UNIVERSITY
OF WROC£AW
 
Main Page
Contents of previous volumes
Forthcoming papers
General Information
Instructions for authors


VOLUMES
37.1 36.2 36.1 35.2 35.1 34.2 34.1
33.2 33.1 32.2 32.1 31.2 31.1 30.2
30.1 29.2 29.1 28.2 28.1 27.2 27.1
26.2 26.1 25.2 25.1 24.2 24.1 23.2
23.1 22.2 22.1 21.2 21.1 20.2 20.1
19.2 19.1 18.2 18.1 17.2 17.1 16.2
16.1 15 14.2 14.1 13.2 13.1 12.2
12.1 11.2 11.1 10.2 10.1 9.2 9.1
8 7.2 7.1 6.2 6.1 5.2 5.1
4.2 4.1 3.2 3.1 2.2 2.1 1.2
1.1
 
 
WROC£AW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 32, Fasc. 2,
pages 281 - 300
 

SECOND-ORDER THEORY FOR ITERATION STABLE TESSELLATIONS

Tomasz Schreiber
Christoph Thäle

Abstract: This paper deals with iteration stable (STIT) tessellations, and, more generally, with a certain class of tessellations that are infinitely divisible with respect to iteration. They form a new, rich and flexible family of space-time models considered in stochastic geometry. The previously developed martingale tools are used to study second-order properties of STIT tessellations. A general formula for the variance of the total surface area of cell boundaries inside an observation window is shown. This general expression is combined with tools from integral geometry to derive exact and asymptotic second-order formulas in the stationary and isotropic regime. Also a general formula for the pair-correlation function of the surface measure is found.

2000 AMS Mathematics Subject Classification: Primary: 60D05; Secondary: 52A22, 60G55.

Keywords and phrases: Chord-power integral, integral geometry, iteration/nesting, martingale theory, pair-correlation function, random geometry, random tessellation, stochastic stability, stochastic geometry.

References

[1]   V. Baumstark and G. Last, Gamma distributions for stationary Poisson flat processes, Adv. in Appl. Probab. 41 (2009), pp. 911–939.

[2]   V. Beneš and J. Rataj, Stochastic Geometry: Selected Topics, Kluwer Academic Publishers, 2004.

[3]   L. Heinrich, Central limit theorems for motion-invariant Poisson hyperplanes in expanding convex windows, Rend. Circ. Mat. Palermo (2), Suppl. 81 (2009), pp. 187–212.

[4]   D. Hug and R. Schneider, Typical cells in Poisson hyperplane tessellations, Discrete Comput. Geom. 38 (2007), pp. 305–319.

[5]   I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, second edition, Springer, 1998.

[6]   C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Springer, 1999.

[7]   P. Mattila, Geometry of Sets and Measures in Euclidean spaces: Fractals and Rectifiability, Cambridge University Press, 1995.

[8]   J. Mecke, W. Nagel, and V. Weiß, A global construction of homogeneous random planar tessellations that are stable under iteration, Stochastics 80 (2008), pp. 51–67.

[9]   J. Mecke, W. Nagel, and V. Weiß, The iteration of random tessellations and a construction of a homogeneous process of cell division, Adv. in Appl. Probab. 40 (2008), pp. 49–59.

[10]   W. Nagel and V. Weiß, Limits of sequences of stationary planar tessellations, Adv. in Appl. Probab. 35 (2003), pp. 123–138.

[11]   W. Nagel and V. Weiß, Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration, Adv. in Appl. Probab. 37 (2005), pp. 859–883.

[12]   R. Schneider and W. Weil, Stochastic and Integral Geometry, Springer, 2008.

[13]   T. Schreiber and C. Thäle, Second-order properties and central limit theory for the vertex process of iteration infinitely divisible and iteration stable random tessellations in the plane, Adv. in Appl. Probab. 42 (2010), pp. 913–935.

[14]   T. Schreiber and C. Thäle, Intrinsic volumes of the maximal polytope process in higher dimensional STIT tessellations, Stochastic Process. Appl. 121 (2011), pp. 989–1012.

[15]   T. Schreiber and C. Thäle, Typical geometry, second-order properties and central limit theory for iteration stable tessellations, arXiv: 1001.0990 [math.PR] (2010).

[16]   T. Schreiber and C. Thäle, Geometry of iteration stable tessellations: Connection with Poisson hyperplanes, accepted for publication in Bernoulli (2012+).

[17]   T. Schreiber and C. Thäle, Limit theorems for iteration stable tessellations, accepted for publication in Ann. Probab. (2012+).

[18]   M. Schulte and C. Thäle, The scaling limit of Poisson-driven order statistics with applications in geometric probability, Stochastic Process. Appl. 122 (2012), pp. 4096–4120.

[19]   D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, second edition, Wiley, 1995.

[20]   C. Thäle, V. Weiß, and W. Nagel, Spatial STIT tessellations: distributional results for I-segments, Adv. in Appl. Probab. 44 (2012), pp. 635–654.

[21]   V. Weiß, J. Ohser, and W. Nagel, Second moment measure and K -function for planar STIT tessellations, Image Anal. Stereol. 29 (2010), pp. 121–131.

Download:    Abstract    Full text