UNIVERSITY
OF WROCŁAW
 
Main Page
Contents of previous volumes
Forthcoming papers
General Information
Instructions for authors


VOLUMES
38.2 38.1 37.2 37.1 36.2 36.1 35.2
35.1 34.2 34.1 33.2 33.1 32.2 32.1
31.2 31.1 30.2 30.1 29.2 29.1 28.2
28.1 27.2 27.1 26.2 26.1 25.2 25.1
24.2 24.1 23.2 23.1 22.2 22.1 21.2
21.1 20.2 20.1 19.2 19.1 18.2 18.1
17.2 17.1 16.2 16.1 15 14.2 14.1
13.2 13.1 12.2 12.1 11.2 11.1 10.2
10.1 9.2 9.1 8 7.2 7.1 6.2
6.1 5.2 5.1 4.2 4.1 3.2 3.1
2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 6, Fasc. 2,
pages 151 - 159
 

STATISTICAL CHARACTERIZATIONS OF GAUSSIAN MEASURES ON A HILBERT SPACE

Harald Luschgy

Abstract: Let X ,...,X
 1     n  be i.i.d. random vectors with values in a real separable Hilbert space. We consider the problem of estimating the mean of X
 1  under quadratic loss and discuss analogues of characteristic properties of normally distributed real random variables. It is shown that there exists an equivariant sufficient linear statistic iff X
  1  is Gaussian. Further the optimality of the sample mean X in the class of all equivariant or unbiased estimators is a characteristic property of Gaussian random vectors.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;

Key words and phrases: -

Download:    Abstract    Full text   Abstract + References