UNUSUAL LIMIT THEOREMS FOR THE TWO TAILED PARETO DISTRIBUTION

BY

ANDRÉ ADLER (CHICAGO) AND PRZEMYSŁAW MATULA (LUBLIN)

Abstract. We examine order statistics from a two sided Pareto distribution. It turns out that the smallest two order statistics and the two largest order statistics have very unusual limits. We obtain strong and weak exact laws for the smallest and the largest order statistics. For such statistics we also study the generalized law of the iterated logarithm. For the second smallest and second largest order statistics we prove the central limit theorem even though their second moment is infinite.

2010 AMS Mathematics Subject Classification: Primary: 60F05; Secondary: 60F15.

Key words and phrases: Almost sure convergence, order statistics, strong laws of large numbers, exact strong laws, fair games, weak law of large numbers, central limit theorems

1. INTRODUCTION

This paper extends the work done in [1]. Since then there have been other papers, namely [5], [6] and [7] on the same set of random variables, but in different directions. In [1] we obtained unusual strong laws where the random variables have right and left tails with the same thickness. In most other Exact Strong Laws, we only looked at random variable that had a thicker right tail or no left tail at all. But here we have both $\mathbb{E}X^+ = \infty$ and $\mathbb{E}X^- = \infty$ for this two sided Pareto, here
$X^+ = \max(X, 0)$ and $X^- = \max(-X, 0)$. The underlying distribution is

$$f(x) = \begin{cases} \frac{q}{x^2}, & \text{if } x \leq -1 \\ 0, & \text{if } -1 < x < 1 \\ \frac{p}{x^2}, & \text{if } x \geq -1 \end{cases}$$

where $p + q = 1$. In this paper we shall study the arrays of random variables

$$X_{11}, X_{12}, \ldots, X_{1m}$$

$$X_{21}, X_{22}, \ldots, X_{2m}$$

$$\vdots$$

$$X_{i1}, X_{i2}, \ldots, X_{im}$$

$$\vdots$$

which will be denoted by $\{X_{i1}, X_{i2}, \ldots, X_{im}\}$. We shall assume that these random variables are all independent, i.e., are independent in each row and that the rows are independent of each other. We look at all kinds of order statistics from a fixed sample of size m. The k^{th} order statistic in row i is denoted by $X_{i(k)}$ or by $X_{(k)}$ if there is no doubt, and has the density

$$f_{X_{(k)}}(x) = \begin{cases} \frac{m!}{(k-1)!(m-k)!} \left(-\frac{q}{x} \right)^{k-1} \frac{q}{x^2} \left(1 + \frac{q}{x} \right)^{m-k}, & \text{if } x \leq -1 \\ 0, & \text{if } -1 < x < 1 \\ \frac{m!}{(k-1)!(m-k)!} \left(1 - \frac{p}{x} \right)^{k-1} \frac{p}{x^2} \left(\frac{p}{x} \right)^{m-k}, & \text{if } x \geq -1 \end{cases}$$

(1.1)

The interesting cases are when k is 1, 2, $m-1$ or m.

We need to say that the constant C, used in the proofs denotes a generic real number that is not necessarily the same in each appearance. It is usually used as an upper bound in order to establish the convergence of our various series. And it will also be used as a generic lower bound for a divergence series. Also, we define $\lg x = \ln(\max\{e, x\})$ and $\lg_2 x = \lg(\lg x)$, which is not a logarithm with a base of 2.
2. STRONG LAWS

We first look at the smallest order statistic, then we look at the largest one. Since the left tail is bigger than the right for the smallest order statistic the limit will be negative. But the result also depends on the parameters \(m, q \) and \(\alpha \). What is fascinating is that we are obtaining Exact Strong Laws for these random variables. In Section 4 we show that these strong laws are quite special, that it is quite difficult to balance partial sums of random variables who possess infinite expectations with constants and achieve an almost sure result.

Theorem 2.1. Let \(\{X_{i1}, \ldots, X_{im}\} \) be i.i.d. random variables from our two-sided Pareto distribution. Then for \(\alpha > -2 \) we have

\[
\lim_{n \to \infty} \frac{\sum_{i=1}^{n} \frac{(\lg i)^{\alpha}}{i} X_{i(1)}}{(\lg n)^{\alpha+2}} = \frac{-mq}{\alpha + 2} \quad \text{almost surely.}
\]

Proof. Let \(a_n = (\lg n)^{\alpha}/n, b_n = (\lg n)^{\alpha+2} \) and \(c_n = b_n/a_n = n(\lg n)^2 \).

