \alpha} + \frac{\alpha^2}{(1 + \alpha^2)^2} \left[z_1 \frac{\partial^2 g_\alpha}{\partial z_1^2} + 2 z_1 z_2 \frac{\partial^2 g_\alpha}{\partial z_1 \partial z_2} + z_2 \frac{\partial^2 g_\alpha}{\partial z_2^2} \right].$$

The above calculations enable us to write down the Hessian matrix of $g_\alpha(z_1, z_2)$, as a function of three variables, in the following form:

$$\begin{bmatrix}
\frac{\partial^2 g_\alpha}{\partial z_1^2} & \frac{\partial^2 g_\alpha}{\partial z_1 \partial z_2} & A \\
\frac{\partial^2 g_\alpha}{\partial z_1 \partial z_2} & \frac{\partial^2 g_\alpha}{\partial z_2^2} & B \\
A & B & \frac{\partial^2 g_\alpha}{\partial \alpha^2}
\end{bmatrix},$$

where $A = -\frac{\alpha}{1 + \alpha^2} \left(z_1 \frac{\partial^2 g_\alpha}{\partial z_1^2} + z_2 \frac{\partial^2 g_\alpha}{\partial z_1 \partial z_2} \right)$ and $B = -\frac{\alpha}{1 + \alpha^2} \left(z_2 \frac{\partial^2 g_\alpha}{\partial z_2^2} + z_1 \frac{\partial^2 g_\alpha}{\partial z_1 \partial z_2} \right)$.
We compute the determinant of the above matrix by multiplying the first row by \(\frac{\alpha}{1+\alpha^2} \) \(z_1 \) and adding to the third row; analogously, we multiply the second row by \(\frac{\alpha}{1+\alpha^2} \) \(z_2 \) and add to the third one. After that we get the determinant of the matrix

\[
\begin{bmatrix}
\frac{\partial^2 g_0}{\partial z_1^2} & \frac{\partial^2 g_0}{\partial z_1 \partial z_2} & -\frac{\alpha}{1+\alpha^2} \left(z_1 \frac{\partial^2 g_0}{\partial z_1^2} + z_2 \frac{\partial^2 g_0}{\partial z_1 \partial z_2} \right) \\
\frac{\partial^2 g_0}{\partial z_1 \partial z_2} & \frac{\partial^2 g_0}{\partial z_2^2} & -\frac{\alpha}{1+\alpha^2} \left(z_2 \frac{\partial^2 g_0}{\partial z_2^2} + z_1 \frac{\partial^2 g_0}{\partial z_1 \partial z_2} \right) \\
0 & 0 & \frac{1}{\alpha (1+\alpha^2)} \frac{\partial g_0}{\partial \alpha}
\end{bmatrix}.
\]

Developing it with respect to the third row, reduces determinant to the product of the determinant of the first \(2 \times 2 \) matrix and the term \(\frac{1}{\alpha (1+\alpha^2)} \frac{\partial g_0}{\partial \alpha} \).

Since we already know that \(g_0(z_1, z_2) \) is concave, as a function of \(z_1, z_2 \), everything reduces to the proof that the derivative \(\frac{\partial g_0}{\partial \alpha} \) is negative, that is, that the function \(g_0(z_1, z_2) \) is decreasing, as a function of \(\alpha \). This, however, follows from the Landau-Shepp inequality (Theorem 3.3): for \(r \geq 1 \)

\[
g_0(r z_1, r z_2) \geq r g_0(z_1, z_2).
\]

Indeed, let us assume that \(0 < \alpha_1 < \alpha_2 \). From the above property and the scaling property \((5.23) \) of \(g \), we get

\[
g_{\alpha_1}(z_1, z_2) = \sqrt{1 + \alpha_1^2} g_0 \left(\frac{z_1}{\sqrt{1 + \alpha_1^2}}, \frac{z_2}{\sqrt{1 + \alpha_1^2}} \right) \\
\geq \sqrt{1 + \alpha_1^2} \sqrt{1 + \alpha_2^2} g_0 \left(\frac{z_1}{\sqrt{1 + \alpha_2^2}}, \frac{z_2}{\sqrt{1 + \alpha_2^2}} \right) \\
= \sqrt{1 + \alpha_2^2} g_0 \left(\frac{z_1}{\sqrt{1 + \alpha_2^2}}, \frac{z_2}{\sqrt{1 + \alpha_2^2}} \right) \\
= g_{\alpha_2}(z_1, z_2).
\]

The above inequality shows that the function \(g_{\alpha}(a, b) \) is concave, as a function of \((a, a, b) \), for \(\alpha \geq 0 \) and \(a < b \). Since the norm \(y \rightarrow |y| = \alpha \) is a convex function and \(g_{\alpha}(a, b) \) is decreasing as a function of \(\alpha \), the theorem follows.

Now, let \(x = (y, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{n-1} \). For a Borell subset \(D \) of \(\mathbb{R}^n \) denote

\[
D(x) = \{ y \in \mathbb{R}; (y, \mathbf{x}) \in D \}.
\]
and define
\[S(D) = \{(z, x) \in \mathbb{R} \times \mathbb{R}^{(n-1)}; g_{|\mathbb{R}}(D^{(x)}) > z\} := \bigcup_{x \in \mathbb{R}} \{(z, x); g_{|\mathbb{R}}(D^{(x)}) > z\} \]

\(S(D) \) is a version of Ehrhard’s 1-symmetrization, adapted for the standard isotropic \(n \)-dimensional Cauchy measure. Observe that the operation \(S \) is monotonic, that is, if \(D \) and \(C \) are Borel subsets of \(\mathbb{R}^n \) such that \(C \subseteq D \) then also \(S(C) \subseteq S(D) \).

