UNIVERSITY
OF WROCŁAW
 
Main Page
Contents of previous volumes
Forthcoming papers
General Information
Instructions for authors


VOLUMES
39.1 38.2 38.1 37.2 37.1 36.2 36.1
35.2 35.1 34.2 34.1 33.2 33.1 32.2
32.1 31.2 31.1 30.2 30.1 29.2 29.1
28.2 28.1 27.2 27.1 26.2 26.1 25.2
25.1 24.2 24.1 23.2 23.1 22.2 22.1
21.2 21.1 20.2 20.1 19.2 19.1 18.2
18.1 17.2 17.1 16.2 16.1 15 14.2
14.1 13.2 13.1 12.2 12.1 11.2 11.1
10.2 10.1 9.2 9.1 8 7.2 7.1
6.2 6.1 5.2 5.1 4.2 4.1 3.2
3.1 2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 13, Fasc. 1,
pages 59 - 70
 

MATHEMATICAL EXPECTATION AND STRONG LAW OF LARGE NUMBERS FOR RANDOM VARIABLES WITH VALUES IN A METRIC SPACE OF NEGATIVE CURVATURE

Wojciech Herer

Abstract: Let f be a random variable with values in a metric space (X,d). For some class of metric spaces we define in terms of the metric d mathematical expectation of f as a closed bounded and non-empty subset of X. We then prove Kolmogorov’s version of Strong Law of Large Numbers corresponding to that mathematical expectation.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;

Key words and phrases: -

Download:    Abstract    Full text   Abstract + References