UNIVERSITY
OF WROC£AW
 
Main Page
Contents of previous volumes
Forthcoming papers
General Information
Instructions for authors


VOLUMES
39.1 38.2 38.1 37.2 37.1 36.2 36.1
35.2 35.1 34.2 34.1 33.2 33.1 32.2
32.1 31.2 31.1 30.2 30.1 29.2 29.1
28.2 28.1 27.2 27.1 26.2 26.1 25.2
25.1 24.2 24.1 23.2 23.1 22.2 22.1
21.2 21.1 20.2 20.1 19.2 19.1 18.2
18.1 17.2 17.1 16.2 16.1 15 14.2
14.1 13.2 13.1 12.2 12.1 11.2 11.1
10.2 10.1 9.2 9.1 8 7.2 7.1
6.2 6.1 5.2 5.1 4.2 4.1 3.2
3.1 2.2 2.1 1.2 1.1
 
 
WROC£AW UNIVERSITY
OF SCIENCE AND
TECHNOLOGY

Contents of PMS, Vol. 34, Fasc. 1,
pages 97 - 117
 

DIMENSION RESULTS RELATED TO THE ST. PETERSBURG GAME

Peter Kern
Lina Wedrich

Abstract: Let S
 n  be the total gain in n repeated St. Petersburg games. It is known that n- 1(S  - nlog n)
     n       2 converges in distribution along certain geometrically increasing subsequences and its possible limiting random variables can be parametrized as Y (t) with t ∈ [1,1]
    2 . We determine the Hausdorff and box-counting dimension of the range and the graph for almost all sample paths of the stochastic process (Y (t))
      t∈[1∕2,1]  . The results are compared to the fractal dimension of the corresponding limiting objects when gains are given by a deterministic sequence initiated by Hugo Steinhaus.

2000 AMS Mathematics Subject Classification: Primary: 60G17; Secondary: 28A78, 28A80, 60G18, 60G22, 60G52.

Keywords and phrases: St. Petersburg game, semistable process, sample path, semi-selfsimilarity, range, graph, Hausdorff dimension, box-counting dimension, Steinhaus sequence, iterated function system, self-affine set.

References

[1]   A. Adler, Generalized one-sided laws of the iterated logarithm for random variables barely with or without finite mean, J. Theoret. Probab. 3 (1990), pp. 587–597.

[2]   R. M. Blumenthal and R. K. Getoor, A dimension theorem for sample functions of stable processes, Illinois J. Math. 4 (1960), pp. 370–375.

[3]   Y. S. Chow and H. Robbins, On sums of independent random variables with infinite moments and “fair” games, Proc. Natl. Acad. Sci. USA 47 (1961), pp. 330–335.

[4]   S. Csörgő, Rates of merge in generalized St. Petersburg games, Acta Sci. Math. (Szeged) 68 (2002), pp. 815–847.

[5]   S. Csörgő, Merging asymptotic expansions in generalized St. Petersburg games, Acta Sci. Math. (Szeged) 73 (2007), pp. 297–331.

[6]   S. Csörgő, Probabilistic approach to limit theorems for the St. Petersburg game, Acta Sci. Math. (Szeged) 76 (2010), pp. 233–350.

[7]   S. Csörgő and R. Dodunekova, Limit theorems for the Petersburg game, in: Sums, Trimmed Sums and Extremes, M. G. Hahn et al. (Eds.), Progr. Probab., Vol. 23, Birkhäuser, Boston 1991, pp. 285–315.

[8]   S. Csörgő and P. Kevei, Merging asymptotic expansions for cooperative gamblers in generalized St. Petersburg games, Acta Math. Hungar. 121 (2008), pp. 119–156.

[9]   S. Csörgő and G. Simons, On Steinhaus’ resolution of the St. Petersburg paradox, Probab. Math. Statist. 14 (1993), pp. 157–172.

[10]   S. Csörgő and G. Simons, A strong law of large numbers for trimmed sums, with applications to generalized St. Petersburg games, Statist. Probab. Lett. 26 (1996), pp. 65–73.

