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1. INTRODUCTION

1.1 Hardy spaces - background

The Hardy spaces did appear in the classical theorem of Burkholder, Gundy and Silver-

stein [6]. The paper considers real-valued, harmonic functions u(z) = u(x + iy) defined

in the upper half-plane {z = x + iy : y > 0}. It is proved there, that for fixed p,

0 < p < ∞, a function u(z) = u(x + iy) = u(x, y) is the real part of a holomorphic

function F (z) = u(z) + iv(z) that satisfies the Hp-property

sup
y>0

∫
R
|F (x+ iy)|pdx <∞ (1.1.1)

if and only if the maximal function

u∗(x) = sup
|x−x′|<y

|u(x′, y)| (1.1.2)

belongs to Lp(R).

The work of Feferman and Stein [23] gives other characterizations of the Hp-property

by means of the real harmonic analysis on R. These lead to the notion of the real Hardy

spaces Hp, which can be defined not only on R, but also on Rd (see, e.g. [38]), or even

more generally on spaces of homogeneous type (see, e.g. [8], [29], [40]).

Let

exp(−t
√
−∆)f(x) = cd

∫
Rd

t

(|x− y|2 + t2)(d+1)/2
f(y) dy

be the Poisson semigroup related to the Laplace operator

∆ =
d∑
j=1

∂2

∂x2
j

on Rd. By definition a tempered distribution f is bounded if and only if for all φ ∈ S(Rd)

(the Schwartz class) we have f ∗ φ ∈ L∞(Rd). Recall that exp(−t
√
−∆)f is well-defined

smooth function whenever f is a bounded distribution (see [38, Chapter III, Section 1.1]).

Definition 1.1.3. A bounded distribution f is an element of the real Hardy space

Hp√
−∆

(Rd) if the maximal function M√
−∆f = supt>0 | exp(−t

√
−∆)f | belongs to Lp(Rd).
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Set u(x, y) = exp(−y
√
−∆)f(x). The result of [23] states that if f ∈ Hp√

−∆
(Rd),

then u∗ ∈ Lp(Rd). Conversely, every harmonic function u(x, y), x ∈ Rd, y > 0, with

u∗ ∈ Lp(Rd) can be obtained in this way from some f ∈ Hp√
−∆

(Rd).

The notion of the classical Hardy spaces remains the same if instead of using the

Poisson semigroup we use the heat semigroup {Pt}t>0,

Ptf(x) =
∫

Rd
Pt(x− y)f(y) dy, Pt(x) = (4πt)−d/2 exp(−|x|2/4t) (1.1.4)

or more generally, the family of operators

Φtf(x) =
∫

Rd
Φt(x− y)f(y) dy, Φt(x) = t−dΦ(x/t),

where Φ is any fixed Schwartz class function, such that
∫

Rd Φ 6= 0. To be more precise let

M∆f(x) = sup
t>0
|Ptf(x)|, (1.1.5)

be the maximal function related to the heat semigroup.

Definition 1.1.6. The Hardy space Hp
∆(Rd) consists of all tempered distributions f for

which ‖M∆f‖Lp(Rd) is finite.

It is also a result of [23] that the spaces Hp√
−∆

(Rd) and Hp
∆(Rd) coincide. If we equip

Hp
∆(Rd) and Hp√

−∆
(Rd) with the norms (quasi-norms)

‖f‖Hp
∆(Rd) = ‖M∆f‖Lp(Rd), ‖f‖Hp√

−∆
(Rd) = ‖M√

−∆f‖Lp(Rd), (1.1.7)

then ‖f‖Hp
∆(Rd) ∼ ‖f‖Hp√

−∆
(Rd). The same remains true if one considers the family of

operators {Φt}t>0 (see [38, Chapter III]).

Since in the dissertation we restrict our attention to p = 1, we state further character-

izations of the classical Hardy spaces only for this case.

The Hardy space H1
∆(Rd) can be characterized by means of certain singular integral

operators, namely the Riesz transforms R∆
j , j = 1, ..., d. Formally,

R∆
j f =

∂

∂xj
(−∆)−1/2f. (1.1.8)

More precisely, we define R∆
j φ for φ ∈ S(Rd) by one of the following expressions:

R∆
j φ(x) = cd lim

ε→0

∫
|x−y|>ε

(xj − yj)φ(y)
|x− y|d+1

dy,

R∆
j φ(x) = c′d lim

ε→0

∫ ε−1

ε

∂

∂xj
Ptφ(x)

dt√
t
. (1.1.9)
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Assume f ∈ L1(Rd). Then R∆
j f is a tempered distribution given by 〈R∆

j f, φ〉 = 〈f,R∆
j φ〉.

These operators were investigated by a great number of authors and appeared to be

very useful in many circumstances. In particular, R∆
j are properly defined and bounded on

Lp(Rd) for p ∈ (1,∞). Another classical result (see [38, p. 123]) gives the characterization

of H1
∆(Rd) in terms of R∆

j .

Theorem 1.1.10. Assume that f ∈ L1(Rd). Then f ∈ H1
∆(Rd) if and only if R∆

j f

belongs to L1(Rd) for j = 1, ..., d. In addition, there exists C > 1 such that

C−1‖f‖H1
∆(Rd) ≤ ‖f‖L1(Rd) +

d∑
j=1

‖R∆
j f‖L1(Rd) ≤ C‖f‖L1(Rd).

In order to state one more characterization of H1
∆(Rd) we shall need the notion of

atoms.

Definition 1.1.11. A function a is called an atom (more precisely, (1,∞)-atom) if there

exists a ball B in Rd such that:

• supp a ∈ B,

• ‖a‖∞ ≤ |B|−1,

•
∫
B a(x) dx = 0.

The results obtained in [23] were used by Coifman [7] in the one-dimensional case

and by Latter [27] in Rd to prove the following atomic decompositions of the elements of

H1
∆(Rd).

Theorem 1.1.12. For a function f ∈ H1
∆(Rd) there exist complex numbers {λk}∞k=1 and

atoms {ak}∞k=1 such that f(x) =
∑∞

k=1 λkak(x) and
∑∞

k=1 |λk| < ∞. Moreover, one can

chose {λk}∞k=1 and {ak}∞k=1 so that

C−1
∞∑
k=1

|λk| ≤ ‖f‖H1
∆(Rd) ≤ C

∞∑
k=1

|λk|, (1.1.13)

where the constant C > 0 does not depend on f .

In our investigations we will concentrate our attention on the three definitions pre-

sented above, so we do not state numerous other definitions. However, we would like to

mention that the real Hardy space H1
∆(Rd) can be also described by, e.g. other maximal

functions, square functions, area integrals. For details we refer the reader to [38], [10],

[23], [39].
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1.2 Definitions of Hardy spaces associated with semigroups of operators

Natural questions rise. What can be said about the Hardy space H1 if we replace the

classical heat semigroup by another semigroup of linear operators in Definition 1.1.6?

Can then the space be characterized by appropriate singular integral operators? Does it

admit relevant atomic decompositions?

In [18] and [19] Dziubański and Zienkiewicz started a project of studying Hardy spaces

associated with Schrödinger operators. Some results of this dissertation are continuations

of their works. In the thesis we investigate Hardy spaces related to semigroups generated by

certain differential operators. In fact, we shall deal with Schrödinger operators with various

potentials, Laguerre and Bessel operators. All these operators are self-adjoint and positive

on an appropriate L2(X)-space, whereX = (X,µ) denotes the measure space. Throughout

the whole thesis L denotes one of these operators. The related semigroups {Kt}t>0 =

{exp(−tL)}t>0 possess symmetric real-valued integral kernels Kt(x, y) = Kt(y, x), i.e.

Ktf(x) =
∫
X
Kt(x, y)f(y) dµ(y)

holds for a.e. x ∈ X when f ∈ Lp(X), 1 ≤ p ≤ ∞.

In this general context we define the Hardy space H1
L,max in the following way. Let

ML be the maximal operator related to {Kt}t>0, that is

MLf(x) = sup
t>0
|Ktf(x)|. (1.2.1)

Definition 1.2.2. We say that an L1(X)-function f belongs to H1
L,max if and only if

MLf is in L1(X). The norm of the space H1
L,max is given by

‖f‖H1
L,max

= ‖MLf‖L1(X).

The second definition makes use of the Riesz transforms related to L, which are formally

the operators

RL
j =

∂

∂xj
L−1/2. (1.2.3)

Let us mention, that we have either X = Rd or X = (0,∞) so that ∂
∂xj

are simply partial

derivatives. In each situation we first clarify the sense of RL
j f for f ∈ L1(X), and then

define the space H1
L,Riesz as follows.

Definition 1.2.4. Assume that f ∈ L1(X) and d is the Euclidean dimension of X. By

definition, f is in H1
L,Riesz, exactly when f,RL

j f ∈ L1(X) for j = 1, .., d. For f ∈ H1
L,Riesz
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we set

‖f‖H1
L,Riesz

= ‖f‖L1(X) +
d∑
j=1

‖RL
j ‖L1(X).

The third description we are interested in is associated with atomic decompositions.

Let us assume, that a definition of L-atoms is given (see Definitions 2.1.2, 3.1.5, 4.1.6,

4.2.1, 4.2.12 for precise assumptions on L-atoms in a particular case) and each L-atom

a satisfy ‖a‖L1(X) ≤ 1.

Definition 1.2.5. The atomic Hardy space H1
L,at is a subspace of L1(X) consisting of

functions f for which there exist complex numbers {λk}∞k=1 and L-atoms {ak}∞k=1 such

that f =
∑∞

k=1 λkak and
∑∞

k=1 |λk| <∞. The norm of H1
L,at is given by

‖f‖H1
L,at

= inf
∞∑
k=1

|λk|,

where the infimum is taken over all decompositions as above.

1.3 Results and organization of the thesis

In the present section we describe shortly the results contained in the dissertation and

present the organization of the paper.

The results included in the thesis are divided into three parts that are enclosed in

Chapters 2, 3, and 4. The precise assumptions on L, X and {Kt}t>0 are given at the

beginning of each chapter. We shall use the notion already described in Sections 1.1 and

1.2 in the whole paper, although some other symbols may be used locally, in a particular

chapter or even only in a proof.

1.3.1 Schrödinger operators I

Hardy spaces associated with semigroups of linear operators and in particular Schrödinger

semigroups associated to

L = −∆ + V,

where V is a function called potential, on Rd attracted attention of many authors see,

e.g. [1], [3], [9], [15], [19], [21], [22], [26] and references therein.

In Chapter 2 we investigate the Schrödinger operators with potentials satisfying the

assumptions (A1) − (A3), (D), (K) (see Section 2.1) that appeared previously in [21]. It

was proved there that Hardy spaces defined by Definitions 1.2.2 and 1.2.5, with a suitable
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chosen family of L-atoms, coincide. Our goal is to prove the Riesz transform character-

ization of these Hardy spaces (see Definition 1.2.4). The main result of the chapter is

Theorem 2.1.6.

We would like to note here, that the assumptions (A1)–(A3), (D), (K), with suitable

chosen family Q, are satisfied for several important classes of potentials, in particular for

all non-negative, L1
loc(R) potentials in one dimension, or for non-negative, Reverse Hölder

class potentials in dimension d ≥ 3. More examples are provided in Section 2.2.

1.3.2 Schrödinger operators II

Chapter 3 is devoted to proving the equivalence of Definitions 1.2.2, 1.2.4, 1.2.5 of the

Hardy space assuming (A4) − (A6) (see Section 3.1). We define families of L-atoms that

occur to be different to the families of L-atoms from Chapter 2. The results generalize

the theorems from [22] and [15]. The main idea is to refine the methods given there and

utilize the operator I − V L−1 which gives an isomorphism of H1
L,max with the classical

Hardy space H1
∆(Rd). The most important theorems of Chapter 3 are Theorems 3.1.2,

3.1.4, 3.1.8.

1.3.3 Laguerre and Bessel operators

In Chapter 4 we work in the context of one of Laguerre systems {ψ(α−1)/2
k }∞k=0 (see 4.1.2)

related to the Laguerre operator

Lf(x) = −f ′′(x)− α

x
f ′(x) + x2f(x), x > 0.

We give the proper definition of L-atoms such that the Hardy spaces H1
L,Riesz and H1

L,at

coincide (cf. Definitions 1.2.4 and 1.2.5). The main result is stated in Theorem 4.1.8.

Our method takes advantage of [5], where the Hardy space associated to the Bessel

operator

L̃f(x) = −f ′′(x)− α

x
f ′(x), x > 0,

was investigated. In order to use results from [5] we define and characterize the local

Hardy space related to L̃ (see Definition 4.2.12 and Theorem 4.2.13) .

One of the crucial points is to find precise formulas for the kernels of the Riesz trans-

forms in the both settings (see Propositions 4.2.4 and 4.3.1), where precise constants, not

only asymptotics, are important.
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1.4 Final remarks

Let us note that there has been a big progress recently in studying function spaces associ-

ated with semigroups of linear operators (see, e.g. bibliography in [26]). In the paper [26]

published in 2011 the authors provide a general approach to the Hardy spaces related to

the semigroups satisfying the Davies-Gaffney estimates. They define the Hardy spaces H1

by using square functions and prove very abstract atomic decomposition. Those atoms

defined in [26] have totally different nature than these which occur in the doctoral dis-

sertation. Moreover, it is worth to remark that the atomic decompositions of the Hardy

spaces which are presented here, whose geometrical and cancellation properties of atoms

are indicated (see Definitions 2.1.2, 3.1.5, 4.1.6, 4.2.1, 4.2.12) have useful attributes. They

allow very often in a simple and direct way to determine relations among the spaces. It

turns out that different operators may lead to the same Hardy spaces. For example H1-

spaces for the Schrödinger operators: −∆+ |x|4 + |x|2 +1 and −∆+ |x|4 do coincide. One

can prove this by considering their atomic decompositions (cf. Chapter 2, Example 2.2.4).

On the other hand, as it was noticed in [22], in the case of Schrödinger operators with

compactly supported potentials on Rd, d ≥ 3, any small perturbations of the potential

lead to essentially different Hardy spaces.

Finally, I strongly believe that the combination of different, recently developed methods

may lead to new interesting theorems for larger and larger classes of semigroups.
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2. HARDY SPACES RELATED TO SCHRÖDINGER OPERATORS I

2.1 Background and main result

Let us assume that we have a family of closed cubes Q = {Qi}∞i=1 in Rd. We shall always

impose that there exist C, β > 0 for which the following conditions are satisfied:

(A1) |Qi ∩Qj | = 0 for i 6= j,

(A2) Rd \
⋃∞
j=1Qj is of Lebesgue measure zero,

(A3) if Q∗∗∗∗i ∩Q∗∗∗∗j 6= ∅ then d(Qi) ≤ Cd(Qj),

where d(Q) is the diameter of Q and Q∗ denotes the cube with the same center as Q such

that d(Q∗) = (1 + β)d(Q). Clearly, if (A1)–(A3) hold then there is a constant C > 0 such

that
∞∑
j=1

1Q∗∗∗∗j
(x) ≤ C. (2.1.1)

Now, we recall from [21] the notion of the local atomic Hardy space associated with

the collection Q.