We use the partition

\[
\frac{1}{b_n} \sum_{i=1}^{n} a_i X_{i(1)} = \frac{1}{b_n} \sum_{i=1}^{n} a_i \left[X_{i(1)} \mathbb{I}(|X_{i(1)}| \leq c_i) - \mathbb{E}X_{(1)} \mathbb{I}(|X_{(1)}| \leq c_i) \right] + \frac{1}{b_n} \sum_{i=1}^{n} a_i X_{i(1)} \mathbb{I}(|X_{i(1)}| > c_i) + \frac{1}{b_n} \sum_{i=1}^{n} a_i \mathbb{E}X_{(1)} \mathbb{I}(|X_{(1)}| \leq c_i).
\] (2.1)

The first term in (2.1) vanishes almost surely by the Khintchine-Kolmogorov Convergence Theorem, see page 113 of [3], and Kronecker’s lemma. We focus on the left tail since in this situation it dominates the right tail

\[
\sum_{n=1}^{\infty} \frac{1}{c_n^2} \mathbb{E}X_{(1)}^2 \mathbb{I}(|X_{(1)}| \leq c_n) = \sum_{n=1}^{\infty} \frac{1}{c_n^2} \left[\int_{-c_n}^{-1} x^2 f_{X_{(1)}}(x) dx + \int_{1}^{c_n} x^2 f_{X_{(1)}}(x) dx \right] < C \sum_{n=1}^{\infty} \frac{1}{c_n} = C \sum_{n=1}^{\infty} \frac{1}{n(\lg n)^2} < \infty.
\]

The second term in (2.1) vanishes, with probability one, by the Borel-Cantelli
lemma since
\[\sum_{n=1}^{\infty} P(|X(1)| > c_n) = \sum_{n=1}^{\infty} \left[\frac{-c_n}{\infty} \int_{-\infty}^{\infty} f_{X(1)}(x)dx + \frac{\infty}{c_n} \int_{-\infty}^{\frac{1}{c_n}} f_{X(1)}(x)dx \right] \]
\[< C \sum_{n=1}^{\infty} \frac{q_n}{x^2}dx < C \sum_{n=1}^{\infty} \frac{1}{c_n} = C \sum_{n=1}^{\infty} \frac{1}{n(lg n)^2} < \infty. \]

Thus, our almost sure limit follows from the last term in (2.1)
\[b_n^{-1} \sum_{i=1}^{n} a_i \mathbb{E}_X(1)I(|X(1)| \leq c_i) = b_n^{-1} \sum_{i=1}^{n} a_i \left[\int_{-c_i}^{0} x f_{X(1)}(x)dx + \int_{0}^{c_i} x f_{X(1)}(x)dx \right] \]
\[\sim b_n^{-1} \sum_{i=1}^{n} a_i \int_{-c_i}^{0} x f_{X(1)}(x)dx \sim mb_n^{-1} \sum_{i=1}^{n} a_i (-lg c_i) \]
\[\sim \frac{-mq}{(lg n)^{\alpha+2}} \sum_{i=1}^{n} \frac{(lg i)^{\alpha}}{i} = \frac{-mq}{(lg n)^{\alpha+2}} \sum_{i=1}^{n} \frac{(lg i)^{\alpha+1}}{i} \]
\[\sim \frac{-mq}{(lg n)^{\alpha+2}} \frac{(lg n)^{\alpha+2}}{\alpha+2} = \frac{-mq}{\alpha+2}. \]

which concludes this proof. ■

The next result can be found in [1], so we will skip the proof.

Theorem 2.2. Let \(\{X_1, \ldots, X_m\} \) be i.i.d. random variables from our two-sided Pareto distribution. Then for \(\alpha > -2 \) we have
\[\lim_{n \to \infty} \frac{\sum_{i=1}^{n} \frac{(lg i)^{\alpha}}{i} X_{i(m)}}{(lg n)^{\alpha+2}} = \frac{mp}{\alpha+2} \text{ almost surely.} \]

We can change the weights to be any slowly varying function divided by \(n \). Here we used \(a_n = (lg n)^{\alpha}/n \), but we can replace the \((lg n)^{\alpha}\) with any slowly varying function. That naturally will affect \(b_n \) in order to obtain an Exact Strong Law. However, if we increase \(a_n \) any more than that, say a higher power than negative one, then we can only obtain a weak law. That is the point of the next two sections.
3. WEAK LAWS

Next we will establish weak laws where strong laws will not hold. What is interesting is that the distribution of our random variables hasn’t changed, what we have done is slightly increasing the weights, \(a_n\). And we do obtain the appropriate norming sequence \(b_n\), in order to obtain a Fair Game and not an Exact Strong Law. We will use these weak laws to establish the almost sure behaviour of these partial sums in the next section, which shows why we must select those exact weights we did in Section 2.

