UNIVERSITY
OF WROCŁAW
 
Main Page
Contents of previous volumes
Forthcoming papers
General Information
Instructions for authors


VOLUMES
39.1 38.2 38.1 37.2 37.1 36.2 36.1
35.2 35.1 34.2 34.1 33.2 33.1 32.2
32.1 31.2 31.1 30.2 30.1 29.2 29.1
28.2 28.1 27.2 27.1 26.2 26.1 25.2
25.1 24.2 24.1 23.2 23.1 22.2 22.1
21.2 21.1 20.2 20.1 19.2 19.1 18.2
18.1 17.2 17.1 16.2 16.1 15 14.2
14.1 13.2 13.1 12.2 12.1 11.2 11.1
10.2 10.1 9.2 9.1 8 7.2 7.1
6.2 6.1 5.2 5.1 4.2 4.1 3.2
3.1 2.2 2.1 1.2 1.1
 
 
WROCŁAW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 30, Fasc. 1,
pages 153 - 165
 

ON LIMIT THEOREMS IN JW -ALGEBRAS

Abdusalom Karimov
Farrukh Mukhamedov

Abstract: In the present paper, we study bundle convergence in JW - algebra and prove certain ergodic theorems with respect to such convergence. Moreover, conditional expectations of reversible JW -algebras are considered. Using such expectations, the convergence of supermartingales is established.

2000 AMS Mathematics Subject Classification: Primary: 46L50, 46L55, 46L53; Secondary: 47A35, 35A99.

Keywords and phrases: Bundle convergence, Jordan algebra, ergodic theorems, conditional expectation, enveloping algebra.

References

[1]   Sh. A. Ayupov, Martingale convergence and strong laws of large numbers in Jordan algebras, An. Univ. Craiova (Romania) Ser. Mat. Fiz.-Chim. 9 (1981), pp. 29-36.

[2]   Sh. A. Ayupov, Statistical ergodic theorems in Jordan algebras, Uspekhi Mat. Nauk 36 (6) (1981), pp. 201-202.

[3]   Sh. A. Ayupov, Ergodic theorems for Markov operators in Jordan algebras. I, II, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 3 (1982), pp. 12-15; 5 (1982), pp. 7-12.

[4]   Sh. A. Ayupov, Extension of traces and type criterions for Jordan algebras of self-adjoint operators, Math. Z. 181 (1982), pp. 253-268.

[5]   Sh. A. Ayupov, Supermartingales on Jordan algebras, in: Random Processes and Mathematical Statistics, Fan, Tashkent 1983, pp. 20-31.

[6]   Sh. A. Ayupov, Classification and Representation of Ordered Jordan Algebras, Fan, Tashkent 1986.

[7]   Sh. Ayupov, A. Rakhimov and Sh. Usmanov, Jordan, Real, and Lie Structures in Operator Algebras, Kluwer Academic Publishers, Dordrecht-Boston 1997.

[8]   C. Barnett, Supermartingales on semifinite von Neumann algebras, J. London Math. Soc. 24 (1981), pp. 175-181.

[9]   C. J. K. Batty, The strong laws of large numbers for state and traces of a   *
W -algebra, Z. Wahrsch. Verw. Gebiete 48 (1979), pp. 177-191.

[10]   M. A. Berdikulov, Conditional expectations and martingales on Jordan algebras, Dokl. AN UzSSR 6 (1983), pp. 3-4.

[11]   N. Etemadi and A. Lenzhen, Convergence of sequences of pairwise independent random variables, Proc. Amer. Math. Soc. 132 (2004), pp. 1201-1202.

[12]   B. Le Gac and F. Moricz, Bundle convergence in von Neumann algebra and in a von Neumann subalgebra, Bull. Polish Acad. Sci. Math. 52 (2004), pp. 283-295.

[13]   B. Le Gac and F. Moricz, Bundle convergence of sequences of pairwise uncorrelated operators in von Neumann algebras and vectors in their L2  -spaces, Indag. Math. 17 (2006), pp. 221-230.

[14]   M. Goldstein, Theorems of almost everywhere convergence in von Neumann algebras, J. Operator Theory 6 (1981), pp. 223-311.

[15]   U. Haagerup and E. Stormer, Positive projections of von Neumann algebras onto JW -algebras, Rep. Math. Phys. 36 (1995), pp. 317-330.

[16]   H. Hanche-Olsen and E. Stormer, Jordan Operator Algebras, Monographs and Studies Math. 21, Pitman, 1984.

[17]   E. Hensz, R. Jajte and A. Paszkiewicz, The bundle convergence in von Neumann algebras and their L2  -spaces, Studia Math. 120 (1996), pp. 23-46.

[18]   R. Jajte, Strong Limit Theorems in Non-commutative Probability, Lecture Notes in Math. No 1110, Springer, Berlin 1985.

[19]   A. K. Karimov, Convergence in JW -algebras and its enveloping von Neumann algebras, Siberian Adv. Math. 18 (2008), pp. 176-184.

[20]   A. K. Karimov and F. M. Mukhamedov, An individual ergodic theorem with respect to a uniform sequence and the Banach principle in Jordan algebras, Sb. Math. 194 (2003), pp. 73-86.

[21]   E. C. Lance, Ergodic theorem for convex sets and operator algebras, Invent. Math. 37 (1976), pp. 151-169.

[22]   F. Mukhamedov, S. Temir and H. Akin, On asymptotical stability for positive   1
L  -contractions of finite Jordan algebras, Siberian Adv. Math. 15 (2005), pp. 28-43.

[23]   F. Mukhamedov, S. Temir and H. Akin, A note on dominant contractions of Jordan algebras, Turkish J. Math. (in press) (www.arxiv.org/arXiv:0806.2926).

[24]   A. Paszkiewicz, Convergence in W * -algebras, J. Funct. Anal. 69 (1986), pp. 143-154.

[25]   D. Petz, Quasi-uniform ergodic theorem in von Neumann algebras, Bull. London Math. Soc. 16 (1984), pp. 151-156.

[26]   A. Skalski, On the unconditional bundle convergence in L2  -space over a von Neumann algebra, Probab. Math. Statist. 22 (2002), pp. 19-27.

[27]   O. Topping, Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc. 53 (1965), pp. 1-48.

[28]   H. Umegaki, Conditional expectation in an operator algebra II, Tohoku Math. J. 8 (1956), pp. 86-100.

[29]   F. J. Yeadon, Ergodic theorem for semifinite von Neumann algebras I, J. London Math. Soc. 16 (1977), pp. 326-332.

Download:    Abstract    Full text