Definition 2.1.2. We say that a function a is an Q-atom if there exists Q ∈ Q such that

either

• a = |Q|−11Q or

• a is the classical atom with support contained in Q∗ (that is, there exists a cube,

such that: Q′ ⊂ Q∗, supp a ⊂ Q′,
∫
a = 0, ‖a‖∞ ≤ |Q′|−1).

Then the space H1
Q,at is given by Definition 1.2.5 with Q-atoms given above.

Let

L = −∆ + V (x),

be a Schrödinger operator on Rd, where V (x) is a locally integrable non-negative potential,

V 6≡ 0. It is well known that −L generates the semigroup {Kt}t>0 of linear contractions
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on Lp(Rd), 1 ≤ p < ∞, and self-adjoint on L2(Rd). The Feynman-Kac formula (see, e.g.

[30] and [26] for references and details concerning definitions) asserts that

Ktf(x) =
∫

Rd
Kt(x, y)f(y) dy = Ex

(
exp

(
−
∫ t

0
V (Bs) ds

)
f(Bt)

)
, (2.1.3)

where Bt is the d-dimensional Brownian motion. It implies that the integral kernels

Kt(x, y) = Kt(y, x) of the semigroup {Kt}t>0 satisfy

0 ≤ Kt(x, y) ≤ Pt(x− y), (2.1.4)

where Pt(x) is the classical heat kernel defied in (1.1.4). The Hardy space H1
L,max related

to L is defined in Chapter 1 (see (1.2.1) and Definition 1.2.2), i.e.

‖f‖H1
L,max

= ‖MLf‖L1(Rd).

We shall see, under some additional assumptions, that the space H1
Q,at coincide with

the Hardy space related to the Schrödinger operator. To this end, following [21] we impose

two additional assumptions on the potential V and the collection Q, namely:

(D) supy∈Q∗
∫
K2nd(Q)2(x, y)dx ≤ Cn−1−ε for Q ∈ Q, n ∈ N,

(K)
∫ 2t
0 (1Q∗∗∗V ) ∗ Ps(x)ds ≤ C

(
t/d(Q)2

)δ for x ∈ Rd, Q ∈ Q, t ≤ d(Q)2,

with some C, ε, δ > 0.

The Hardy space for the Schrödinger operator with a family Q satisfying (A1) – (A3),

(D), (K) was considered in the work of Dziubański and Zienkiewicz [21]. It was proved

there that the spaces H1
L,max and H1

Q,at coincide (see [21, Theorem 2.2]) and there exists

C > 0 such that

C−1‖f‖H1
Q,at
≤ ‖f‖H1

L,max
≤ C‖f‖H1

Q,at
. (2.1.5)

In other words, the result (2.1.5) means that Q-atoms coincide with L-atoms.

Denote this space by H1
L and equip it with whichever of these norms. For j = 1, . . . , d,

let

RL
j f(x) = lim

ε→0

∫ ε−1

ε

∂

∂xj
Ktf(x)

dt√
t

be the Riesz transform ∂
∂xj

L−1/2 associated with L, where the limit is understood in the

sense of distributions (see Section 2.3).

The main result of this chapter (see [16]) is to prove that the operators RL
j characterize

the space H1
L, that is, the following theorem holds.
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Theorem 2.1.6. Assume that a potential V ≥ 0 and a collection of cubes Q are such that

(A1)–(A3), (D) and (K) hold. Then there exists a constant C > 0 such that

C−1‖f‖H1
L
≤ ‖f‖L1(Rd) +

d∑
j=1

‖RL
j f‖L1(Rd) ≤ C‖f‖H1

L
. (2.1.7)

2.2 Remarks and examples

The conditions (D) and (K) can appear to the reader as quite technical and complicated.

Roughly speaking, (D) means that the integral kernel of the semigroup {Kt}t>0 is small

for t > d(Q)2 and y ∈ Q∗ (see, e.g. Lemma 2.3.5 and [21, Lemma 3.8]), whereas (K) says

that Kt is close to Pt for t < d(Q)2 when we act on functions supported in Q∗ (see, e.g.

Lemma 2.3.8 and [21, Lemma 3.11]). Before going to the proof we provide some important

examples of non-negative potentials V and appropriate families Q for which we can apply

Theorem 2.1.6.

Example 2.2.1. The Hardy space H1
L associated with one-dimensional Schrödinger op-

erator −L was studied by Czaja and Zienkiewicz [9]. It was proved there that for any

non-negative V ∈ L1
loc(R) the collection Q of maximal dyadic intervals Q of R that are

defined by the stopping time condition

|Q|
∫

16Q
V (y) dy ≤ 1 (2.2.2)

fulfils (D) for certain small β > 0 (see [9, Lemma 2.2]). The authors also remarked that

(K) is satisfied. Indeed,∫ 2t

0
(1Q∗∗∗V ) ∗ Ps(x) ds ≤

∫ 2t

0
‖1Q∗∗∗V ‖L1‖Ps‖L∞ ds ≤

∫ 2t

0
|Q|−1 ds√

4πs
≤ C t

1/2

|Q|
,

where in the second inequality we have used (2.2.2).

Example 2.2.3. V (x) = γ|x|−2, d ≥ 3, γ > 0. Then for Q being the Whitney decom-

position of Rd \ {0} that consists of dyadic cubes the conditions (A1)–(A3), (D) and (K)

hold (see Theorem 2.8 of [21]).

Example 2.2.4. d ≥ 3, V satisfies the reverse Hölder inequality with exponent q > d/2,

that is (
1
|B|

∫
B
V (y)q dy

)1/q

≤ C 1
|B|

∫
B
V (y) dy for every ball B ⊆ Rd. (2.2.5)

Clearly, any non-negative nonzero polynomial V satisfies (2.2.5). Define the family Q by:

Q ∈ Q if and only if Q is the maximal dyadic cube for which diam(Q)2|Q|−1
∫
Q V (y) dy ≤
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1. Then the conditions (A1)–(A3), (D) and (K) are fulfilled (see [21, Section 8]). Let us

mention that the Riesz transforms characterization of the Hardy spaces associated with

Schrödinger operators with potentials satisfying the reverse Hölder inequality was proved

in [19].

We finish this section by giving the following three remarks that give examples how

we can construct in some cases other family of cubes from families that we already know.

Remark 2.2.6. For ` > 0 denote by Q`(Rn) any partition of Rn into cubes whose di-

ameters have length `. Assume that for a locally integrable non-negative potential V1 on

Rd and a collection Q of cubes the conditions (D) and (K) hold. Consider the potential

V (x1, x2) = V1(x1), x1 ∈ Rd, x2 ∈ Rn, and the family Q̃ = {Q1 × Q2 : Q1 ∈ Q, Q2 ∈

Qd(Q1)(Rn)} of cubes in Rd+n. Then the pair (V, Q̃) fulfils (D) and (K).

Proof. Assume that Q = Q1 ×Q2 ∈ Q̃, where Q1 ∈ Q and d(Q2) = d(Q1) = C
−1/2
0 d(Q).

Let Kt(x, y) denotes the integral kernel of the semigroup generated by ∆ − V on Rd+n.

Then Kt(x, y) = K
(1)
t (x1, y1)P (2)

t (x2, y2), where K(1)
t (x1, y1) is the integral kernel of the

semigroup related to ∆ − V1 on Rd and P
(2)
t is the classical heat semigroup on Rn. Let

us check (D):

sup
y∈Q∗

∫
Rd+n

K2md(Q)2(x, y)dx ≤ sup
y1∈Q∗1

∫
Rd
K

(1)
c02md(Q1)2

(x1, y1)dx1

≤ C(m+ log2 c0)−1−ε ≤ Cm−1−ε.

By using Ps(x) = P
(1)
s (x1)P (2)

s (x2), where x1 ∈ Rd and x2 ∈ Rn we obtain

(1Q∗∗∗V ) ∗ Ps(x) ≤ (1Q∗∗∗1
V1) ∗ P (1)

s (x1)

which leads directly to (K) since d(Q) ∼ d(Q1) (in fact, we get (K) only for t < c−1
0 d(Q)2,

where c0 > 1, but one could check that this c−1
0 is unimportant to the theory).

Remark 2.2.7. One can check that Theorem 2.2 of [21] (see 2.1.5) and Theorem 2.1.6

together with their proofs remain true if we replace cubes by rectangles in the defini-

tion of atoms and in the conditions (D) and (K), provided the rectangles have all side-

lengths comparable to their diameters. As a corollary of this observation we obtain that

if V (x1, x2) = V1(x1) + V2(x2), x1 ∈ Rd, x2 ∈ Rn, where V1 and V2 satisfy conditions

(D) and (K) for certain collections Q1 and Q2 of cubes on Rd and Rn respectively, then

the Hardy space H1
L,max associated with the operator L = −∆ + V (x1, x2) on Rd+n ad-

mits (thanks to Theorem 2.1.6) the atomic and the Riesz transforms characterizations.
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Indeed, for any Qj ∈ Q1 and Qk ∈ Q2 we divide the rectangle Qj × Qk into rectan-

gles Qsj,k, s = 1, 2, ..., sj,k, with side-lengths comparable to min(d(Q1
j ), d(Q2

k)). The above

construction leads to V (x1, x2) and the collection Qsj,k for which (D) and (K) hold.

Proof. Take Qsj,k as above. We can assume that d(Qsj,k) = c
−1/2
j,k d(Q1), where 0 < c ≤

cj,k ≤ C independently of j and k. Let Kt(x, y),K(1)
t (x1, y1),K(2)

t (x2, y2) be the integral

kernels of the semigroups generated by ∆ − V (on Rd+n), ∆ − V1 (on Rd), and ∆ − V2

(on Rn), respectively. Then Kt(x, y) ≤ K
(1)
t (x1, y1)Pt(x2, y2) and (D) follows identically

as in the proof of Remark 2.2.6. We check (K):∫ 2t

0
(χ(Qsj,k)

∗∗∗V ) ∗ Ps(x)ds ≤
∫ 2t

0
(χQ∗∗∗j V1) ∗ P (1)

s (x1)ds+
∫ 2t

0
(χQ∗∗∗k V2) ∗ P (2)

s (x2)ds

≤ C(t/d(Qj)2)δ + C(t/d(Qk)2)δ ≤ C(t/d(Qsj,k)
2)δ.

Notice, that we have got (K) only for t < c1d(Qsj,k)
2 (with c1 < 1 independent of j, k, s)

but, as we noticed at the end of the proof of Remark 2.2.6, it is enough.

Remark 2.2.8. Let V1, V2 be non-negative potentials on Rd, which together with families

of cubes Q1 i Q2 satisfy (D) and (K). Assume additionally that Q1, Q2 consist of dyadic

cubes. For Q1 ∈ Q1, Q2 ∈ Q2 the cubes are either disjoint or one contains another. Let

Q1 ∧ Q2 denote the smaller one. Then the family Q = {Q1 ∧ Q2 : Q1 ∈ Q1, Q2 ∈ Q2}

covers Rd and satisfies (D) and (K) for V = V1 + V2.

Proof. Denote by Kt(x, y), K(1)
t (x, y), K(2)

t (x, y) the integral kernels for Schrödinger semi-

groups with potentials V, V1, V2, respectively. Then Kt(x, y) ≤ min(K(1)
t (x, y),K(2)

t (x, y)).

Assume that Q1 = Q1 ∧Q2. For x ∈ Rd and t ≤ d(Q1)2 we simply observe that∫ 2t

0
(χQ1∗∗∗(V1 + V2)) ∗ Ps(x) ds ≤ C

(
t

d(Q1)2

)δ
+
(

t

d(Q2)2

)δ
≤ C ′

(
t

d(Q1)2

)δ
and (K) is satisfied. Also, we check (D):

sup
y∈Q1∗

∫
Rd
K2nd(Q1)2(x, y) dx ≤ sup

y∈Q1∗

∫
Rd
K

(1)
2nd(Q1)2

(x, y) dx ≤ Cn−1−ε.

2.3 Auxiliary lemmas

Lemma 2.3.1. For every α > 0 there exists a constant C > 0 (independent of V ) such

that for j = 1, . . . , d and y ∈ Rd we have∫
Rd

∣∣∣∣ ∂∂xjKt(x, y)
∣∣∣∣2 exp(α|x− y|/

√
t) dx ≤ Ct−d/2−1, (2.3.2)
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∫
Rd

∣∣∣∣ ∂∂xjKt(x, y)
∣∣∣∣ exp(α|x− y|/

√
t) dx ≤ Ct−1/2. (2.3.3)

The lemma seems to be known. For reader’s convenience we give a sketch of a proof

in Section 2.5.

For ε > 0, j = 1, . . . , d, we define the operator

RL
j,εf(x) =

∫
RL
j,ε(x, y)f(y) dy,

where RL
j,ε(x, y) =

∫ ε−1

ε
∂
∂xj

Kt(x, y) dt√
t
.

We will check in a moment that for f ∈ L1(Rd) the limits limε→0 RL
j,εf exist in the sense

of distributions and define tempered distributions which are denoted by RL
j f . Moreover,

for ϕ ∈ S(Rd) we have

|〈RL
j f, ϕ〉| ≤ C‖f‖L1(Rd)

(
‖ϕ‖L2(Rd) +

∥∥∥ ∂

∂xj
ϕ
∥∥∥
L∞(Rd)

)
. (2.3.4)

To see this we write

(
RL
j,ε

)∗
ϕ(y) =

∫ 1/ε

1

∫
Rd

∂

∂xj
Kt(x, y)ϕ(x) dx

dt√
t
−
∫ 1

ε

∫
Rd
Kt(x, y)

∂

∂xj
ϕ(x) dx

dt√
t
.

Since ∫ ∞
1

[∫
Rd

∣∣∣∣ ∂∂xjKt(x, y)
∣∣∣∣2 dx

] 1
2 dt√

t
≤ C

∫ ∞
1

t−1−d/4 dt ≤ C

and ∫
Rd

∫ 1

0
Kt(x, y)

dt√
t
dx ≤ 2

(see Lemma 2.3.1), we conclude that
(
RL
j,ε

)∗
ϕ(y) converges uniformly, as ε → 0, to

a bounded function which will be denoted by
(
RL
j

)∗
ϕ(y), and

∣∣∣ (RL
j

)∗
ϕ(y)

∣∣∣ ≤ C (‖ϕ‖L2(Rd) +
∥∥∥ ∂

∂xj
ϕ
∥∥∥
L∞(Rd)

)
.