Theorem 3.1. Let \(\{X_{i_1}, \ldots, X_{i_m}\}\) be i.i.d. random variables from our two-sided Pareto distribution. Then for \(\alpha > -1\) and any slowly varying function \(L(x)\)

\[
\frac{\sum_{i=1}^{n} L(i) i^\alpha X_{i(1)}}{L(n)(\log n)^{\alpha+1}} \xrightarrow{P} -\frac{mq}{\alpha + 1} \quad \text{as} \quad n \to \infty.
\]

Proof. Let \(a_i = L(i)i^\alpha\) and \(b_n = L(n)(\log n)^{\alpha+1}\). We will use the Weak Law from page 356 of [3]. Let \(\epsilon > 0\). Once again, the left tail dominates the right tail, so we basically fold that integral into the left one

\[
= m \sum_{i=1}^{n} \mathbb{P} \left(a_i | X_{i(1)} | / b_n > \epsilon \right) \leq C \sum_{i=1}^{n} \int_{-\infty}^{-eb_n/a_i} \frac{q}{x^2} \left(1 + \frac{q}{x} \right)^{m-1} dx + \int_{eb_n/a_i}^{\infty} \frac{p}{x^2} \left(\frac{p}{x} \right)^{m-1} dx < C \frac{\sum_{i=1}^{n} a_i}{b_n} = C \frac{\sum_{i=1}^{n} L(i)i^\alpha}{L(n)(\log n)^{\alpha+1}} < \frac{C L(n)n^{\alpha+1}}{L(n)(\log n)^{\alpha+1}} = \frac{C}{\log n} \to 0.
\]
As for the variance term, we have

\[
\sum_{i=1}^{n} \text{Var}\left[a_i X(1) \mathbb{I}\left(\frac{a_i X(1)}{b_n} < 1 \right) \right] < b_n^{-2} \sum_{i=1}^{n} a_i^2 \int_{-b_n/a_i}^{-1} mq \left(1 + \frac{q}{x} \right)^{m-1} dx + \int_{1}^{b_n/a_i} mp \left(\frac{p}{x} \right)^{m-1} dx
\]

\[
< C b_n^{-2} \sum_{i=1}^{n} a_i^2 \int_{-b_n/a_i}^{-1} mq \left(1 + \frac{q}{x} \right)^{m-1} dx
\]

\[
< C b_n^{-2} \sum_{i=1}^{n} a_i^2 \int_{-b_n/a_i}^{0} dx = \frac{C}{b_n} \sum_{i=1}^{n} a_i \to 0.
\]

Next, we must compute the expectation from that theorem. Using \(\sum_{i=1}^{n} a_i = o(b_n) \) we see the right tail doesn’t affect our limit at all:

\[
\sum_{i=1}^{n} \mathbb{E}\left[a_i X(1) \mathbb{I}\left(\frac{a_i X(1)}{b_n} < 1 \right) \right] = \frac{m}{b_n} \sum_{i=1}^{n} a_i \left[\int_{-b_n/a_i}^{-1} \frac{q}{x} \left(1 + \frac{q}{x} \right)^{m-1} dx + \int_{1}^{b_n/a_i} \frac{p}{x} \left(\frac{p}{x} \right)^{m-1} dx \right]
\]

\[
\sim \frac{m}{b_n} \sum_{i=1}^{n} a_i \int_{-b_n/a_i}^{-1} \frac{q}{x} \left(1 + \frac{q}{x} \right)^{m-1} dx \sim \frac{mq}{b_n} \sum_{i=1}^{n} a_i \int_{-b_n/a_i}^{-1} \frac{dx}{x}
\]

\[
= -mq \sum_{i=1}^{n} a_i \left[\lg(b_n) - \lg(a_i) \right].
\]

It is interesting that both of these terms are equally important

\[
b_n^{-1} \sum_{i=1}^{n} a_i \lg(b_n) = \sum_{i=1}^{n} L(i)^{\alpha} \left[\lg(L(n)) + \lg_2 n + (\alpha + 1) \lg n \right] \frac{L(n)(\lg n)^{n\alpha+1}}{L(n)(\lg_n)n^{\alpha+1}}
\]

\[
\sim \frac{(\alpha + 1) \sum_{i=1}^{n} L(i)^{\alpha} \lg n}{L(n)(\lg_n)n^{\alpha+1}} \sim \frac{(\alpha + 1)L(n)^{n\alpha+1}}{L(n)(\lg_n)n^{\alpha+1}} = 1
\]

meanwhile

\[
b_n^{-1} \sum_{i=1}^{n} a_i \lg(a_i) = \sum_{i=1}^{n} L(i)^{\alpha} \left[\lg(L(i)) + \alpha \lg i \right] \frac{L(n)(\lg n)^{n\alpha+1}}{L(n)(\lg n)n^{\alpha+1}}
\]

\[
\sim \frac{\alpha \sum_{i=1}^{n} L(i)(\lg i)^{\alpha}}{L(n)(\lg n)n^{\alpha+1}} \sim \frac{\alpha L(n)(\lg n)^{2n\alpha+1}}{L(n)(\lg n)n^{n\alpha+1}} = \frac{\alpha}{\alpha + 1}.
\]
Combining these two terms, we see that our limit is indeed
\[-mq \left(1 - \frac{\alpha}{\alpha + 1} \right) = \frac{-mq}{\alpha + 1}\]
which concludes this proof. ■

This next weak law can also be found in [I].

Theorem 3.2. Let \(\{X_{i1}, \ldots, X_{im}\} \) be i.i.d. random variables from our two-sided Pareto distribution. Then for \(\alpha > -1 \) and any slowly varying function \(L(x) \)

\[
\sum_{i=1}^{n} \frac{L(i) i^\alpha X_{i(m)}}{L(n)(\lg n) n^{\alpha + 1}} \overset{p}{\rightarrow} \frac{mp}{\alpha + 1} \quad \text{as} \quad n \to \infty.
\]

We will now use these two theorems in the next section, to show the odd fluctuations of these partial sums.