Theorem 3.5 (Concavity of Cauchy 1-symmetrization). The 1-symmetrization \(S \) is a concave operation on convex subsets of \(\mathbb{R}^n \); that is, for every \(D_1, D_2 \) convex Borel subsets of \(\mathbb{R}^n \) and every \(0 < \lambda < 1 \) we have
\[S(\lambda D_1 + (1 - \lambda)D_2) \supseteq \lambda S(D_1) + (1 - \lambda)S(D_2). \]

If \(D_1 = D_2 = D \) is convex, then \(S(D) \) is a convex subset of \(\mathbb{R}^n \), hence the operation \(S \) carries convex sets into convex sets.

Proof. Let \(D_1, D_2 \) be convex Borel subsets of \(\mathbb{R}^n \). Because \(y_i \in D_i^{(x_i)} \) if and only if \((y_i, x_i) \in D_i^{(x_i)} \), for \(i = 1, 2 \), and
\[(\lambda y_1 + (1 - \lambda)y_2, \lambda x_1 + (1 - \lambda)x_2) = \lambda(y_1, x_1) + (1 - \lambda)(y_2, x_2) \in \lambda D_1 + (1 - \lambda)D_2, \]
hence
\[\lambda y_1 + (1 - \lambda)y_2 \in (\lambda D_1 + (1 - \lambda)D_2)^{(\lambda x_1 + (1 - \lambda)x_2)} \]
and the following inclusion holds:
\[\lambda D_1^{(x_1)} + (1 - \lambda)D_2^{(x_2)} \subseteq (\lambda D_1 + (1 - \lambda)D_2)^{\lambda x_1 + (1 - \lambda)x_2}. \]

Observe, that the function \(g_{|\mathbb{R}}(z_1, z_2) \), as a function of an interval \((z_1, z_2)\), is increasing in the following sense: if the measure of \((z_1, z_2)\) is greater than the measure of \((z_3, z_4)\), then \(g_{|\mathbb{R}}(z_1, z_2) > g_{|\mathbb{R}}(z_3, z_4) \).

From the above inclusion, together with the concavity of the function \(g \), we obtain
\[
\begin{align*}
g_{|\mathbb{R}}(\lambda x_1 + (1 - \lambda)x_2) &\left((\lambda D_1 + (1 - \lambda)D_2)^{\lambda x_1 + (1 - \lambda)x_2}\right) \\
\geq g_{|\mathbb{R}}(\lambda x_1 + (1 - \lambda)x_2)^{(\lambda D_1)_{\lambda x_1} + (1 - \lambda)D_2^{(x_2)}} \\
\geq \lambda g_{|\mathbb{R}}((D_1^{(x_1)}) + (1 - \lambda)g_{|\mathbb{R}}(D_2^{(x_2)})).
\end{align*}
\]
The definition of the operation S implies

$$S(\lambda D_1 + (1 - \lambda) D_2) = \bigcup_{x: z} \{ (z, x); g|_{x}(\lambda D_1 + (1 - \lambda) D_2)(x) > z \} =$$

$$\bigcup_{x_1, x_2; z_1, z_2} \left\{ \lambda(z_1, x_1) + (1 - \lambda)(z_2, x_2);\right.$$

$$g|_{x_1 + (1 - \lambda)x_2}((\lambda D_1 + (1 - \lambda) D_2)(\lambda x_1 + (1 - \lambda)x_2) > z_1 + (1 - \lambda)z_2 \} \supseteq$$

$$\bigcup_{x_1, x_2; z_1, z_2} \left\{ \lambda(z_1, x_1) + (1 - \lambda)(z_2, x_2);\right.$$

$$\lambda g|_{x_1}(D_1(x_1)) + (1 - \lambda)g|_{x_2}(D_2(x_2)) > \lambda z_1 + (1 - \lambda)z_2 \} \supseteq$$

$$\bigcup_{x_1, x_2; z_1, z_2} \left\{ \lambda(z_1, x_1) + (1 - \lambda)(z_2, x_2);\right.$$

$$\lambda g|_{x_1}(D_1(x_1)) > \lambda z_1; (1 - \lambda)g|_{x_2}(D_2(x_2)) > (1 - \lambda)z_2 \} \supseteq$$

$$\lambda \bigcup_{x_1; z_1} \left\{ (z_1, x_1); g|_{x_1}(D_1(x_1)) > z_1 \} + (1 - \lambda) \bigcup_{x_2; z_2} \left\{ (z_2, x_2); g|_{x_2}(D_2(x_2)) > z_2 \right\} =$$

$$\lambda S(D_1) + (1 - \lambda) S(D_2).$$

Thus, S is a concave operation on convex subsets of \mathbb{R}^n. If $D_1 = D_2 = D$ is convex, then $\lambda D_1 + (1 - \lambda) D_2 \subseteq D$ and $S(D) \supseteq S(\lambda D_1 + (1 - \lambda) D_2) \supseteq \lambda S(D) + (1 - \lambda) S(D)$, hence $S(D)$ is a convex subset of \mathbb{R}^n and this completes the proof.

ACKNOWLEDGEMENT

We thank an anonymous referee for many comments and remarks which helped us to improve the presentation of the paper.
REFERENCES

Institute of Mathematics, Polish Academy of Sciences and Wroclaw University of Science and Technology
Faculty of Pure and Applied Mathematics, Faculty of Pure and Applied Mathematics,
Śniadeckich 8, 00-956 Warszawa, Poland and Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw,
Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw,
Poland
E-mail: tomasz.zak@pwr.edu.pl

Received on;
revised version on xx.xx.xx