For fixed Q ∈ Q and 0 < ε < 1, let

RL
j,ε,Q,0(x, y) =



∫ d(Q)2

ε
∂
∂xj

Kt(x, y) dt√
t

if ε < d(Q)2 < 1/ε;∫ 1/ε
ε

∂
∂xj

Kt(x, y) dt√
t

if d(Q)2 ≥ 1/ε;

0 if d(Q)2 ≤ ε;

RL
j,ε,Q,∞(x, y) =



∫ 1/ε
d(Q)2

∂
∂xj

Kt(x, y) dt√
t

if ε < d(Q)2 < 1/ε;

0 if d(Q)2 ≥ 1/ε;∫ 1/ε
ε

∂
∂xj

Kt(x, y) dt√
t

if d(Q)2 ≤ ε.
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Clearly, RL
j,ε(x, y) = RL

j,ε,Q,0(x, y) + RL
j,ε,Q,∞(x, y) for every Q ∈ Q and 0 < ε < 1. For

f ∈ L1(Rd) denote

RL
j,Q,0f(x) = lim

ε→0

∫
Rd
RL
j,ε,Q,0(x, y)f(y) dy,

RL
j,Q,∞f(x) = lim

ε→0

∫
Rd
RL
j,ε,Q,∞(x, y)f(y) dy,

which of course exist in the sense of distributions.

For Q ∈ Q we define

Q′(Q) = {Q′ ∈ Q : Q∗∗∗ ∩ (Q′)∗∗∗ 6= ∅},

Q′′(Q) = {Q′′ ∈ Q : Q∗∗∗ ∩ (Q′′)∗∗∗ = ∅}.

Lemma 2.3.5. Assume that (D) holds. Then there exists a constant C > 0 such that for

every Q ∈ Q we have∫
Rd

sup
0<ε<1

|RL
j,ε,Q,∞(x, y)| dx ≤ C for y ∈

⋃
Q′∈Q′(Q)

Q′∗. (2.3.6)

Proof. Fix y ∈
⋃
Q′∈Q′(Q)Q

′∗. Let Q′ ∈ Q′(Q) be such that y ∈ Q′∗. Denote by S the

left-hand side of (2.3.6). Then

S ≤
∫

Rd

∫ d(Q′)2

min(d(Q), d(Q′))2

∣∣∣ ∂
∂xj

Kt(x, y)
∣∣∣ dt√
t
dx+

∫
Rd

∫ ∞
d(Q′)2

∣∣∣ ∂
∂xj

Kt(x, y)
∣∣∣ dt√
t
dx

= S1 + S2.

Recall that d(Q) ∼ d(Q′). Using (2.3.3), we get

S1 ≤ C
∫ d(Q′)2

min(d(Q), d(Q′))2
t−1 dt ≤ C.

Applying (2.3.3) and (D), we obtain

S2 =
∞∑
n=0

∫
Rd

∫ 2n+1d(Q′)2

2nd(Q′)2

∣∣∣ ∂
∂xj

Kt(x, y)
∣∣∣ dt√
t
dx

≤ C
∞∑
n=0

∫
Rd

∫ 2n+1d(Q′)2

2nd(Q′)2

∫
Rd

∣∣∣ ∂
∂xj

Tt−2n−1d(Q′)2(x, z)
∣∣∣T2n−1d(Q′)2(z, y) dz

dt√
t
dx

≤ C
∞∑
n=0

∫ 2n+1d(Q′)2

2nd(Q′)2

∫
Rd

(2nd(Q′)2)−1/2T2n−1d(Q′)2(z, y) dz
dt√
t

≤ C
∞∑
n=0

∫
Rd
T2n−1d(Q′)2(z, y) dz ≤ C + C

∞∑
n=1

n−1−ε ≤ C,

and the lemma is proved.
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For 0 ≤ ε < d(Q)2 let

Wj,ε,Q(x, y) =
∫ d(Q)2

ε

∂

∂xj

(
Kt(x, y)− Pt(x− y)

) dt√
t
. (2.3.7)

Set Wj,ε,Qf(x) =
∫
Wj,ε,Q(x, y)f(y) dy, Wj,Qf = Wj,0,Qf .

Lemma 2.3.8. Assuming (K) there exists a constant C > 0 such that for every Q ∈ Q

one has

sup
y∈Q∗

∫
Rd

∫ d(Q)2

0

∣∣∣∣ ∂∂xj (Kt(x, y)− Pt(x, y)
)∣∣∣∣ dt√t dx ≤ C.

Proof. The proof borrows some ideas from the estimates of maximal functions associated

with (Kt − Pt) in dimension one which are given in [9, Lemma 2.3]. Fix j ∈ {1, . . . , d}

and denote

JQ(x, y) =
∫ d(Q)2

0

∣∣∣∣ ∂∂xj (Kt(x, y)− Pt(x− y))
∣∣∣∣ dt√t .

The perturbation formula asserts that

Kt −Pt = −
∫ t

0
Pt−sVKs ds. (2.3.9)

Therefore

JQ(x, y) ≤
∫ d(Q)2

0

∫ t/2

0

∫
Rd

∣∣∣∣ ∂∂xj Pt−s(x− z)
∣∣∣∣V1(z)Ks(z, y) dz ds

dt√
t

+
∫ d(Q)2

0

∫ t

t/2

∫
Rd

∣∣∣∣ ∂∂xj Pt−s(x− z)
∣∣∣∣V1(z)Ks(z, y) dz ds

dt√
t

+
∫ d(Q)2

0

∫ t

0

∫
Rd

∣∣∣∣ ∂∂xj Pt−s(x− z)
∣∣∣∣V2(z)Ks(z, y) dz ds

dt√
t

= J ′1(x, y) + J ′′1 (x, y) + J2(x, y),

where V1(x) = V (x)1Q∗∗∗ , V2(x) = V (x)− V1(x).

To evaluate J ′1 observe that∫
Rd

∣∣∣∣ ∂∂xj Pt−s(x− y)
∣∣∣∣ dx ≤ Ct−1/2 for 0 < s < t/2.

Thus, using (K), we get∫
Q∗∗

J ′1(x, y) dx ≤ C
∫ d(Q)2

0

∫ t/2

0

∫
Rd
t−1/2V1(z)Ps(z − y) dz ds

dt√
t

≤ C
∫ d(Q)2

0
t−1/2

(
t

d(Q)2

)δ dt√
t
≤ C.

Similarly,∫
Q∗∗

J ′′1 (x, y) dx ≤ C
∫ d(Q)2

0

∫ t

t/2

∫
Rd

(t− s)−1/2V1(z)Pt(z − y) dz ds
dt√
t

= C ′
∫ d(Q)2

0

∫
Rd
V1(z)Pt(z − y) dz dt ≤ C.
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In order to estimate J2 we notice that∣∣∣∣ ∂∂xj Pt−s(x− z)
∣∣∣∣ ≤ Cd(Q)−d−1e−c(|x−z|/d(Q))2 (2.3.10)

for 0 < s < t < d(Q)2, z /∈ Q∗∗∗, x ∈ Q∗∗. Lemma 3.10 of [21] asserts that

sup
y∈Rd

∫ ∞
0

∫
Rd
V (z)Ks(z, y) dz ds ≤ C.

Hence, by (2.3.10), we obtain∫
Q∗∗

J2(x, y) dx ≤ C d(Q)−1

∫ d(Q)2

0

∫ t

0

∫
Rd
V2(z)Ks(z, y) dz ds

dt√
t

≤ C d(Q)−1

∫ d(Q)2

0

∫ t

0

∫
Rd
V (z)Ks(z, y) dz ds

dt√
t

≤ Cd(Q)−1

∫ d(Q)2

0

dt√
t
≤ C.

We now turn to estimate JQ(x, y) for x /∈ Q∗∗ and y ∈ Q∗. Clearly,∫
Q∗∗c

JQ(x, y) dx ≤
∫
Q∗∗c

∫ d(Q)2

0

∣∣∣∣ ∂∂xjKt(x, y)
∣∣∣∣ dt√t dx

+
∫
Q∗∗c

∫ d(Q)2

0

∣∣∣∣ ∂∂xj Pt(x− y)
∣∣∣∣ dt√t dx = J ′Q + J ′′Q.

By using (2.3.2) combined with the Cauchy-Schwarz inequality we get

J ′Q ≤
∫ d(Q)2

0

(∫
Q∗∗c

∣∣∣∣ ∂∂xjKt(x, y)
∣∣∣∣2 e2 |x−y|√

t dx

)1/2(∫
Q∗∗c

e
−2
|x−y|√

t dx

)1/2 dt√
t

≤ C
∫ d(Q)2

0
t−d/4−1/2

(∫
Q∗∗c

( √
t

|x− y|

)N
dx

)1/2
dt√
t
≤ C.

(2.3.11)

The estimates for J ′′Q go in the same way. Hence,

sup
y∈Q∗

∫
Q∗∗c

JQ(x, y) dx ≤ C,

which completes the proof of Lemma 2.3.8.

Let {φQ}Q∈Q be a family of smooth functions that form a resolution of identity as-

sociated with {Q∗}Q∈Q, that is: φQ ∈ C∞c (Q∗), 0 ≤ φQ ≤ 1, |∇φQ(x)| ≤ Cd(Q)−1,∑
Q∈Q φQ(x) = 1 a.e.

The following corollary follows easily from Lemma 2.3.8.

Corollary 2.3.12. For f ∈ L1(Rd) we have:

lim
ε→0
‖Wj,ε,Q(φQf)−Wj,Q(φQf)‖L1(Rd) = 0,

‖Wj,Q(φQf)‖L1(Rd) ≤ C‖φQf‖L1(Rd)

with C independent of Q and f .
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Lemma 2.3.13. There exists a constant C > 0 such that for every Q ∈ Q and every

f ∈ L1(Rd) such that supp f ⊂ Q̃ =
⋃
Q′∈Q′(Q)Q

′∗ we have

‖RL
j (φQf)− φQRL

j f‖L1(Rd) ≤ C‖f‖L1( eQ)
. (2.3.14)

Proof. Note that

RL
j (φQf)(x)−φQ(x)RL

j f(x)

= lim
ε→0

∫ 1/ε

ε

∫
Rd

(
∂

∂xj
Kt(x, y)

)
(φQ(y)− φQ(x)) f(y) dy

dt√
t
.

From (2.3.3) we conclude∫
Rd

∫ d(Q)2

0

∣∣∣∣( ∂

∂xj
Kt(x, y)

)
(φQ(y)− φQ(x))

∣∣∣∣ dt√t dx
≤ C

d(Q)

∫
Rd

∫ d(Q)2

0

∣∣∣∣ ∂∂xjKt(x, y)
∣∣∣∣ |x− y|√

t
dt dx

≤ C

d(Q)

∫
Rd

∫ d(Q)2

0

∣∣∣∣ ∂∂xjKt(x, y)
∣∣∣∣ e|x−y|/√t dt dx ≤ C.

(2.3.15)

Now (2.3.14) follows from (2.3.6) and (2.3.15).

Lemma 2.3.16. There exists a constant C > 0 such that∑
Q∈Q

∥∥∥1Q∗∗∗RL
j

( ∑
Q′′∈Q′′(Q)

φQ′′f
)∥∥∥

L1(Rd)
≤ C‖f‖L1(Rd). (2.3.17)

Proof. Let S denote the left-hand side of (2.3.17). Applying (2.1.1), we have

S ≤
∑
Q∈Q

∑
Q′′∈Q′′(Q)

∥∥∥1Q∗∗∗RL
j (φQ′′f)

∥∥∥
L1(Rd)

=
∑
Q′′∈Q

∑
Q∈Q′′(Q′′)

...

≤ C
∑
Q′′∈Q

∥∥∥RL
j (φQ′′f)

∥∥∥
L1((Q′′)∗∗c)

≤ C
∑
Q′′∈Q

(∥∥∥RL
j,Q′′,0(φQ′′f)

∥∥∥
L1((Q′′)∗∗c)

+
∥∥∥RL

j,Q′′,∞(φQ′′f)
∥∥∥
L1((Q′′)∗∗c)

)
.

(2.3.18)

By using (2.3.6) and (2.1.1), we get∑
Q′′∈Q

∥∥∥RL
j,Q′′,∞(φQ′′f)

∥∥∥
L1((Q′′)∗∗c)

≤ C
∑
Q′′∈Q

‖φQ′′f‖L1(Rd) ≤ C ′‖f‖L1(Rd). (2.3.19)

Similarly to (2.3.11), for y ∈ (Q′′)∗, we have∫
(Q′′)∗∗c

∫ d(Q′′)2

0

∣∣∣∣ ∂∂xjKt(x, y)
∣∣∣∣ dt√t dx ≤ C,

which implies∑
Q′′∈Q

∥∥∥RL
j,Q′′,0(φQ′′f)

∥∥∥
L1((Q′′)∗∗c)

≤ C
∑
Q′′∈Q

‖φQ′′f‖L1(Rd) ≤ C‖f‖L1(Rd). (2.3.20)

The lemma is a consequence of (2.3.18)–(2.3.20).
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2.4 Proof of Theorem 2.1.6

In order to prove the second inequality of (2.1.7) it suffices by (2.3.4) and (2.1.5) to verify

that there exists a constat C > 0 such that

‖RL
j a‖L1(Rd) ≤ C (2.4.1)

for every Q-atom a and j = 1, . . . , d. Assume that a is an Q-atom supported by a cube

Q∗, Q ∈ Q. Then

RL
j a(x) = lim

ε→0

(
RL
j,ε,Q,0a(x) + RL

j,ε,Q,∞a(x)
)

= lim
ε→0

(
Wj,ε,Qa(x) + Hj,ε,Qa(x) + RL

j,ε,Q,∞a(x)
)
,

where Hj,ε,Qa(x) =
∫ d(Q)2

ε
∂
∂xj

(a ∗Pt)(x) dt√
t
. Similarly to (2.3.4), the limit

Hj,Qa(x) = lim
ε→0

Hj,ε,Qa(x)

exists in the sense of distributions. Moreover, by the boundedness of the local Riesz trans-

forms on the local Hardy spaces (see [24]), we have ‖Hj,Qa‖L1(Rd) ≤ C with C independent

of a. Using Lemmas 2.3.8 and 2.3.5, we obtain (2.4.1).

We now turn to prove the first inequality of (2.1.7). To this end, by the local Riesz

transform characterization of the local Hardy spaces (see [24, Section 2]), it suffices to

show that

∑
Q∈Q
‖Hj,Q(φQf)‖L1(Q∗∗) ≤ C

(
‖f‖L1(Rd) + ‖RL

j f‖L1(Rd)

)
, j = 1, ..., d. (2.4.2)

Clearly,

Hj,Q(φQf) = −Wj,Q(φQf) + RL
j,Q,0(φQf).

