UNIVERSITY
OF WROCŁAW
 
Main Page
Contents of previous volumes
Forthcoming papers
General Information
Instructions for authors


VOLUMES
39.1 38.2 38.1 37.2 37.1 36.2 36.1
35.2 35.1 34.2 34.1 33.2 33.1 32.2
32.1 31.2 31.1 30.2 30.1 29.2 29.1
28.2 28.1 27.2 27.1 26.2 26.1 25.2
25.1 24.2 24.1 23.2 23.1 22.2 22.1
21.2 21.1 20.2 20.1 19.2 19.1 18.2
18.1 17.2 17.1 16.2 16.1 15 14.2
14.1 13.2 13.1 12.2 12.1 11.2 11.1
10.2 10.1 9.2 9.1 8 7.2 7.1
6.2 6.1 5.2 5.1 4.2 4.1 3.2
3.1 2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 4, Fasc. 2,
pages 167 - 170
 

ON THE CONVERGENCE OF SOME DISCRETE PROBABILITY DISTRIBUTIONS

Nguyen Nam Hong

Abstract: In [4] Zakusilo proved that the random power series  sum o o  cnX  ,
  n=1    n where c  (-  (0,1) and X  ,X ,...
  1  2 are i.i.d. random variables, is convergent with probability 1 if and only if Elog(| X  |+ 1) <  oo .
       1 The purpose of this paper is to prove a discrete analogue of this theorem. Further, we extend the result to multiparameter random series.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;

Key words and phrases: -

Download:    Abstract    Full text   Abstract + References