4. Generalized Laws of the Iterated Logarithm

This section nicely compares what we accomplished in the previous two sections. It shows us how precise our strong laws from Section 2 are. And it also shows that even when we can obtain a weak law the almost sure counterparts does not necessarily hold. Furthermore, the partition here is every delicate and since these random variables have support on all of the reals, we need to be extra careful in showing which terms are negligible and which ones aren’t. The idea of how to partition our partial sums comes from [I].

Theorem 4.1. Let \(\{X_{i1}, \ldots, X_{im}\} \) be i.i.d. random variables from our two-sided Pareto distribution. Then for \(\alpha > -1 \) and any slowly varying function \(L(x) \)

\[
\liminf_{n \to \infty} \frac{\sum_{i=1}^{n} L(i) i^\alpha X_{i(1)}}{L(n)(\lg n) n^{\alpha + 1}} = -\infty \quad \text{almost surely.}
\]

and

\[
\limsup_{n \to \infty} \frac{\sum_{i=1}^{n} L(i) i^\alpha X_{i(1)}}{L(n)(\lg n) n^{\alpha + 1}} = \frac{-mq}{\alpha + 1} \quad \text{almost surely.}
\]
Proof. Here we set $a_n = L(n)n^\alpha$, $b_n = L(n)(\log n)n^{\alpha + 1}$, $c_n = b_n/a_n = n \log n$, but we also need a fourth sequence $d_n = n$.

To achieve the lower limit, let $M > 0$, then

$$\sum_{n=1}^{\infty} \mathbb{P}(a_n X_{(1)}^- > Mb_n) = \sum_{n=1}^{\infty} \int_{-\infty}^{-Mcn} \frac{-mq}{x^2} \left(1 + \frac{q}{x}\right)^{m-1} dx$$

$$> C \sum_{n=1}^{\infty} \int_{-\infty}^{-\infty} \frac{dx}{x^2} > C \sum_{n=1}^{\infty} \frac{1}{c_n} = C \sum_{n=1}^{\infty} \frac{1}{n \log n} = \infty.$$

Thus

$$\limsup_{n \to \infty} \frac{a_n X_{(1)}^-}{b_n} = \infty \text{ almost surely}$$

and since

$$\frac{a_n X_{(1)}^-}{b_n} \leq \frac{\sum_{i=1}^{n} a_i X_{i(1)}^-}{b_n}$$

we have

$$\limsup_{n \to \infty} \frac{\sum_{i=1}^{n} a_i X_{i(1)}^-}{b_n} = \infty \text{ almost surely.}$$

On the other side, we have $\mathbb{E}(X_{(1)}^+) < \infty$ and using $\sum_{i=1}^{n} a_i = o(b_n)$ we see that

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} a_i X_{i(1)}^+}{b_n} = 0 \text{ almost surely.}$$

Putting this together we have

$$\liminf_{n \to \infty} \frac{\sum_{i=1}^{n} a_i X_{i(1)}}{b_n} = \liminf_{n \to \infty} \left(\frac{\sum_{i=1}^{n} a_i X_{i(1)}^+}{b_n} - \frac{\sum_{i=1}^{n} a_i X_{i(1)}^-}{b_n}\right)$$

$$= 0 - \limsup_{n \to \infty} \frac{\sum_{i=1}^{n} a_i X_{i(1)}^-}{b_n} = -\infty$$

almost surely, of course. Now the other result is quite difficult. From Theorem 3.1, we can claim that