Lemma 2.3.8 together with (2.1.1) implies

∑
Q∈Q
‖Wj,Q(φQf)‖L1(Rd) ≤ C

∑
Q∈Q
‖φQf‖L1(Rd) ≤ C‖f‖L1(Rd). (2.4.3)

Note that

RL
j,Q,0(φQf) =

[
RL
j

(
φQ

∑
Q′∈Q′(Q)

(φQ′f)
)
− φQRL

j

( ∑
Q′∈Q′(Q)

(φQ′f)
)]

−RL
j,Q,∞(φQf) + φQRL

j f − φQRL
j

( ∑
Q′′∈Q′′(Q)

(φQ′′f)
)
.

(2.4.4)
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Lemmas 2.3.13, 2.3.5, and 2.3.16 combined with (2.4.4) imply∑
Q∈Q
‖RL

j,Q,0(φQf)‖L1(Q∗∗) ≤ C
∑
Q∈Q

( ∑
Q′∈Q′(Q)

‖φQ′f‖L1(Rd) + ‖φQf‖L1(Rd)

+ ‖φQRL
j f‖L1(Rd)

)
+ C‖f‖L1(Rd)

≤ C
(
‖f‖L1(Rd) + ‖RL

j f‖L1(Rd)

)
.

(2.4.5)

Now (2.4.2) follows from (2.4.3) and (2.4.5).

2.5 Appendix

2.5.1 Proof of Lemma 2.3.1

Proof. The argument is based on estimates of the semigroup Kt acting on weighted L2

spaces. This technique was utilized, e.g. in [14], [25], [20].

Fix y0 ∈ Rd and α > 0. The semigroup {Kt}t>0 acting on L2(eα|x−y0|dx) has the

unique extension to a holomorphic semigroup Kζ , ζ ∈ {ζ ∈ C : |Arg ζ| < π/4} such that

‖Kζ‖L2(eα|x−y0|dx)→L2(eα|x−y0|dx) ≤ Ce
c′α2<ζ (2.5.1)

with C and c′ independent of V and y0 (see, e.g. [20, Section 6]). Let −Aα,y0 denote

the infinitesimal generator of {Kt}t>0 considered on L2(eα|x−y0|dx). The quadratic form

Q = Qα ,y0 associated with Aα,y0 is given by

Q(f, g) =
d∑
j=1

∫
Rd

∂

∂xj
f(x)

∂

∂xj
g(x)eα|x−y0| dx+

∫
Rd
V (x)f(x)g(x)eα|x−y0| dx

+
d∑
j=1

∫
Rd

∂

∂xj
f(x)g(x)

∂

∂xj
eα|x−y0| dx,

D(Q) = {f : f(x), V (x)1/2f(x),
∂

∂xj
f(x) ∈ L2(eα|x−y0|dx), j = 1, ..., d}.

Note that ∣∣∣∣ ∂∂xj eα|x−y0|
∣∣∣∣ ≤ Cαeα|x−y0| for x 6= y0.

Clearly,

|Q(f, g)| ≤ Cα‖f‖Q‖g‖Q

with Cα independent of y0 and V , where

‖f‖2Q =
∫

Rd

 d∑
j=1

∣∣∣∣ ∂∂xj f(x)
∣∣∣∣2 + V (x)|f(x)|2 + |f(x)|2

 eα|x−y0|dx.
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Moreover, there exists a constant C > 0 independent of V and y0 such that

‖f‖2Q ≤ CQ(f, f). (2.5.2)

The holomorphy of the semigroup Kt combined with (2.5.1) imply

‖Aα,y0Ktg‖L2(eα|x−y0|dx) ≤ C
′t−1ec

′′tα2‖g‖L2(eα|x−y0|dx) (2.5.3)

with constants C ′ and c′′ independent of V and y0. Setting g(x) = K1/2(x, y0), f(x) =

K1/2 g(x) = K1(x, y0) and using (2.5.2), (2.5.3), (2.5.1), and (2.1.4), we get∥∥∥∥ ∂

∂xj
K1(x, y0)

∥∥∥∥2

L2(eα|x−y0|dx)

≤ ‖f‖2Q

≤ CQ(f, f)

≤ C‖Aα,y0f‖L2(eα|x−y0|dx)‖f‖L2(eα|x−y0|dx)

≤ C ′′‖g‖2
L2(eα|x−y0|dx)

≤ C ′′′

(2.5.4)

with C ′′′ independent of y0 and V . Since Kt(x, y) = t−d/2K̃1(x/
√
t, y/
√
t), where K̃t(x, y)

is the integral kernel of the semigroup {K̃t}t>0 generated by ∆− tV (
√
tx), we get (2.3.2)

from (2.5.4), because C ′′′ is independent of V and y0. Now (2.3.3) follows from (2.3.2)

and the Cauchy-Schwarz inequality.
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3. HARDY SPACES RELATED TO SCHRÖDINGER OPERATORS II

3.1 Background and main results

This chapter is devoted to proving three characterizations (see Theorems 3.1.2, 3.1.4, 3.1.8)

of the Hardy space H1
L related to the Schrödnger operator Lf(x) = −∆f(x) + V (x)f(x),

on Rd for another class of potentials V . The results of this chapter are mostly contained

in [17] and [15]. During the whole chapter we assume that V satisfies:

(A4) there exist Vi ≥ 0, Vi 6≡ 0, such that

V (x) =
m∑
i=1

Vi(x),

(A5) for every i ∈ {1, ...,m} there exists a linear subspace Vi of Rd of dimension di ≥ 3

such that if ΠVi denotes the orthogonal projection on Vi then

Vi(x) = Vi(ΠVix),

(A6) there exists κ > 0 such that for i = 1, ...,m we have

Vi ∈ Lr(Vi)

for all r satisfying |r − di/2| ≤ κ.

In this chapter we are using the notion already provided in Section 1.2. In particular,

Kt = exp(−tL) and Pt = exp(t∆) denote the semigroups of linear operators associated

with −L and ∆ respectively. Note that the estimate 0 ≤ Kt(x, y) ≤ Pt(x − y) and the

perturbation formula Pt = Kt +
∫ t
0 Pt−sVKs ds still hold (see (2.1.4) and (2.3.9)).

Let ML and M∆ be the associated maximal operators (see (1.1.5) and (1.2.1)). Recall,

that the Hardy space H1
L,max and the corresponding norm (cf. Definition 1.2.2) are given

by

f ∈ H1
L,max ⇐⇒ MLf ∈ L1(Rd), ‖f‖H1

L,max
= ‖MLf‖L1(Rd).

The goal of the chapter is to prove three characterizations of the space H1
L,max (see The-

orems 3.1.2, 3.1.4, 3.1.8).
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Denote by L−1 and ∆−1 the operators with the integral kernels

ΓL(x, y) =
∫ ∞

0
Kt(x, y) dt and Γ∆(x− y) = −

∫ ∞
0

Pt(x− y) dt,

respectively. Clearly,

0 ≤
∫ t

0
Ks(z, y) ds ≤ ΓL(z, y) ≤ −Γ∆(z − y) = Cd|z − y|2−d. (3.1.1)

We shall see that operators I−V L−1 and I−V∆−1 are bounded on L1(Rd). The first

main result of Chapter 3 is the following characterization of the Hardy space H1
L,max.

Theorem 3.1.2. Assume f ∈ L1(Rd). Then f belongs to H1
L,max if and only if (I −

V L−1)f belongs to the classical Hardy space H1
∆(Rd). Moreover,

‖f‖H1
L,max

∼ ‖(I− V L−1)f‖H1
∆(Rd).

We define the auxiliary function ω by

ω(x) = lim
t→∞

∫
Rd
Kt(x, y) dy.

The above limit exists because, by (2.1.4) and the semigroup property, the function t 7→

Kt1(x) is decreasing and takes values in [0, 1]. Clearly, for every t > 0,

ω(x) = Ktω(x) =
∫

Rd
Kt(x, y)ω(y) dy. (3.1.3)

We shall prove that there exists δ > 0 such that δ ≤ ω(x) ≤ 1 (see Proposition 3.2.10).

We are now in a position to state the second main result of this chapter.

Theorem 3.1.4. Let f ∈ L1(Rd). Then f belongs to H1
L if and only if ωf belongs to

H1
∆(Rd). Additionally,

‖f‖H1
L,max

∼ ‖ωf‖H1
∆(Rd).

From Theorem 3.1.4 we immediately obtain atomic characterizations of the elements

of H1
L,max.

Definition 3.1.5. We call a function a an L-atom if it satisfies:

• there exists a ball B = B(y, r) such that supp a ⊆ B,

• ‖a‖∞ ≤ |B|−1,

•
∫

Rd a(x)ω(x) dx = 0.
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Corollary 3.1.6. The spaces H1
L,max and H1

L,at (see Definitions 1.2.5 and 1.2.5) coincide.

Also, the corresponding norms are comparable.

We denote by ∂
∂xj

the partial derivative in the direction of the j-th canonical coordinate

of Rd, where j = 1, ..., d. For f ∈ L1(Rd) the Riesz transforms RL
j associated to L (cf.

(1.1.9) and (1.2.3)) are given by

RL
j f = lim

ε→0

∫ ε−1

ε

∂

∂xj
Ktf

dt√
t
. (3.1.7)

We shall see that the last limits are well-defined in the sense of distributions.

The third main result of this chapter is to obtain the following characterization of

H1
L,max.

Theorem 3.1.8. An L1(Rd)-function f belongs to H1
L,max if and only if RL

j f belong to

L1(Rd) for j = 1, ..., d. Additionally,

‖f‖H1
L,max

∼ ‖f‖L1(Rd) +
d∑
j=1

‖RL
j f‖L1(Rd).

The results included in this chapter generalize the theorems of [22] and [15], where the

spaces H1
L were studied under assumptions: V ≥ 0, suppV is compact, V ∈ Lr(Rd) for

some r > d/2. Obviously such potentials V satisfy the conditions (A4) − (A6). To prove

Theorems 3.1.2, 3.1.4, and 3.1.8 we develop methods of [22] and [15].

3.2 Auxiliary lemmas

We shall use the following notation. For z ∈ Rd and a subspace Vi of Rd we write

z = zi + z̃i, zi = ΠVi(z), z̃i = ΠV⊥i
(z), d̃i = dim V⊥i = d− di.

Notice that if Vi = Rd, then, in fact, there is no V⊥i .

The following two lemmas state crucial estimates that will be used in many proofs.

Lemma 3.2.1. There exists λ > 0 such that

sup
y∈Rd

‖V (·)| · −y|2−d+µ‖Lr(Rd) ≤ C for r ∈ [1, 1 + λ] and µ ∈ [−λ, λ]. (3.2.2)

Proof. It suffices to prove (3.2.2) for V = V1. For fixed y ∈ Rd we have

‖V1(·)| · −y|2−d+µ‖rLr(Rd) ≤ C
∫

V1

∫
V⊥1

V1(z1)r

|z1 − y1|−r(2−d+µ) + |z̃1 − ỹ1|−r(2−d+µ)
dz̃1 dz1.

(3.2.3)
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Observe that if λ > 0 is sufficiently small, r ∈ [1, 1 + λ], and µ ∈ [−λ, λ] then∫
V⊥1

(
|z1 − y1|−r(2−d+µ) + |z̃1 − ỹ1|−r(2−d+µ)

)−1
dz̃1

≤ C
∫
|z1−y1|>|ez1−ey1| |z1 − y1|r(2−d+µ) dz̃1 + C

∫
|z1−y1|≤|ez1−ey1| |z̃1 − ỹ1|r(2−d+µ) dz̃1

≤ C|z1 − y1|r(2−d+µ)+ ed1 .
(3.2.4)

Thus, by (3.2.4),

‖V1(·)| · −y|2−d+µ‖rLr(Rd) ≤C
∫
|z1−y1|≤1

V1(z1)r|z1 − y1|r(2−d+µ)+ ed1 dz1
+ C

∫
|z1−y1|>1

V1(z1)r|z1 − y1|r(2−d+µ)+ ed1 dz1. (3.2.5)

Note that by (A6) there exist t, s > 1 such that V r
1 ∈ Lt(V1) ∩ Ls(V1) and

χ{|z1|≤1}(z1)|z1|r(2−d+µ)+ ed1 ∈ Lt′(V1), χ{|z1|>1}(z1)|z1|r(2−d+µ)+ ed1 ∈ Ls′(V1)

for r ∈ [1, 1 + λ] and µ ∈ [−λ, λ] provided λ > 0 is small enough. Thus (3.2.2) follows

from the Hölder inequality.

Corollary 3.2.6. The operators I− V∆−1 and I− V L−1 are bounded on L1(Rd) and

(I− V L−1)(I− V∆−1)f = (I− V∆−1)(I− V L−1)f = f for f ∈ L1(Rd). (3.2.7)

Formally, (3.2.7) can be easily seen, by inserting V = L + ∆. However, since we deal

with unbounded operators, it is not so straightforward. We provide the detailed proof in

the appendix (see Section 3.6).

Lemma 3.2.8. There exists σ, ε > 0 such that for s ∈ [1, 1 + ε] and R ≥ 1 we have

sup
y∈Rd

∫
|z−y|>R

V (z)s|z − y|s(2−d) dz ≤ CR−σ. (3.2.9)

Proof. It is enough to prove (3.2.9) for V = V1. Fix q > 1 and ε > 0 such that d1/q(1 +

ε)− 2 > 0 and V1 ∈ Lq(1+ε)(V1) ∩ Lq(V1) (see (A6)). Set σ = d1/q − 2. For s ∈ [1, 1 + ε]

we have∫
|z−y|>R

V1(z)s|z − y|s(2−d) dz ≤
∫
|z1−y1|≥|ez1−ey1| χ{|z−y|>R}(z)V1(z)s|z1 − y1|s(2−d) dz

+
∫
|z1−y1|<|ez1−ey1| χ|z−y|>R(z)V1(z)s|z̃1 − ỹ1|s(2−d) dz

=T (R) + S(R).
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If |z1 − y1| ≥ |z̃1 − ỹ1| and |z − y| > R ≥ 1, then |z1 − y1| > R/2 ≥ 1/2. Thus,

T (R) ≤ C
∫
|z1−y1|>R/2

|z1 − y1|d−d1V1(z1)s|z1 − y1|s(2−d) dz1

≤ C‖V1‖sLqs(V1)

(∫
|z1−y1|>R/2

|z1 − y1|(s(2−d)+d−d1)q′ dz1

)1/q′

= CR−σ.

