[1] G. Alsmeyer, On the Harris recurrence of iterated random Lipschitz
functions and related convergence rate results, J. Theoret. Probab. 16 (2003),
pp. 217-247.

[2] G. Alsmeyer and C. D. Fuh, Limit theorems for iterated random functions
by regenerative methods, Stochastic Process. Appl. 96 (2001), pp. 123-142.
Corrigendum: 97 (2002), pp. 341-345.

[3] L. Arnold and H. Crauel, Iterated function systems and multiplicative ergodic
theory, in: Diffusion Processes and Related Problems in Analysis 2, M. Pinsky
and V. Wihstutz (Eds.), Birkhäuser, Boston 1992, pp. 283-305.

[4] M. Babillot, P. Bougerol and L. Elie, The random difference equation
in the critical case, Ann. Probab. 25 (1997), pp.
478-493.

[5] M. F. Barnsley and J. H. Elton, A new class of Markov processes for image
encoding, Adv. in Appl. Probab. 20 (1988), pp. 14-32.

[6] M. Benda, A central limit theorem for contractive dynamical systems,
J. Appl. Probab. 35 (1998), pp. 200-205.

[7] Y. S. Chow and T. L. Lai, Some one-sided theorems on the tail distribution
of sample sums with applications to the last time and largest excess of boundary
crossings, Trans. Amer. Math. Soc. 208 (1975), pp. 51-72.

[8] P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev. 41
(1999), pp. 45-76.

[9] J. H. Elton, A multiplicative ergodic theorem for Lipschitz maps, Stochatic
Process. Appl. 34 (1990), pp. 39-47.

[10] A. Gut, Stopped Random Walks: Limit Theorems and Applications, Springer,
New York 1988.

[11] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30
(1981), pp. 713-747.

[12] G. Letac, A contraction principle for certain Markov chains and its
applications, Contemp. Math. 50 (1986), pp. 263-273.

[13] D. Silvestrov and Ö. Stenflo, Ergodic theorems for iterated function systems
controlled by regenerative sequences, J. Theoret. Probab. 11 (1998), pp.
589-608.

[14] D. Steinsaltz, Locally contractive iterated function systems, Ann. Probab. 27
(1999), pp. 1952-1979.