$$\limsup_{n \to \infty} \frac{\sum_{i=1}^{n} a_i X_{i(1)}}{b_n} \geq \frac{-mq}{\alpha + 1} \text{ almost surely.}$$
Hence we need to prove that
\[
\limsup_{n \to \infty} \frac{1}{b_n} \sum_{i=1}^n a_iX_i(1) \leq \frac{-mq}{\alpha + 1} \text{ almost surely.}
\]
This is where the sequence \(d_n = n\) comes into play. We break our partial sum into five pieces and toss one away and then examine the other four
\[
b_n^{-1} \sum_{i=1}^n a_iX_i(1) = b_n^{-1} \sum_{i=1}^n a_i \left[X_i(1)I(|X_i(1)| \leq d_i) - \mathbb{E}(X_i(1)I(|X_i(1)| \leq d_i)) \right] + b_n^{-1} \sum_{i=1}^n a_iX_i(1)I(X_i(1) > c_i) + b_n^{-1} \sum_{i=1}^n a_iX_i(1)I(X_i(1) < -d_i) + b_n^{-1} \sum_{i=1}^n a_i\mathbb{E}(X_i(1)I(-d_i \leq X(1) \leq c_i)).
\]
Since the fourth term in (4.1) is strictly negative, we have
\[
b_n^{-1} \sum_{i=1}^n a_iX_i(1) \leq b_n^{-1} \sum_{i=1}^n a_i \left[X_i(1)I(|X_i(1)| \leq d_i) - \mathbb{E}(X_i(1)I(|X_i(1)| \leq d_i)) \right] + b_n^{-1} \sum_{i=1}^n a_iX_i(1)I(X_i(1) > c_i) + b_n^{-1} \sum_{i=1}^n a_i\mathbb{E}(X_i(1)I(-d_i \leq X(1) \leq c_i)).
\]
The first term in (4.2) vanishes almost surely by the Khintchine-Kolmogorov Convergence Theorem and Kronecker’s lemma since
\[
\sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{-n}^{n} x^2 f_{X(1)}(x) \, dx < C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{-n}^{n} x^{2mq} \left(1 + \frac{q}{x}\right)^{m-1} \, dx < \infty.
\]
One can use the same technique for the second term in (4.2) or just notice that the right tail has a finite expectation, so using that and \(\sum_{i=1}^n a_i = o(b_n)\) that term also vanishes. But to be rigorous
\[
\sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{n}^{\infty} x^{2mq} \left(\frac{p}{x}\right)^{m-1} \, dx < C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{n}^{\infty} x^{-m+1} \, dx < \infty.
\]
for any $m \geq 2$. When $m = 2$, we have
\[
\sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{1}^{n \lg n} \frac{dx}{x} = \sum_{n=1}^{\infty} \frac{\lg n}{(n \lg n)^2} < \infty
\]
and when $m > 2$ we have
\[
\sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{1}^{n \lg n} x^{-m+1} dx < \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{1}^{\infty} x^{-m+1} dx < C \sum_{n=1}^{\infty} \frac{1}{c_n^2} < \infty.
\]
Similarly, the third term is on the smaller side, so
\[
\sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{1}^{n \lg n} x^{-m+1} dx < \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{1}^{\infty} x^{-m+1} dx < C \sum_{n=1}^{\infty} \frac{1}{c_n^2} < \infty.
\]
since $m \geq 2$. The final term in (4.1) produces our limit. The right tail isn’t necessary since it has a finite expectation. Thus
\[
b_n^{-1} \sum_{i=1}^{n} a_i \int_{-d_i}^{c_i} x f_{X_i(1)}(x) dx \sim b_n^{-1} \sum_{i=1}^{n} a_i \int_{-i}^{i} \frac{1}{x} x_m \left(1 + \frac{q}{x} \right)^{m-1} dx
\]
\[
\sim \frac{mq}{b_n} \sum_{i=1}^{n} \frac{a_i}{L(i)(\lg n)n^{\alpha+1}} \sum_{i=1}^{n} L(i)i^{\alpha}(- \lg i)
\]
\[
= \frac{-mq}{L(n)(\lg n)n^{\alpha+1}} \rightarrow \frac{-mq}{\alpha + 1}
\]
as $n \rightarrow \infty$. Thus showing that the almost sure upper limit is indeed $-mq/(\alpha + 1)$ which concludes this proof.

Next we turn our attention to the largest order statistic

Theorem 4.2. Let $\{X_{i1}, \ldots, X_{im}\}$ be i.i.d. random variables from our two-sided Pareto distribution. Then for $\alpha > -1$ and any slowly varying function $L(x)$
\[
\liminf_{n \rightarrow \infty} \frac{\sum_{i=1}^{n} L(i)^{\alpha} X_{i(1)}}{L(n)(\lg n)n^{\alpha+1}} = \frac{mp}{\alpha + 1} \quad \text{almost surely.}
\]
and
\[
\limsup_{n \rightarrow \infty} \frac{\sum_{i=1}^{n} L(i)^{\alpha} X_{i(m)}}{L(n)(\lg n)n^{\alpha+1}} = \infty \quad \text{almost surely.}
\]
Proof. As in the previous proof let \(a_n = L(n)n^\alpha \), \(b_n = L(n)(\log n)n^{\alpha+1} \), \(c_n = b_n/a_n = n \log n \) and \(d_n = n \). From Theorem 5.3 we have

\[
\lim_{n \to \infty} \inf \frac{\sum_{i=1}^{n} L(i)i^\alpha X_i(m)}{L(n)(\log n)n^{\alpha+1}} \leq \frac{mp}{\alpha + 1} \text{ almost surely}
\]

so in this proof we need to obtain

\[
\lim_{n \to \infty} \inf \frac{\sum_{i=1}^{n} L(i)i^\alpha X_i(m)}{L(n)(\log n)n^{\alpha+1}} \geq \frac{mp}{\alpha + 1} \text{ almost surely.}
\]

The partition we use is similar, but naturally it’s flipped over

\[
b_n^{-1} \sum_{i=1}^{n} a_i X_i(m) = b_n^{-1} \sum_{i=1}^{n} a_i [X_i(m)I(|X_i(m)| \leq d_i) - EX_i(m)I(|X_i(m)| \leq d_i)]
\]

\[
+ b_n^{-1} \sum_{i=1}^{n} a_i [X_i(m)I(-c_i \leq X_i(m) < -d_i) - EX_i(m)I(-c_i \leq X_i(m) < -d_i)]
\]

\[
+ b_n^{-1} \sum_{i=1}^{n} a_i X_i(m)I(X_i(m) < -c_i) + b_n^{-1} \sum_{i=1}^{n} a_i X_i(m)I(X_i(m) > d_i)
\]