Similarly, if |z1 − y1| < |z̃1 − ỹ1| and |z − y| > R ≥ 1, then |z̃1 − ỹ1| > R/2 ≥ 1/2 and

S(R) ≤ C
∫
|ez1−ey1|>R/2 ‖V1‖sLsq(V1)

(∫
|z1−y1|<|ez1−ey1| dz1

)1/q′

|z̃1 − ỹ1|s(2−d) dz̃1

≤ C
∫
|ez1−ey1|>R/2 |z̃1 − ỹ1|s(2−d)+d1/q

′
dz̃1 = CR−σ.

We shall need the following properties of the function ω similar to those that hold in

the case of compactly supported potentials (cf. [22, Lemma 2.4]).

Proposition 3.2.10. There exist γ, δ > 0 such that for x, y ∈ Rd we have

(a) |ω(x)− ω(y)| ≤ Cγ |x− y|γ,

(b) δ ≤ ω(x) ≤ 1.

Proof. The property (a) can be proved by a slight modification of the proof of (2.6) in

[22]. Indeed, thanks to (3.1.3) and 0 ≤ ω(x) ≤ 1, it suffices to show that there is C, γ > 0

such that for |h| < 1 we have∫
Rd
|K1(x+ h, y)−K1(x, y)| dy ≤ C|h|γ . (3.2.11)

To this purpose, by using (2.3.9), it is enough to establish that
m∑
i=1

∫
Rd

∣∣∣ ∫ 1

0

∫
Rd

(Ps(x+ h− z)− Ps(x− z))Vi(z)K1−s(z, y) dz ds
∣∣∣ dy ≤ C|h|γ .

Consider one summand that contains V1. Utilizing the fact that Ps(x) = Ps(x1)Ps(x̃1),

where Ps(x1) and Ps(x̃1) are the heat kernels on V1 and V⊥1 respectively. We have

I =
∫

Rd

∣∣∣ ∫ 1

0

∫
Rd

(Ps(x+ h− z)− Ps(x− z))V1(z)K1−s(z, y) dz ds
∣∣∣ dy

≤
∫ 1

0

∫
Rd
|Ps(x+ h− z)− Ps(x− z)|V1(z) dz ds

≤
∫ 1

0

∫
Rd
Ps(x1 + h1 − z1)

∣∣Ps(x̃1 + h̃1 − z̃1)− Ps(x̃1 − z̃1)
∣∣V1(z1) dz ds

+
∫ 1

0

∫
Rd
Ps(x̃1 − z̃1)

∣∣Ps(x1 + h1 − z1)− Ps(x1 − z1)
∣∣V1(z1) dz ds

(3.2.12)
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By taking q > d1/2 such that V1 ∈ Lq(V1) and using the Hölder inequality we obtain

I ≤
∫ 1

0
‖Ps(x1)‖Lq′ (V1)‖V1(z1)‖Lq(V1)

∫
V⊥1
|Ps(x̃1 + h̃1 − z̃1)− Ps(x̃1 − z̃1)| dz̃1 ds

+
∫ 1

0

(∫
V1

∣∣Ps(x1 + h1 − z1)− Ps(x1 − z1)
∣∣q′ dz1)1/q′

‖V1(z1)‖Lq(V1) ds

≤ C(|h̃1|γ + |h1|γ),

(3.2.13)

which finishes the proof of (a).

Next we note that

Kt(x, y) > 0 for t > 0 and x, y ∈ Rd. (3.2.14)

The proof of (3.2.14) is a straightforward adaptation of the proof of [22, Lemma 2.12]. We

omit the details.

Our next task is to establish that there exists δ > 0 such that

ω(x) ≥ δ. (3.2.15)

The proof1 of (3.2.15) we present here is based on the Hölder inequality and goes by

induction on m. Assume first that we have only one potential V1, that is, m = 1. Then,

Kt(x, y) = K
{1}
t (x1, y1)Pt(x̃1 − ỹ1), where K

{1}
t (x1, y1) is the kernel of the semigroup

generated by ∆− V1(x1) on V1 and Pt(x̃1) is the classical heat semigroup on V⊥1 . Hence

ω(x) = ω0(x1), where ω0(x1) = limt→∞
∫

V1
K
{1}
t (x1, y1) dy1. Therefore, there is no loss of

generality in proving (3.2.15) if we assume that V = Rd. If we integrate (2.3.9) over Rd

and take the limit as t→∞, then we get

1− ω(x) =
∫

Rd
V (y)ΓL(x, y) dy ≤ C

∫
Rd
V (y)|x− y|2−d dy. (3.2.16)

By (A6) and the Hölder inequality we find t, s > 1 such that V ∈ Lt(Rd) ∩ Ls(Rd),

χ{|x|≤1}(x)|x|2−d ∈ Lt′(Rn), and χ{|x|>1}(x)|x|2−d ∈ Ls′(Rd). Thus (3.2.16) leads to

lim
|x|→∞

∫
Rd
V (y)|x− y|2−d dy = 0 and lim

|x|→∞
ω(x) = 1. (3.2.17)

The equation (3.1.3) combined with (3.2.14) and (3.2.17) imply that w(x) > 0 for every

x ∈ Rd. Since ω is continuous (see (a)) and lim|x|→∞ ω(x) = 1, we get (3.2.15).

1 We would like to note that (3.2.15) can also be deduced from [36]. The author learnt about the results

of [36] when the thesis was already written down.
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Using induction, we assume that (3.2.15) is true for V being a sum of m−1 potentials.

Take V = V1 + ... + Vm. As in the case of m = 1, we can assume that lin{V1, ...,Vm} =

Rd. Consider the semigroup {St}t>0 generated by −∆ + V2 + ... + Vm. Let ω1(x) =

limt→∞
∫

Rd St(x, y) dy. By the inductive assumption ω1(x) ≥ δ1. Similarly to (3.2.16), the

perturbation formula

St = Kt +
∫ t

0
St−sV1Ks ds

implies

δ1 ≤ ω1(y) ≤ ω(y) + C

∫
Rd
V1(z)|z − y|2−d dz ≤ ω(y) + C

∫
V1

V1(z1)|z1 − y1|2−d1 dz1,

(3.2.18)

where the last inequality is proved in (3.2.4). If y1 → ∞ then the integral on the right

hand side of (3.2.18) goes to zero. Hence, ω(y) > δ1/2 provided |y1| > R1. We repeat

the argument for each V2, ..., Vd instead of V1 and deduce that there exists R, δ > 0 such

that ω(x) > δ for |x| > R. Consequently, by using (3.1.3), (3.2.14) and continuity of ω we

obtain (3.2.15).

3.3 Proof of Theorem 3.1.2

By (2.3.9) we get

Kt −Pt(I− V L−1) = Qt −Wt, (3.3.1)

where

Wt =
∫ t

0
(Pt−s −Pt)V Ks ds, Qt =

∫ ∞
t

Pt V Ks ds.

Let

Wt(x, y) =
m∑
i=1

W
〈i〉
t (x, y) =

m∑
i=1

∫ t

0

∫
Rd

(Pt−s(x− z)− Pt(x− z))Vi(z)Ks(z, y) dz ds,

Qt(x, y) =
m∑
i=1

Q
〈i〉
t (x, y) =

m∑
i=1

∫
Rd
Pt(x, z)

∫ ∞
t

Vi(z)Ks(z, y) ds dz

be the integral kernels of Wt and Qt respectively. In order to prove Theorem 3.1.2 it is

sufficient to establish that the maximal operators: f 7→ supt>0 |Wtf | and f 7→ supt>0 |Qtf |

are bounded on L1(Rd). The proofs of these facts are presented in the following four

lemmas.

Lemma 3.3.2. The operator f 7→ supt>2 |Wtf | is bounded on L1(Rd).
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Proof. It suffices to prove that

sup
y∈Rd

∫
Rd

sup
t>2
|Wt(x, y)| dx <∞.

Without loss of generality we can consider only W 〈1〉t (x, y). For 0 < β < 1, which will be

fixed later on, we write

W
〈1〉
t (x, y) =

∫ t

0

∫
Rd

(Pt−s(x− z)− Pt(x− z))V1(z)Ks(z, y) dz ds

=
∫ tβ

0
...+

∫ t

tβ
... = F1(x, y; t) + F2(x, y; t).

To estimate F1 observe that for t > 2 and s ≤ tβ < t there exists φ ∈ S(Rd) such that

|Pt−s(x− z)− Pt(x− z)| ≤ C
s

t
φt(x− z). (3.3.3)

Here and subsequently, till the end of the present chapter, ft(x) = t−d/2f(x/
√
t). From

(3.3.3) and (3.1.1), we get

|F1(x, y; t)| ≤ Ct−1+β

∫
Rd
φt(x− z)V1(z)|z − y|2−ddz.

Since supt>2 t
−1+βφt(x− z) ≤ C(1 + |x− z|)−d−2+2β, we have that

sup
y∈Rd

∫
Rd

sup
t>2
|F1(x, y; t)|dx ≤ C

∫
Rd
V1(z)|z − y|2−d dz ≤ C,

where the last inequality comes from Lemma 3.2.1.

To deal with F2 we write

F2(x, y; t) =
∫ t

tβ

∫
Rd
Pt−s(x− z)V1(z)Ks(z, y) dz ds−

∫ t

tβ

∫
Rd
Pt(x− z)V1(z)Ks(z, y) dz ds

= F ′2(x, y; t)− F ′′2 (x, y; t)

Observe that for s ∈ [tβ, t] we have

Ks(z, y) ≤ Ct−βd/2 exp
(
−|z − y|2/4t

)
. (3.3.4)

Also ∫ t

0
Pt−s(x− z) ds =

∫ t

0
Ps(x− z) ds ≤ C|x− z|2−d exp

(
−|x− z|2/ct

)
. (3.3.5)

As a consequence of (3.3.4)–(3.3.5) we obtain

F ′2(x, y; t) ≤ C
∫

Rd
t−βd/2|x− z|2−d exp

(
−|x− z|2/ct

)
V1(z1) exp

(
−|z − y|2/4t

)
dz.
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Then, for ε > 0,

sup
t>2

t−βd/2 exp
(
−|x− z|2/ct

)
exp

(
−|z − y|2/4t

)
≤ C sup

t>2
t−1−ε exp

(
−|x− z|2/ct

)
· sup
t>2

t−βd/2+1+ε exp
(
−|z − y|2/4t

)
≤ C(1 + |x− z|)−2−2ε|z − y|2+2ε−βd.

Consequently,

sup
y∈Rd

∫
Rd

sup
t>2

F ′2(x, y; t) dx ≤ C sup
y∈Rd

∫
Rd

∫
Rd

|x− z|2−d

(1 + |x− z|)2+2ε
|z − y|2+2ε−βdV1(z) dx dz

≤ C sup
y∈Rd

∫
Rd
|z − y|2+2ε−βdV1(z1) dz.

If we choose β < 1 close to 1 and ε small, then we can apply Lemma 3.2.1 and get

sup
y∈Rd

∫
Rd

sup
t>2

F ′2(x, y; t) dx ≤ C.

We now turn to estimate F ′′2 (x, y; t). Observe that for ε > 0 we have∫ t

tβ
Ks(z, y) ds ≤ C

∫ ∞
tβ

t−βεs−d/2+ε exp
(
−|z − y|2/(4s)

)
ds ≤ Ct−βε|z − y|2−d+2ε.

Then from Lemma 3.2.1 we conclude that

sup
y∈Rd

∫
Rd

sup
t>2

F ′′2 (x, y; t) dx ≤ C sup
y∈Rd

∫
Rd

∫
Rd

sup
t>2

t−βεPt(x− z)V1(z)|z − y|2−d+2ε dx dz

≤ C sup
y∈Rd

∫
Rd

∫
Rd

(1 + |x− z|)−d−2βεV1(z)|z − y|2−d+2ε dx dz

≤ C sup
y∈Rd

∫
Rd
V1(z)|z − y|2−d+2ε dz ≤ C,

provided ε > 0 is small enough.

Lemma 3.3.6. The operator f 7→ supt≤2 |Wtf | is bounded on L1(Rd).

Proof. It is enough to prove that

sup
y∈Rd

∫
Rd

sup
t≤2
|W 〈1〉t (x, y)| dx <∞.

We have∫ t

0

∫
Rd

(Pt−s(x− z)− Pt(x− z))V1(z)Ks(z, y) dz ds =
∫ t/2

0
...+

∫ t

t/2
...

= F3(x, y; t) + F4(x, y; t).
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To deal with F3 observe that for t ≤ 2, s ≤ t/2 we have

|Pt−s(x− z)− Pt(x− z)| ≤ Cφt(x− z),

where φ ∈ S(Rd), φ ≥ 0. Therefore

sup
t≤2
|F3(x, y; t)| ≤ C sup

t≤2

∫
Rd
φt(x− z)V1(z)|z − y|2−ddz.

Denote by M0
φ the classical local maximal operator associated with φ, that is

M0
φ(f)(x) = sup

t≤2
|φt ∗ f(x)|.

Then

sup
t≤2
|F3(x, y; t)| ≤ CM0

φ(ξy)(x),

where ξy(z) = V1(z)|z − y|2−d. We claim that

sup
y∈Rd

∫
Rd

sup
t≤2
|F3(x, y)|dx ≤ C sup

y∈Rd

∫
Rd

M0
φ(ξy)(x) dx ≤ C. (3.3.7)

To obtain (3.3.7) we write

ξy(z) =
∞∑
k=1

ξy,k(z),

where

ξy,1(z) = V1(z)|z− y|2−dχB(y,2)(z), ξy,k(z) = V1(z)|z− y|2−dχB(y,2k)\B(y,2k−1)(z), k > 1.

From Lemma 3.2.1 it follows that there exists s > 1 such that

supp ξy,1 ⊆ B(y, 2) and ‖ξy,1‖Ls(Rd) ≤ C ≤ C|B(y, 2)|−1+1/s. (3.3.8)

Consider ξy,k for k > 1. Set q < d1/2 such that V1 ∈ Lq(V1). Then

supp ξy,k ⊆ B(y, 2k).

‖ξy,k‖Lq(Rd) ≤ C2k(2−d)‖V1‖Lq(V1)2
k(d−d1)/q ≤ C|B(y, 2k)|−1+1/q2−ρk, (3.3.9)

where ρ = d1/q − 2. Now, our claim (3.3.7) follows from (3.3.8), (3.3.9), and the classical

theory of local maximal operators.

It remains to analyze F4 = F5 − F6, where

F5(x, y; t) =
∫ t

t/2

∫
Rd
Pt−s(x− z)V1(z)Ks(z, y) dz ds,

F6(x, y; t) =
∫ t

t/2

∫
Rd
Pt(x− z)V1(z)Ks(z, y) dz ds.
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Clearly,

sup
s∈[t/2,t]

Ks(z, y) ≤ Ct−d/2 exp
(
−|z − y|2/ct

)
.