[11]   S. Csörgő and G. Simons, St. Petersburg games with the largest gains withheld, Statist. Probab. Lett. 77 (2007), pp. 1185–1189.

[12]   J. Dutka, On the St. Petersburg paradox, Arch. Hist. Exact Sci. 39 (1988), pp. 13–39.

[13]   K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge 1985.

[14]   K. J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc. 103 (1988), pp. 339–350.

[15]   K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester 1990.

[16]   K. J. Falconer, The dimension of self-affine fractals II, Math. Proc. Cambridge Philos. Soc. 111 (1992), pp. 169–179.

[17]   K. J. Falconer, Dimension of self-affine sets: A survey, in: Further Developments in Fractals and Related Fields, J. Barral and S. Seuret (Eds.), Trends Math., Vol. 13, Birkhäuser, Basel 2013, pp. 115–134.

[18]   I. Fazekas, Merging to semistable processes, Theory Probab. Appl. 56 (2012), pp. 621–633.

[19]   W. Feller, Note on the law of large numbers and “fair” games, Ann. Math. Statist. 16 (1945), pp. 301–304.

[20]   W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, third edition, Wiley, New York 1968.

[21]   A. Gut, Limit theorems for a generalized St. Petersburg game, J. Appl. Probab. 47 (2011), pp. 752–760. Correction (2013), http://www2.math.uu.se/~allan/86correction.pdf.

[22]   J. Hawkes, Measure function properties of the asymmetric Cauchy process, Mathematika 17 (1970), pp. 68–78.

[23]   J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), pp. 713–747.

[24]   G. Jorland, The Saint Petersburg paradox 1713–1937, in: The Probabilistic Revolution, Volume 1: Ideas in History, L. Krüger et al. (Eds.), MIT Press, Cambridge, MA, 1987, pp. 157–190.

[25]   J.-P. Kahane, Some Random Series of Functions, second edition, Cambridge University Press, Cambridge 1985.

[26]   O. Kallenberg, Foundations of Modern Probability, Springer, New York 1997.

[27]   P. Kern and L. Wedrich, The Hausdorff dimension of operator semistable Lévy processes, J. Theoret. Probab. (2013), to appear.

[28]   A. Martin-Löf, A limit theorem which clarifies the “Petersburg paradox”, J. Appl. Probab. 22 (1985), pp. 634–643.

[29]   P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge 1995.

[30]   M. M. Meerschaert and H.-P. Scheffler, Limit Distributions for Sums of Independent Random Vectors, Wiley, New York 2001.

[31]   M. M. Meerschaert and Y. Xiao, Dimension results for sample paths of operator stable Lévy processes, Stochastic Process. Appl. 115 (2005), pp. 55–75.

[32]   G. Pap, The accuracy of merging approximations in generalized St. Petersburg games, J. Theoret. Probab. 24 (2011), pp. 240–270.

[33]   W. E. Pruitt and S. J. Taylor, Sample path properties of processes with stable components, Z. Wahrsch. verw. Gebiete 12 (1969), pp. 267–289.

[34]   K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge 1999.

[35]   H. Steinhaus, The so-called Petersburg paradox, Colloq. Math. 2 (1949), pp. 56–58.

[36]   S. J. Taylor, Sample path properties of a transient stable process, J. Math. Mech. 16 (1967), pp. 1229–1246.

[37]   I. Vardi, The limiting distribution of the St. Petersburg game, Proc. Amer. Math. Soc. 123 (1995), pp. 2875–2882.

[38]   I. Vardi, The St. Petersburg game and continued fractions, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), pp. 913–918.

[39]   W. Whitt, Some useful functions for functional limit theorems, Math. Oper. Res. 5 (1980), pp. 67–85.

[40]   W. Whitt, Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer, New York 2002.

[41]   Y. Xiao, Random fractals and Markov processes, in: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, M. L. Lapidus and M. van Frankenhuijsen (Eds.), AMS, Providence 2004, pp. 261–338.

Download:    Abstract    Full text