(4.3) \[+ b_n^{-1} \sum_{i=1}^{n} a_i EX_i(m)I(-c_i \leq X_i(m) \leq d_i).\]

Since the fourth term in (4.3) is strictly positive, we have

\[
b_n^{-1} \sum_{i=1}^{n} a_i X_i(m) \geq b_n^{-1} \sum_{i=1}^{n} a_i [X_i(m)I(|X_i(m)| \leq d_i) - EX_i(m)I(|X_i(m)| \leq d_i)]
\]

(4.4) \[+ b_n^{-1} \sum_{i=1}^{n} a_i [X_i(m)I(-c_i \leq X_i(m) < -d_i) - EX_i(m)I(-c_i \leq X_i(m) < -d_i)]
\]

\[+ b_n^{-1} \sum_{i=1}^{n} a_i X_i(m)I(X_i(m) < -c_i) + b_n^{-1} \sum_{i=1}^{n} a_i EX_i(m)I(-c_i \leq X_i(m) \leq d_i).\]

By the usual arguments the first term in (4.4) vanishes. Note that the right tail is now the thicker one in this situation

\[
\sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{-n}^{n} x^2 f_{X_i(m)}(x)dx < C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{1}^{\infty} x^2 mp \left(1 - \frac{p}{x}\right)^{m-1} dx
\]

\[< C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int dx < C \sum_{n=1}^{\infty} \frac{n}{c_n^2} = C \sum_{n=1}^{\infty} \frac{1}{n(\log n)^2} < \infty.
\]
The next term in (4.4) easily converges to zero, since its on the smaller tail
\[
\sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{-c_n}^{d_n} x^2 f_X(x) \, dx = \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{-c_n}^{d_n} x^2 \frac{mq}{x^2} \left(-\frac{q}{x} \right)^{m-1} \, dx
\]
\[
< C \sum_{n=1}^{\infty} \frac{1}{c_n^2} \int_{-c_n}^{d_n} x^{-m+1} \, dx < \infty
\]
for any \(m \geq 2 \), just let \(u = -x \) and the proof is the same as in the previous theorem. Likewise for all \(m \geq 2 \)
\[
\sum_{n=1}^{\infty} P \left(X^{(m)} < -c_n \right) = \sum_{n=1}^{\infty} \int_{-\infty}^{-c_n} \frac{mq}{x^2} \left(-\frac{q}{x} \right)^{m-1} \, dx
\]
\[
< C \sum_{n=1}^{\infty} \int_{-c_n}^{d_n} x^{-m-1} \, dx < C \sum_{n=1}^{\infty} \frac{1}{c_n^2} < \infty.
\]
So, our limit is
\[
b_n^{-1} \sum_{i=1}^{n} a_i \int_{-c_i}^{d_i} x f_X(x) \, dx \sim b_n^{-1} \sum_{i=1}^{n} a_i \int_{-c_i}^{d_i} x \frac{mp}{L(n)(\lg n)n^{\alpha+1}} \sum_{i=1}^{n} L(i)i^{\alpha}(\lg i) \sim \frac{mp}{\alpha + 1}
\]
as \(n \to \infty \), where we threw out the left integral, since \(\sum_{i=1}^{n} a_i = o(b_n) \). Putting this all together we have
\[
\lim_{n \to \infty} \frac{\sum_{i=1}^{n} L(i)i^{\alpha} X^{(i)}(m)}{L(n)(\lg n)n^{\alpha+1}} = \frac{mp}{\alpha + 1} \quad \text{almost surely.}
\]

Turning to the almost sure upper limit, let \(M > 0 \). Then
\[
\sum_{n=1}^{\infty} P \left(a_n X^{(m)} > Mb_n \right) = \sum_{n=1}^{\infty} \int_{Mb_n}^{\infty} \frac{mp}{x^2} \left(1 - \frac{p}{x} \right)^{m-1} \, dx
\]
\[
> C \sum_{n=1}^{\infty} \int_{Mb_n}^{\infty} \frac{dx}{x^2} > C \sum_{n=1}^{\infty} \frac{1}{c_n} = C \sum_{n=1}^{\infty} \frac{1}{n \lg n} = \infty.
\]
Hence
\[
\lim_{n \to \infty} \sup_{n \to \infty} \frac{a_n X^{n(m)} + b_n}{b_n} = \infty \quad \text{almost surely}
\]
and since
\[
\frac{a_n X^{n(m)} + b_n}{b_n} \leq \sum_{i=1}^{n} a_i X^{i(m)}
\]
we have
\[
\limsup_{n \to \infty} \frac{\sum_{i=1}^{n} a_i X_{i(m)}^+}{b_n} = \infty \text{ almost surely.}
\]
Since \(E(X_{(m)}^-) < \infty \) and \(\sum_{i=1}^{n} a_i = o(b_n) \) we have
\[
\lim_{n \to \infty} \frac{\sum_{i=1}^{n} a_i X_{i(m)}^-}{b_n} = 0 \text{ almost surely.}
\]
Thus
\[
\limsup_{n \to \infty} \frac{\sum_{i=1}^{n} L(i) i^{\alpha} X_{i(m)}}{L(n) (\log n)^{\alpha+1}} = \infty \text{ almost surely}
\]
which concludes this proof.