Therefore, for 0 < t ≤ 2 and 0 < γ < 1 close to 1 we get

F5(x, y; t) ≤ C
∫ t/2

0

∫
Rd
t−γPs(x− z)V1(z)t−d/2+γ exp

(
−|z − y|2/ct

)
dz ds

≤ C
∫

Rd
|x− z|2−dt−γ exp

(
−|x− z|2/ct

)
V1(z)|z − y|−d+2γ dz

≤ C
∫

Rd
|x− z|2−d−2γ exp

(
−|x− z|2/c′

)
V1(z)|z − y|−d+2γ dz.

Thus, by using Lemma 3.2.1, we get

sup
y∈Rd

∫
Rd

sup
0<t≤2

F5(x, y; t)dx ≤ C.

To deal with F6 we observe that for 0 < t ≤ 2 and 0 < γ < 1 close to 1 we have

F6(x, y; t) ≤ C
∫

Rd
tPt(x− z)V1(z1)t−d/2 exp

(
−|z − y|2/ct

)
dz

≤
∫

Rd
|x− z|2−d−2γ exp

(
−|x− z|2/c′

)
V1(z)|z − y|−d+2γ dz

and, consequently,

sup
y∈Rd

∫
Rd

sup
t<2

F6(x, y; t) dx ≤ C.

Lemma 3.3.10. The operator f 7→ supt>2 |Qtf | is bounded on L1(Rd).

Proof. Notice that for ε > 0 and t > 2 we have∫ ∞
t

Ks(z, y) ds ≤ C
∫ ∞
t

s−εs−d/2+ε exp
(
−|y − z|

2

4s

)
ds ≤ Ct−ε|y − z|2−d+2ε. (3.3.11)

It causes no loss of generality to consider only Q〈1〉t (x, y). If t > 2, then

0 ≤ Q〈1〉t (x, y) ≤ C
∫

Rd
Pt(x− z)V1(z)t−ε|y − z|2−d+2ε dz.

Since supt>2 t
−εPt(x− z) ≤ C(1 + |x− z|)−d−2ε, we find that

sup
y∈Rd

∫
Rd

sup
t>2

Q
〈1〉
t (x, y) dx ≤ C sup

y∈Rd

∫
Rd

∫
Rd

(1 + |x− z|)−d−2εV1(z)|y − z|2−d+2ε dz dx

≤ C sup
y∈Rd

∫
Rd
V1(z)|y − z|2−d+2ε dz ≤ C.

(3.3.12)

The last inequality follows from Lemma 3.2.1.
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Lemma 3.3.13. The operator f 7→ supt≤2 |Qtf | is bounded on L1(Rd).

Proof. The estimate
∫∞
t Ks(z, y) ds ≤ C|z − y|2−d implies

sup
t≤2

Qt(x, y) ≤ C sup
t≤2

∫
Rd
Pt(x− z)V (z)|z − y|2−d dz.

We claim that for fixed y ∈ Rd the foregoing function (of variable x) belongs to L1(Rd)

and

sup
y∈Rd

∫
Rd

sup
t≤2

Qt(x, y) dx <∞.

The claim follows by arguments identical to that we used to prove (3.3.7).

Now, Theorem 3.1.2 follows directly from Lemmas 3.3.2, 3.3.6, 3.3.10, 3.3.13.

3.4 Proof of Theorem 3.1.4

Proof. Thanks to (3.2.16) and Proposition 3.2.10, for g ∈ L1(Rd), we obtain∫
Rd

(I− V L−1)(g/ω)(x) dx =
∫

Rd

g(x)
ω(x)

dx−
∫

Rd

∫
Rd
V (x)ΓL(x, y)

g(y)
ω(y)

dy dx

=
∫

Rd

g(x)
ω(x)

dx−
(∫

Rd

g(y)
ω(y)

dy − w(y)
g(y)
ω(y)

dy
)

=
∫

Rd
g(y) dy.

(3.4.1)

First, we are going to prove that

‖ωf‖H1
∆(Rd) ≤ ‖f‖H1

L,max
. (3.4.2)

Theorem 3.1.2 combined with (3.2.7) implies that (3.4.2) is equivalent to

‖ω(I− V∆−1)f‖H1
∆(Rd) ≤ C‖f‖H1

∆(Rd). (3.4.3)

Assume that a is a classical (1,∞)−atom associated with B = B(y0, r), i.e.

supp a ⊆ B, ‖a‖∞ ≤ |B|−1,

∫
B
a(x) dx = 0. (3.4.4)

By the atomic characterization of H1
∆(Rd) the inequality (3.4.3) will be obtained, if we

have established that b = ω(I− V∆−1)a ∈ H1
∆(Rd) and

‖b‖H1
∆(Rd) ≤ C (3.4.5)

with a constant C > 0 independent of a.
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By (3.2.7), a = (I− V L−1)(b/ω). Hence, using (3.4.1) we get∫
Rd
b(x) dx = 0. (3.4.6)

The proof of (3.4.5) is divided into two cases.

Case 1: r ≥ 1. Set

b(x) = (b(x)− c1)χ2B(x) +
∞∑
k=2

(
b(x)χ2kB\2k−1B(x) + ck−1χ2k−1B(x)− ckχ2kB(x)

)
=
∞∑
k=1

bk(x), where ck = −|2kB|−1

∫
(2kB)c

b(x) dx, k = 1, 2, ... .

Here and throughout, ρB = B(y0, ρr) for B = B(y0, r).

We claim that
∞∑
k=1

‖bk‖H1
∆(Rd) ≤ C. (3.4.7)

From Lemma 3.2.8 and Proposition 3.2.10 we conclude that there exists σ > 0 such that

|ck| ≤ |2kB|−1

∫
(2kB)c

V (x)|∆−1a(x)| dx

≤ C|2kB|−1

∫
(2kB)c

∫
B
V (x) |x− y|2−d|a(y)| dy dx

≤ C|2kB|−1

∫
B
|a(y)|

∫
(2kB)c

V (x) |x− y0|2−d dx dy ≤ C|2kB|−1(2kr)−σ.

(3.4.8)

Note that supp bk ⊆ 2kB and
∫

Rd bk(x) dx = 0. Therefore (3.4.7) follows, if we have verified

that there exists q > 1 such that

∞∑
k=1

‖bk‖Lq(Rd)|2kB|1−1/q ≤ C, (3.4.9)

where C does not depend on a.

If k = 1, then

|b1(x)| ≤ |c1|χ2B(x) + |a(x)|+ V (x)|∆−1a(x)|χ2B(x)

and

‖b1‖Lq(Rd) ≤ C|2B|−1+1/q +
(∫

2B
V (x)q|∆−1a(x)|qdx

)1/q

.

Notice that(∫
2B
V (x)q|∆−1a(x)|qdx

)1/q

≤ Cr2|B|−1
m∑
i=1

(∫
2B
Vi(x)qdx

)1/q

.
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We can consider only the summand with V1. By the Hölder inequality

r2|B|−1

(∫
2B
V1(x)qdx

)1/q

≤ Cr2|B|−1r
ed1/q‖V1‖Lqs(V1)r

d1(1−1/s)/q

= C|B|−1+1/qr2−d1/(sq).

Choosing q, s > 1 such that V1 ∈ Lqs(V1) and 2− d1/(qs) < 0 we get

‖b1‖Lq(Rd) ≤ C|2B|−1+1/q. (3.4.10)

For k > 1, by the definition of bk, we get that

‖bk‖Lq(Rd) ≤ |ck−1||2k−1B|1/q + |ck||2kB|1/q + ‖b‖Lq(2kB\2k−1B)

From (3.4.8) we see that first two summands can be estimated by C|2kB|−1+1/q2−kσ. Then

it remains to deal with the last summand. By using Lemma 3.2.8 there exists σ′ > 0 such

that for q ∈ (1, 1 + ε] we have

‖b‖Lq(2kB\2k−1B) ≤ C

(∫
2kB\2k−1B

(∫
B
V (x)|x− y|2−d|a(y)| dy

)q
dx

)1/q

≤ C

(∫
(2k−1B)c

V (x)q|x− y0|q(2−d)dx

)1/q

≤ C(2kr)−σ
′

= C|2kB|−1+1/q(2kr)−σ
′+d−d/q ≤ C|2kB|−1+1/q2−kδ

(3.4.11)

provided that δ = −σ′ + d− d/q > 0.

The estimate (3.4.9) follows from (3.4.10) and (3.4.11). This ends Case 1.

Case 2: r < 1. Fix N ∈ N ∪ {0} such that 1/2 < 2Nr ≤ 1. Then

b(x) =(a(x)ω(x)− c0χB(x)) +
N∑
l=1

c0|B|
(
|2l−1B|−1χ2l−1B(x)− |2lB|−1χ2lB(x)

)
+
(
b(x)− a(x)ω(x) + c0|B||2NB|−1χ2NB(x)

)
= d0(x) +

N∑
l=1

dl(x) + b′(x),

where

c0 = |B|−1

∫
B
a(x)ω(x) dx.

By using
∫
B a = 0 and property (a) from Proposition 3.2.10, we obtain

|c0| ≤ |B|−1

∫
B
|a(x)||ω(x)− ω(y0)|dx ≤ rδ|B|−1. (3.4.12)

Observe that supp d0 ⊆ B,
∫
B d0 = 0, and ‖d0‖∞ ≤ C|B|−1. Similarly, for l = 1, ..., N ,

supp dl ⊆ 2lB,
∫
dl = 0 and ‖dl‖∞ ≤ Crδ|2lB|−1. Therefore

N∑
l=0

‖dl‖H1
∆(Rd) ≤ C + CNrδ ≤ C − Crδ log2 r ≤ C.
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Denote B′ = 2NB. Obviously |B′| ∼ 1. To deal with b′(x) we apply the method from

Case 1 with respect to B′, i.e.

b′ = (b′(x)− c′1)χ2B′(x) +
∞∑
k=2

(
b′(x)χ2kB′\2k−1B′(x) + c′k−1χ2k−1B′(x)− c′kχ2kB′(x)

)
=
∑

b′k, where c′k = |2kB′|−1

∫
2kB′

b′(x) dx = −|2kB′|−1

∫
(2kB′)c

b′(x) dx.

The arguments that we used in Case 1 also give

|c′k| ≤ C|2kB′|−12−kσ for k = 1, 2, ... and
∞∑
k=2

‖b′k‖H1
∆(Rd) ≤ C. (3.4.13)

It remains to obtain that

‖b′1‖H1
∆(Rd) ≤ C. (3.4.14)

It is immediate that supp b′1 ⊆ 2B′ and
∫
2B′ b

′
1 = 0. Also,

‖b′1‖Lq(Rd) ≤
(∫

2B′
V (x)q|∆−1a(x)|q

)1/q

+ C|c0||B||2B′|−1+1/q + C|c′1||2B′|1/q. (3.4.15)

By (3.4.12) and (3.4.13) only the first summand needs to be estimated. Observe that

|∆−1a(x)| ≤
∫
B
|x− y|2−d|a(y)| dy ≤

 Cr2−d if |x− y0| < 2r

C|x− y0|2−d if |x− y0| > 2r

 ≤ C|x− y0|2−d.

Therefore, by using Lemma 3.2.1, we get

‖b′1‖Lq(Rd) ≤ C

and (3.4.14) follows, which finishes off Case 2 and the proof of (3.4.2).

In order to complete the proof of Theorem 3.1.4 it remains to prove that

‖f‖H1
L,max

≤ C‖ωf‖H1
∆(Rd). (3.4.16)

In virtue of Theorem 3.1.2 the inequality (3.4.16) is equivalent to

∥∥(I− V L−1) (g/ω)
∥∥
H1

∆(Rd) ≤ C‖g‖H1
∆(Rd). (3.4.17)

Assume that a is an H1
∆(Rd)-atom (see (3.4.4)). Set b = (I− V L−1)(a/ω). The proof

will be finished if we have obtained that

‖b‖H1
∆(Rd) ≤ C (3.4.18)

with C independent of atom a. By (3.4.1), we have∫
Rd
b(x) dx =

∫
Rd
a(x) dx = 0.
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Note that the proof of (3.4.5) only relies on estimates of |Γ∆(x, y)| from above by C|x−

y|2−d. The same estimates hold for ΓL(x, y). Moreover, the weight 1/ω has the same

properties as ω, that is, boundedness from above and below by positive constants and the

Hölder condition. Therefore the proof of (3.4.18) follows by the same arguments. Details

are omitted.

3.5 Proof of Theorem 3.1.8

By (2.3.9) we get a formula similar to (3.3.1).

Kt −Pt(I− V L−1) = Q′t −W′
t, (3.5.1)

where

W′
t =

∫ t

0
Pt−s V Ks ds, Q′t =

∫ ∞
0

Pt V Ks ds.

Recall that for j = 1, ..., d we denote by ∂
∂xj

the derivative in the direction of j-th

standard coordinate. For f ∈ L1(Rd) from (3.3.1) and (3.5.1) we get∫ ε−1

ε

∂

∂xj
Ktf

dt√
t
−
∫ ε−1

ε

∂

∂xj
Pt(I−V L−1)f

dt√
t

=W ′j,εf+Q′j,εf+Wj,εf+Qj,εf, (3.5.2)

Qj,ε =
∫ ε−1

2

∂

∂xj
Qt

dt√
t
, Q′j,ε =

∫ 2

ε

∂

∂xj
Q′t

dt√
t
,

Wj,ε = −
∫ ε−1

2

∂

∂xj
Wt

dt√
t
, W ′j,ε = −

∫ 2

ε

∂

∂xj
W′

t

dt√
t
.

All the operators above are well-defined and bounded on L1(Rd). Recall Theorem

1.1.10, which says that R∆
j f = limε→0

∫ ε−1

ε
∂
∂xj

Ptf
dt√
t
∈ L1(Rd) for every j = 1, ..., d,

exactly when f ∈ H1
∆(Rd) and

‖f‖H1
∆(Rd) ∼ ‖f‖L1(Rd) +

d∑
j=1

‖R∆
j f‖L1(Rd). (3.5.3)

The subsequent four lemmas prove that the operators Qj,ε,Q′j,ε,Wj,ε,W ′j,ε converge

strongly as ε→ 0 in the space of L1(Rd)-bounded operators.

Lemma 3.5.4. For every j = 1, ..., d the operators Qj,ε converge as ε → 0 in norm-

operator topology.

Proof. The operators Qj,ε have the integral kernels

Qj,ε(x, y) =
∫ ε−1

2

∫ ∞
t

∫
Rd

∂

∂xj
Pt(x− z)V (z)Ks(z, y) dz ds

dt√
t
.
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The lemma will be proved when we have obtained

sup
y∈Rd

∫
Rd

Q〈i〉j (x, y)dx ≤ C,

where

Q〈i〉j (x, y) =
∫ ∞

2

∫ ∞
t

∫
Rd

∣∣∣ ∂
∂xj

Pt(x− z)
∣∣∣Vi(z)Ks(z, y) dz ds

dt√
t
.

Since | ∂∂xjPt(x− z)| ≤ Ct
−1/2φt(x− z) for some φ ∈ S(Rd) we get∫

Rd
Q〈i〉j (x, y)dx ≤ C

∫
Rd

∫ ∞
2

∫ ∞
t

∫
Rd
t−1/2φt(x− z)Vi(z)Ks(z, y) dz ds

dt√
t
dx

≤ C
∫ ∞

2

∫ ∞
t

∫
Rd
t−1Vi(z)Ks(z, y) dz ds dt

≤ C
∫ ∞

2

∫ ∞
t

∫
Rd
t−1−εVi(z)s−d/2+ε exp(−|z − y|2/4s) dz ds dt

≤ C
(∫ ∞

2
t−1−εdt

)
·
(∫

Rd
Vi(z)|z − y|2−d+2ε dz

)
≤ C,

(3.5.5)

where in the last inequality we use Lemma 3.2.1 and C does not depend on y ∈ Rd.

Lemma 3.5.6. For every j = 1, ..., d the operators Wj,ε converge as ε → 0 in norm-

operator topology.

Proof. The operators Wj,ε have the integral kernels

Wj,ε(x, y) =
∫ ε−1

2

∫ t

0

∫
Rd

∂

∂xj

(
Pt−s(x− z)− Pt(x− z)

)
V (z)Ks(z, y) dz ds

dt√
t
.

Set

W〈i〉j (x, y) =
∫ ∞

2

∫ t

0

∫
Rd

∣∣∣ ∂
∂xj

(Pt−s(x− z)− Pt(x− z))
∣∣∣Vi(z)Ks(z, y) dz ds

dt√
t
.

The proof will be completed when we have obtained that

sup
y∈Rd

∫
Rd

W〈i〉j (x, y)dx ≤ C. (3.5.7)

For fixed y ∈ Rd and 0 < β < 1, β will be determined later on, we write∫
Rd

W〈i〉j (x, y)dx ≤
∫ ∫ ∞

2

∫ t

0

∫ ∣∣∣ ∂
∂xj

(Pt−s(x− z)− Pt(x− z))
∣∣∣Vi(z)Ks(z, y) dz ds

dt√
t
dx

≤
∫ tβ

0
... ds+

∫ t

tβ
... ds = J1 + J2.

Observe that there exists ψ ∈ S(Rd), ψ ≥ 0 such that for s ∈ (0, tβ) and t > 2 we have∣∣∣ ∂
∂xj

(Pt−s(x)− Pt(x))
∣∣∣ ≤ st−3/2ψt(x).
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Thus by using Lemma 3.2.1 we get

J1 ≤
∫

Rd

∫ ∞
2

∫ tβ

0

∫
Rd
st−2ψt(x− z)Vi(z)Ks(z, y) dz ds dt dx

≤ C
∫ ∞

2
t−2+β dt ·

∫
Rd
Vi(z)|z − y|2−ddz ≤ C1.

(3.5.8)

Note that if t > 2 and s ∈ [tβ, t] then Ks(z) ≤ Ct−βd/2 exp(−|z|2/ct). Choosing 0 < β < 1,

β close to 1, and applying Lemma 3.2.1 we obtain

J2 ≤
∫

Rd

∫ ∞
2

∫ t

tβ

∫
Rd

(
ψt−s(x− z)√

t− s
+
ψt(x− z)√

t

)
Vi(z)Ks(z, y) dz ds

dt√
t
dx

≤ C
∫ ∞

2

∫ t

0

∫
Rd

(
((t− s)t)−1/2 + t−1

)
Vi(z)t−βd/2 exp(−|z − y|2/ct) dz ds dt

≤ C
∫ ∞

2

∫
Rd
Vi(z)t−βd/2 exp(−|z − y|2/ct) dz dt ≤ C

∫
Rd
Vi(z)|z − y|2−βddz ≤ C2.

(3.5.9)

Notice that the constants C1 and C2 in (3.5.8) and (3.5.9) do not depend on y ∈ Rd. Thus

(3.5.7) follows.

Lemma 3.5.10. For j = 1, ..., d the operators W ′j,ε converge as ε → 0 in norm-operator

topology.

Proof. The operators W ′j,ε have the integral kernel

W ′j,ε(x, y) =
∫ 2

ε

∫ t

0

∫
Rd

∂

∂xj
Pt−s(x− z)V (z)Ks(z, y) dz ds

dt√
t
.

The lemma will be proved if we have shown that

sup
y∈Rd

∫
Rd

W〈i〉
′

j (x, y) dx ≤ C, (3.5.11)

where

W〈i〉
′

j (x, y) =
∫ 2

0

∫ t

0

∫
Rd

∣∣∣ ∂
∂xj

Pt−s(x− z)
∣∣∣Vi(z)Ks(z, y) dz ds

dt√
t
.

Fix y ∈ Rd. Observe that

∫
Rd

W〈i〉
′

j (x, y)dx ≤
∫

Rd

∫ 2

0

∫ t

0

∫
Rd

∣∣∣ ∂
∂xj

Pt−s(x− z)
∣∣∣Vi(z)Ks(z, y) dz ds

dt√
t
dx

≤
∫ t/2

0
... ds+

∫ t

t/2
... ds = J3 + J4.
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There exists ψ ∈ S(Rd), ψ ≥ 0, such that

J3 ≤
∫

Rd

∫ 2

0

∫ t/2

0

∫
Rd

(t(t− s))−1/2ψt−s(x− z)Vi(z)Ks(z, y) dz ds dt dx

≤ C
∫ 2

0

∫ t

0

∫
Rd
t−1Vi(z)Ks(z, y) dz ds dt

≤ C
∫ 2

0

∫
Rd
t−1Vi(z)|z − y|2−d exp

(
−|z − y|2/ct

)
dz dt

≤ C
∫
|z−y|>1/2

Vi(z)|z − y|2−ddz +
∫
|z−y|≤1/2

Vi(z)|z − y|2−d| log |z − y||dz ≤ C3

and

J4 ≤ C
∫

Rd

∫ 2

0

∫ t

t/2

∫
Rd

(t(t− s))−1/2ψt−s(x− z)Vi(z)t−d/2 exp
(
−|z − y|

2

ct

)
dz ds dt dx

≤ C
∫ 2

0

∫ t/2

0

∫
Rd

(ts)−1/2Vi(z)t−d/2 exp
(
−|z − y|

2

ct

)
dz ds dt

≤ C
∫

Rd
Vi(z)

∫ ∞
0

t−d/2 exp
(
−|z − y|

2

ct

)
dt dz ≤ C

∫
Rd
Vi(z)|z − y|2−ddz ≤ C4

with constants C3 and C4 independent of y ∈ Rd. So we have obtained (3.5.11).

Lemma 3.5.12. For j = 1, ..., d the operators Q′j,ε converge strongly as ε→ 0.

Proof. The kernels of Q′j,ε are given by

Q′j,ε(x, y) =
∫ 2

ε

∫ ∞
0

∫
Rd

∂

∂xj
Pt(x− z)V (z)Ks(z, y) dz ds

dt√
t
.

For f ∈ L1(Rd) we have

Q′j,εf(x) =
∫

Rd
Q′j,ε(x, y)f(y) dy.

Note that Q′j,ε(x, y) = Hj,ε∗φy(x), where φy(z) = V (z)ΓL(z, y), Hj,ε(x) =
∫ 2
ε

∂
∂xj

Pt(x) dt√
t
.

It follows from the theory of singular integrals operators (see [37, Chapter II]) that for

g ∈ Lr(Rd), r > 1, the limits limε→0 Hj,ε ∗ g(x) = Hjg(x) exist for a.e. x and in Lr(Rd)

norm. Obviously, Hj are Lr(Rd)-bounded operators. Moreover,∥∥∥ sup
0<ε<2

|Hj,ε ∗ g|
∥∥∥
Lr(Rd)

≤ C‖g‖Lr(Rd). (3.5.13)

Notice that for |z| > 1/2 we have

sup
0<ε<2

|Hj,ε(z)| ≤ CN |z|−N . (3.5.14)

From (3.5.13) and (3.5.14) we deduce that if a is a function supported in a ball B(y0, R),

R > 1/2, and ‖a‖Lr(Rd) ≤ τ |B|−1+1/r, r > 1, then∥∥∥ sup
0<ε<2

|Hj,ε ∗ a|
∥∥∥
L1(Rd)

≤ Cτ. (3.5.15)
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Using Lemma 3.2.1 we get that for every y ∈ Rd the limit limε→0Q
′
j,ε(x, y) = Q′j(x, y)

exists for a.e. x ∈ Rd. The lemma will be proved by using the Lebesgue dominated

convergence theorem if we have established that:

sup
y∈Rd

∫
Rd

sup
0<ε<2

|Q′j,ε(x, y)| dx ≤ C and (3.5.16)

lim
ε→0

∫
Rd
|Q′j,ε(x, y)−Q′j(x, y)| dx = 0 for every y. (3.5.17)

For fixed y ∈ Rd let

φ1(z) = φy(z)χB(y,2)(z), φk(z) = φy(z)χB(y,2k)\B(y,2k−1)(z), k ≥ 2.

Then φy =
∑∞

k=1 φk, where the series converges in L1(Rd) and Lr(Rd) norm for r slightly

bigger than 1. Notice that suppφk ⊆ B(y, 2k), ‖φ1‖Lr(Rd) ≤ C, and

‖φk‖rLr(Rd) =
∫
B(y,2k)\B(y,2k−1)

V1(z)r|z − y|(2−d)r dz ≤ 2k(2−d)r
∫
B(y,2k)

V1(z)r dz

≤ C2k(2−d)r2k(d−d1)‖V1‖rLrq(V1)2
kd1/q′ = C(2k)−dr+d+2r−d1/q. (3.5.18)

Therefore, for q < d1/2r such that V1 ∈ Lrq(V1), we get

‖φk‖Lr(Rd) ≤ C|B(y, 2k)|−1+1/r2−σk, (3.5.19)

where σ = d1/(qr)− 2 > 0. By using (3.5.15) combined with (3.5.19) we obtain∫
Rd

sup
0<ε<2

|Q′j,ε(x, y)| dx =
∫

Rd
sup

0<ε<2
|Hj,ε ∗ φy(x)| dx

≤
∞∑
k=1

∫
Rd

sup
0<ε<2

|Hj,ε ∗ φk(x)| dx

≤ C
∞∑
k=1

2−σk ≤ C, (3.5.20)

which implies (3.5.16), since the last constant C does not depend of y. Additionally

(3.5.17) is a consequence of (3.5.16) and the Lebesgue dominated convergence theorem.

Now, Theorem 3.1.8 follows directly by applying (3.5.2), (3.5.3), and Theorem 3.1.2.

Note that the existence of the limits (3.1.7) has been shown parallel.

3.6 Appendix

3.6.1 Proof of Corollary 3.2.6

As it was mentioned after Corollary 3.2.6, the aim of this subsection is to prove the formula

(3.2.7). Recall that d ≥ 3 and that L−1 and ∆−1 were initially given by the integral kernels
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ΓL and Γ∆ respectively (see Section 3.1). Lemma 3.2.1, in its simple form, asserts that

V L−1 and V∆−1 are bounded on L1(Rd), since∫
Rd
V (z)Γ−1

L (z, y) dz ≤
∫

Rd
V (z)|Γ−1

∆ (z, y)| dz = C

∫
Rd
V (z)|z − y|2−d dz ≤ C ′

independently of y ∈ Rd. This estimate justify many of the following calculations and will

be used without referring to it. Notice that for ψ ∈ C∞c (Rd), f ∈ L1(Rd) we have

|L−1ψ(x)|+ |∆−1ψ(x)| ≤ C(1 + |x|)2−d ∆−1f, L−1f ∈ L1(Rd) + L∞(Rd)

Since in (3.2.7) we only deal with L1(Rd)-bounded operators, we can only consider

a dense subspace of L1(Rd), namely we shall prove (3.2.7) for f ∈ C∞c (Rd).

Recall that, for given semigroup Tt on L1(Rd), the domain of its infinitesimal generator

A (A = ∆ or A = −L) is given by

Dom(A) = {f ∈ L1(Rd) | Af = lim
t→0

t−1(Ttf − f) exists in the L1(Rd)-norm}. (3.6.1)

Let us distinguish the infinitesimal generators −L and ∆ from the differential operators

−L and ∆, where

− Lf = ∆f − V · f, ∆f =
∂2

∂x2
1

f + ...+
∂2

∂x2
d

f (3.6.2)

for f ∈ C2(Rd).

It is well known that C∞c (Rd) ⊆ Dom(∆) and for ψ ∈ C∞c (Rd) we have ∆ψ = ∆ψ.

Now we check that the same holds for L.

Lemma 3.6.3. The class C∞c (Rd) is contained in Dom(−L) and for ψ ∈ C∞c (Rd) we

have

Lψ = Lψ (3.6.4)

Proof. Denote: Vn = min(V, n), Ln = −∆ + Vn, Kn
t - the semigroup generated by −Ln

on L1(Rd). Since Vn is bounded, −Ln is a perturbation of ∆ by the operator bounded

on L1(Rd). Thus Dom(−Ln) = Dom(∆) ⊇ C∞c (Rd) and for φ ∈ C∞c (Rd) we have Lnψ =

Lnψ = −∆ψ+V ψ (see, e.g. [34, Chapter 3]). For f ∈ L1(Rd) and ψ ∈ C∞c (Rd) we obtain

the following convergences in L1(Rd):

lim
n→∞

Kn
t f = Ktf, lim

t→0
t−1(Kn

t ψ − ψ) = −Lnψ, (3.6.5)

where the first limit follows from (2.1.3).
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Next,

lim
n→∞

Lnψ = Lψ (3.6.6)

in L1(Rd), which we have got from the Lebesgue dominated convergence theorem since∫
L1(Rd)

|(Ln − L)ψ| ≤ C
∫

suppψ
χ{V (x)>n}(x)V (x) dx→ 0,

as n→∞. Let us consider

t−1(ψ −Kn
t ψ) = Gn

t = t−1

∫ t

0
Kn
sLnψ ds. (3.6.7)

Considering the left-hand side of (3.6.7) we obtain the following L1(Rd)-convergence.

lim
n→∞

Gn
t = t−1(ψ −Ktψ) (3.6.8)

By using the right-hand side of (3.6.7) we write

Gn
t = t−1

(∫ t

0
Kn
s (Ln − L)ψ ds+

∫ t

0
(Kn

s −Ks)Lψ, ds+
∫ t

0
KsLψ ds

)
. (3.6.9)

Since Kn
s are contractions on L1(Rd), by (3.6.6) we see that the first summand tends to 0

in L1(Rd) as n→∞. We claim that the same holds for the second summand. To see this

we first note that∥∥∥∫ t

0
(Kn

s −Ks)Lψ ds
∥∥∥
L1(Rd)

≤
∫ t

0
‖(Kn

s −Ks)Lψ‖L1(Rd) ds

and

‖(Kn
s −Ks)Lψ‖L1(Rd) ≤ 2‖Ps(|Lψ|)‖L1(Rd). (3.6.10)

Now, applying (3.6.5) and the Lebesgue dominated convergence theorem we obtain the

claim. Summarizing,

lim
n→∞

Gn
t = t−1

∫ t

0
KsLψ ds (3.6.11)

in L1(Rd). Joining together (3.6.8) and (3.6.11), and using the strong continuity of the

semigroup {Kt}t>0, we have

lim
t→0

t−1(Ktψ − ψ) = − lim
t→0

t−1

∫ t

0
KsLψ ds = −Lψ, (3.6.12)

which finishes the proof of the lemma.