5. CENTRAL LIMIT THEOREMS

Here we look at the second smallest and second largest order statistics. They both have a finite mean, but an infinite variance. We will apply Theorem 4 from [2]. We will start with the smaller once again. By using (1.1) with \(k = 2 \) we get the density of the second smallest order statistic
\[
f_{X_{(2)}}(x) = \begin{cases}
m(m-1) \left(-\frac{m}{x} \right)^{\frac{m}{2}} \left(1 + \frac{m}{x} \right)^{-\frac{m-2}{2}}, & \text{if } x \leq -1 \\
0, & \text{if } -1 < x < 1 \\
m(m-1) \left(1 - \frac{m}{x} \right)^{\frac{m}{2}} \left(\frac{m}{x} \right)^{-\frac{m-2}{2}}, & \text{if } x \geq -1.
\end{cases}
\]

There are three conditions that we need to meet in order to apply that theorem. The first one is that
\[
G(x) = E(X_{(2)}^2 \mathbb{I}(|X_{(2)}| \leq x))
\]
is slowly varying. The other two are
\[
G \left(\frac{B_n}{\min_{1 \leq i \leq n} a_i} \right) \sim G \left(\frac{B_n}{\max_{1 \leq i \leq n} a_i} \right)
\]
and for all \(\epsilon > 0 \)
\[
\sum_{i=1}^{n} \mathbb{P} \left(|X_{(2)}| > \epsilon B_n / a_i \right) = o(1)
\]
where once again a_i are our weights and now B_n is our norming sequence. Since $m \geq 3$

$$G(x) = \mathbb{E}(X_{i(2)}^2 1(|X_{i(2)}| \leq x))$$

$$= m(m - 1) \int_{-x}^{x} t^2 \left(-\frac{q}{t} \right) \frac{q}{t^2} \left(1 + \frac{q}{t} \right)^{m-2} dt$$

$$+ m(m - 1) \int_{-1}^{1} t^2 \left(1 - \frac{p}{t} \right) \frac{p}{t^2} \left(\frac{p}{t} \right)^{m-2} dt$$

$$\sim m(m - 1) \int_{-x}^{x} t^2 \left(-\frac{q}{t} \right) \frac{q}{t^2} \left(1 + \frac{q}{t} \right)^{m-2} dt$$

$$\sim m(m - 1) \int_{-1}^{1} t^2 \left(-\frac{q}{t} \right) \frac{q}{t^2} dt$$

$$= m(m - 1)(-q^2) \int_{-x}^{x} \frac{dt}{t} = m(m - 1)q^2 \log x.$$

Thus the classic slowly varying function, logarithm appears once again, achieving (5.1). The formula for B_n is quite restrictive. It is $B_n^2 \sim nG(B_n)$, which for us is

$$B_n^2 \sim m(m - 1)q^2 n \log(B_n)$$

which allows us to choose as our norming sequence

$$B_n = q \sqrt{\binom{m}{2} n \log n}.$$

For simplicity we will let $a_i = (\log i)^\alpha$, which makes (5.2) trivial. But in order to satisfy (5.3) we will have to set α to be less than one-half. The real pain in these theorems is the computation of the mean, which isn’t really necessary but is included. Sadly, they don’t simplify into an nice expression, like our sequence B_n.

Theorem 5.1. Let $\{X_{i1}, \ldots, X_{im}\}$ be i.i.d. random variables from our two-sided Pareto distribution. If $\alpha < 1/2$, then

$$\sum_{i=1}^{n} (\log i)^\alpha [X_{i(2)} - \mathbb{E}(X_{i(2)})] \quad \frac{q\sqrt{\binom{m}{2} n \log n}}{N(0, 1)} \quad \text{as} \quad n \to \infty.$$
Unusual limit theorems

Proof. With (5.1) and (5.2) satisfied, we turn our attention to (5.3). Let \(\epsilon > 0 \)

\[
\sum_{i=1}^{n} P\left(|X_{(2)}| > \epsilon B_{n}/a_{i} \right) < C \sum_{i=1}^{n} \left(\int_{-\infty}^{\epsilon B_{n}/a_{i}} \frac{dx}{x^{3}} + \int_{\epsilon B_{n}/a_{i}}^{\infty} \frac{dx}{x^{m}} \right)
\]

\[
< \frac{C \sum_{i=1}^{n} a_{i}^{2}}{B_{n}^{2}} < \frac{C \sum_{i=1}^{n} (\log i)^{2\alpha}}{n \log n} \to 0
\]

since \(\alpha < 1/2 \). In order to compute the mean, we can no longer ignore the smaller tails, nor can we approximate integrands with bounds. The mean is

\[
\mathbb{E}(X_{(2)}) = m(m-1) \int_{-\infty}^{1} x \left(\frac{-q}{x} \right) \left(1 + \frac{q}{x} \right)^{m-2} \frac{dx}{x^2}
\]

\[
+ m(m-1) \int_{1}^{\infty} x \left(1 - \frac{p}{x} \right) \left(\frac{p}{x} \right)^{m-2} \frac{dx}{x^2}
\]

\[
= m(m-1) q^{2} \int_{-\infty}^{1} \left(\frac{-1}{x^2} \right) \left(1 + \frac{q}{x} \right)^{m-2} dx
\]

\[
+ m(m-1) p^{m-1} \int_{1}^{\infty} \left(1 - \frac{p}{x} \right) x^{-m+1} dx
\]

In the first of the two integrals, we let \(u = 1 + q/x \), so

\[
m(m-1) q^{2} \int_{-\infty}^{1} \left(\frac{-1}{x^2} \right) \left(1 + \frac{q}{x} \right)^{m-2} dx
\]

\[
= m(m-1) q \int_{1}^{p} u^{m-2} du = mq \left(p^{m-1} - 1 \right)
\]

which is negative, of course. The second integral is

\[
m(m-1) p^{m-1} \int_{1}^{\infty} \left(x^{-m+1} - px^{-m} \right) dx
\]

\[
= m(m-1) p^{m-1} \left(\frac{1}{m-2} - \frac{p}{m-1} \right)
\]

\[
= \frac{mp^{m-1}}{m-2} \left(q(m-1) + p \right).
\]

Combining these two we have

\[
\mathbb{E}(X_{(2)}) = mq \left(p^{m-1} - 1 \right) + \frac{mp^{m-1}}{m-2} \left(q(m-1) + p \right)
\]

concluding this proof. \(\blacksquare \)
We finish with a central limit theorem for the second largest order statistic. According to (1.1) its density is

\[f_{X_{(m-1)}}(x) = \begin{cases}
 m(m-1) \left(-\frac{q}{x} \right)^{m-2} \frac{q}{x^2} \left(1 + \frac{q}{x} \right), & \text{if } x \leq -1 \\
 0, & \text{if } -1 < x < 1 \\
 m(m-1) \left(1 - \frac{p}{x} \right)^{m-2} \frac{p}{x^2} \left(\frac{p}{x} \right), & \text{if } x \geq -1.
\]

Theorem 5.2. Let \(\{X_i, \ldots, X_{im}\} \) be i.i.d. random variables from our two-sided Pareto distribution. If \(\alpha < 1/2 \), then

\[
\sum_{i=1}^{n} \left(\lg i \right)^\alpha \left[X_{i(m-1)} - \mathbb{E}(X_{(m-1)}) \right] \xrightarrow{d} N(0,1) \text{ as } n \to \infty.
\]

Proof. The proof is similar to the proof of Theorem 5.1. In this setting

\[
G(x) = \mathbb{E}(X_{(m-1)} \mathbb{1}(|X_{(m-1)}| \leq x)) \sim m(m-1)p^2 \int_{1}^{x} \frac{dt}{t} = m(m-1)p^2 \lg x.
\]

Our norming sequence is

\[B_n = p\sqrt{\frac{m}{2}} n \lg n. \]

And for all \(\epsilon > 0 \)

\[
\sum_{i=1}^{n} \mathbb{P}(|X_{i(m-1)}| > \epsilon B_n/a_i) < C \sum_{i=1}^{n} \left(\int_{-\infty}^{-\epsilon B_n/a_i} \frac{dx}{x^m} \right) + \int_{\epsilon B_n/a_i}^{\infty} \frac{dx}{x^3} < C \sum_{i=1}^{n} \frac{a_i^2}{B_n^2} < \frac{C \sum_{i=1}^{n} (\lg i)^{2\alpha}}{n \lg n} \to 0
\]

since \(\alpha < 1/2 \). Finally by the straightforward computations we get

\[
\mathbb{E}(X_{i(m-1)}) = mp \left(1 - q^{m-1} \right) - \frac{mq^{m-1}}{m-2} \left(p(m-1) + q \right)
\]

concluding this proof. \(\blacksquare \)

We could have selected many other coefficients, but \(a_i = (\lg i)^\alpha \) was simple and it works quite well with this theorem. And do notice that when \(\alpha = 0 \) we have the unweighted case, which is nice. We also have the unweighted case in our weak laws and one sided strong laws, but not in our Exact Strong Laws.
REFERENCES

Department of Applied Mathematics
Illinois Institute of Technology
Chicago, Illinois, 60616, USA
E-mail: adler@iit.edu

Institute of Mathematics
Marie Curie-Skłodowska University
pl. M.C.-Skłodowskiej 1, 20-031 Lublin, Poland
E-mail: matula@hektor.umcs.lublin.pl

Received on: [date]
revised version on [date]