Lemma 3.6.13. Let A denotes either −L or ∆. For f ∈ L1(Rd), ψ ∈ C∞c (Rd) we have:

〈A−1f,Aψ〉 = 〈f,A−1Aψ〉 = 〈f, ψ〉 (3.6.14)

∆∆−1ψ(x) = ∆−1∆ψ(x) = ψ(x) for x ∈ Rd, (3.6.15)

L−1Lψ = ψ for a.e. x ∈ Rd (3.6.16)
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Proof. Denote by Tt the semigroup generated by A. We already know that C∞c (Rd) ⊆

Dom(A). Let us consider

〈Tεf −Tε−1f, ψ〉 = 〈f,Tεψ −Tε−1ψ〉 = −〈f,
∫ ε−1

ε
TtAψ dt〉. (3.6.17)

Passing to the limit with ε→ 0 we prove (3.6.14). Here we have used that

sup
y∈Rd

∫
L1(Rd)

(|∆ψ(x)|+ V (x)|ψ(x)|)|x− y|2−d dx <∞. (3.6.18)

The formula (3.6.16) is a direct consequence of (3.6.14). Also, (3.6.15) holds, due to the

fact that ψ,∆−1∆ψ,∆∆−1ψ are continuous (or even smooth) and taking f = φ ∈ C∞c (Rd)

in (3.6.14) we have 〈∆−1ψ,∆φ〉 = 〈ψ, φ〉.

Fix ξn(x) = ξ(x/n), where ξ ∈ C∞c (B(0, 2)), 0 ≤ ξ ≤ 1, ξ(x) = 1 for x ∈ B(0, 1). Then

‖∇ξn‖∞ ≤ C/n and ‖∆ξn‖∞ ≤ C/n2. Fix also δ ∈ C∞c (B(0, 1)) such that
∫
δ = 1, δ ≥ 0,

δ(x) = δ(−x), and denote δt(x) = t−dδ(x/t).

The following obvious estimates are needed in the proceeding.

Lemma 3.6.19. For φ, ψ ∈ C∞c (Rd) we have:

(a) |∇ ·∆−1ψ(x)| ≤ C(1 + |x|)1−d,

(b) |∆−1ψ(x)|+ |L−1ψ| ≤ C(1 + |x|)2−d,

(c) supn |∇ξn(x)| ≤ C(1 + |x|)−1,

(d) supn |∆ξn(x)| ≤ C(1 + |x|)−2,

(e) |∆(δt ∗ (∆−1Lφ))(x)| = |δt ∗ Lφ(x)| ≤ Ct(1 + |x|)−d,

(f) |∇(δt ∗ (∆−1Lφ))(x)| ≤ Ct(1 + |x|)1−d,

(g) |δt ∗ (∆−1Lφ)(x)| ≤ Ct(1 + |x|)2−d.

Corollary 3.6.20. For ψ, φ ∈ C∞c (Rd) it holds:

〈L∆−1ψ,L−1∆φ〉 = 〈ψ, φ〉, (3.6.21)

〈L−1ψ, V∆−1Lφ〉 = 〈ψ, φ〉+ 〈ψ,∆−1Lφ〉. (3.6.22)

Proof. Let us consider W1 = 〈L(ξn∆−1ψ),L−1∆φ〉. By using Lemma 3.6.13 twice we

obtain

lim
n→∞

W1 = lim
n→∞

〈L(ξn∆−1ψ),L−1∆φ〉 = lim
n→∞

〈ξn∆−1ψ,∆φ〉 = 〈∆−1ψ,∆φ〉 = 〈ψ, φ〉.

(3.6.23)
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On the other hand

W1 = 〈L(ξn∆−1ψ),L−1∆φ〉

= 〈ξnL∆−1ψ,L−1∆φ〉 − 〈2∇ξn · ∇(∆−1ψ),L−1∆φ〉 − 〈(∆ξn)(∆−1ψ),L−1∆φ〉.

(3.6.24)

The first summand tends to 〈L∆−1ψ,L−1∆φ〉 as n → ∞, because L∆−1ψ = −ψ +

V∆−1ψ ∈ L1(Rd) and L−1∆φ ∈ L∞(Rd). The second and third summands tend to 0

as n → ∞ by the Lebesgue dominated convergence theorem, i.e. the integrants tend

pointwise to 0 and there are appropriate estimates (see (a)− (d) from Lemma 3.6.19). In

this way, the formula (3.6.21) is proved.

Now, we turn to (3.6.22). Consider

W2 =〈L−1ψ,∆(ξn · (δt ∗∆−1Lφ))〉

=〈L−1ψ, ξn ·∆(δt ∗∆−1Lφ)〉+ 〈L−1ψ, 2∇ξn · ∇(δt ∗∆−1Lφ)〉

+ 〈L−1ψ,∆ξn · (δt ∗∆−1Lφ)〉,

(3.6.25)

Fix t > 0. Thanks to (b)− (g) of Lemma 3.6.19, the second and third summands tend

to 0 as n → ∞. Note that the function Lφ = −∆φ + V φ belongs to L1(Rd) and has

a compact support. Thus from (3.6.14) we obtain that ∆(δt ∗∆−1Lφ) = δt ∗Lφ. It follows

that

lim
t→0

lim
n→∞

W2 = lim
t→0

lim
n→∞

〈L−1ψ, ξn · (δt ∗ Lφ)〉 = lim
t→0
〈L−1ψ, δt ∗ Lφ〉

= 〈L−1ψ,Lφ〉 = 〈ψ, φ〉,
(3.6.26)

where in the last equality we have used (3.6.16).

Let us focus attention on the expression

W3 = 〈L−1ψ,L(ξn · (δt ∗∆−1Lφ))〉 = 〈ψ, ξn · (δt ∗∆−1Lφ)〉.

It is easily seen that

lim
t→0

lim
n→∞

W3 = lim
t→0
〈ψ, δt ∗∆−1Lφ〉 = lim

t→0
〈δt ∗ ψ,∆−1Lφ〉 = 〈ψ,∆−1Lφ〉. (3.6.27)

Moreover,

lim
t→0

lim
n→∞

(W2 +W3) = lim
t→0

lim
n→∞

〈V L−1ψ, ξn(δt ∗ (∆−1Lφ))〉 = lim
t→0
〈V L−1ψ, δt ∗ (∆−1Lφ)〉

= lim
t→0
〈δ̃t ∗ V L−1ψ,∆−1Lφ〉 = 〈V L−1ψ,∆−1Lφ〉.

(3.6.28)

Finally, (3.6.22) is a direct consequence of (3.6.26), (3.6.27), and (3.6.28).
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Proof of Corollary 3.2.6. It is enough to see that for ψ, φ ∈ C∞c (Rd) we have

〈(I− V L−1)(I− V∆−1)ψ, φ〉 = 〈ψ, φ〉, (3.6.29)

〈(I− V∆−1)(I− V L−1)ψ, φ〉 = 〈ψ, φ〉, (3.6.30)

as it was mentioned at the beginning of Subsection 3.6.1.

Let g = (I− V∆−1)ψ ∈ L1(Rd). From (3.6.14) we obtain

〈(I− V L−1)g, φ〉 = 〈g, φ〉 − 〈g,L−1(∆ + L)φ〉

= 〈g, φ〉 − 〈g,L−1∆φ〉 − 〈g,L−1Lφ〉 = −〈g,L−1∆φ〉.

Further,

〈g,L−1∆φ〉 = 〈(I− V∆−1)ψ,L−1∆φ〉

= 〈ψ,L−1∆φ〉 − 〈(L+ ∆)∆−1ψ,L−1∆φ〉

= 〈ψ,L−1∆φ〉 − 〈L∆−1ψ,L−1∆φ〉 − 〈∆∆−1ψ,L−1∆φ〉

= −〈L∆−1ψ,L−1∆φ〉 = −〈ψ, φ〉,

where the last inequality follows from (3.6.21). The proof of (3.6.29) is finished.

We turn to prove (3.6.30). Using (3.6.15) we see that

〈(I− V∆−1)(I− V L−1)ψ, φ〉 = 〈(I− V L−1)ψ, (I−∆−1V )φ〉

= 〈ψ − V L−1ψ, φ−∆−1(∆ + L)φ〉

= −〈ψ,∆−1Lφ〉+ 〈L−1ψ, V∆−1Lφ〉.

In view of (3.6.22) the proof is finished.
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4. CHAPTER 4: HARDY SPACES RELATED TO THE LAGUERRE

OPERATOR

4.1 Background and main result

In this chapter X denotes the half-line (0,∞) with the measure dµ(x) = xαdx, where

α > 0 is fixed. The space X equipped with the Euclidean distance d(x, y) = |x − y| is

a space of homogeneous type in the sense of Coifman-Weiss [8], namely it satisfies the

doubling condition, i.e. there exists C > 0 such that for all x ∈ X and r > 0 we have that

µ(B(x, 2r)) ≤ Cµ(B(x, r)). (4.1.1)

On L2(X) we consider the orthogonal system of the Laguerre functions {ψ(α−1)/2
k (x)}∞k=0,

ψ
(α−1)/2
k (x) =

(
2k!

Γ(k + α/2 + 1/2)

)1/2

L
(α−1)/2
k (x2)e−x

2/2, (4.1.2)

where Lαk is the k-th Laguerre polynomial (see [28, p.76]) given by

Lαk (x) = ex
x−α

n!
dn

dxn
(e−xxn+α), n = 0, 1, . . . .

Each ψ
(α−1)/2
k is an eigenfunction of the Laguerre operator

Lf(x) = − d2

dx2
f(x)− α

x

d

dx
f(x) + x2f(x),

where the corresponding eigenvalue is βk = 4k + α+ 1. Let

Ktf =
∞∑
k=0

exp(−tβk)〈f, ψ
(α−1)/2
k 〉ψ(α−1)/2

k

be the semigroup of the self-adjoint linear operators on L2(X) generated by −L, where

Dom(−L) = {f ∈ L2(X) :
∑

k β
2
k|〈f, ψ

(α−1)/2
k 〉|2 <∞} is the domain of −L.

It is well known (see, e.g. [28], [33]) that Kt has the integral representation, i.e.

Ktf(x) =
∫ ∞

0
Kt(x, y)f(y)dµ(y), (4.1.3)

where

Kt(x, y) =
2e−2t(xy)−(α−1)/2

1− e−4t
exp

(
−1

2
1 + e−4t

1− e−4t
(x2 + y2)

)
I(α−1)/2

(
2e−2t

1− e−4t
xy

)
.

(4.1.4)
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Here Iν denotes the Bessel function of the second kind. The operators (4.1.3) define

strongly continuous semigroups of contractions on every Lp(X), 1 ≤ p <∞.

Through this chapter we shall use the following notation: for an interval I ⊆ (0,∞)

we denote by |I| its Euclidean diameter, B(x, r) = {y ∈ X : |x − y| < r}, and χA is the

characteristic function of the set A. We define the auxiliary function

ρ(y) = χ(0,1)(y) +
1
y
χ[1,∞)(y). (4.1.5)

Definition 4.1.6. A function a is called an L−atom if there exists an interval I =

B(y0, r) ⊆ (0,∞) such that:

• supp(a) ⊆ I and r ≤ ρ(y0),

• ‖a‖∞ ≤ µ(I)−1,

• if r ≤ ρ(y0)/4, then
∫∞
0 a(x)dµ(x) = 0.

We define the space H1
L,at and the corresponding norm as it was described in Definition

1.2.5.

Let δ = d
dx+x, δ∗ = − d

dx+x− α
x . Then L = (α+1)I+δ∗δ, δψ(α−1)/2

k = −2
√
kxψ

(α+1)/2
k−1 .

The Riesz transform R̂L, originally defined on L2(X) (see, e.g. [32], [33]) by the formula

R̂Lf =
√
πδL−1/2f = −

∞∑
k=1

( 4kπ
4k + α+ 1

)1/2
〈f, ψ(α−1)/2

k 〉xψ(α+1)/2
k−1 ,

turns out to be the principal value singular integral operator

R̂Lf(x) = lim
ε→0

∫ ∞
0, |x−y|>ε

R̂L(x, y)f(y)dµ(y),

with the kernel

R̂L(x, y) =
∫ ∞

0

( ∂
∂x

+ x
)
Kt(x, y)

dt√
t
.

Since the kernel

Γ(x, y) =
∫ ∞

0
xKt(x, y)

dt√
t

satisfies supy>0

∫
|Γ(x, y)|dµ(x) < ∞, it defines a bounded linear operator on L1(X).

Hence, for our purposes, we restrict our consideration to the Riesz transform RLf =
√
π d
dxL−1/2f . Clearly, RL is a principal value singular integral operator with the kernel

RL(x, y) =
∫ ∞

0

∂

∂x
Kt(x, y)

dt√
t
. (4.1.7)

The action of RL on L1(X)-functions is well-defined in the sense of distributions (see

Section 4.3 for details).

The main goal of the chapter is to prove the following theorem (see [35]).
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Theorem 4.1.8. A function f ∈ L1(X) belongs to the Hardy space H1
L,at if and only if

RLf belongs to L1(X). Moreover, the corresponding norms are equivalent, i.e.

C−1‖f‖H1
L,at
≤ ‖f‖L1(X) + ‖RLf‖L1(X) ≤ C‖f‖H1

L,at
. (4.1.9)

The main idea of the proof is to compare the kernel RL(x, y) with kernels of appropri-

ately scaled local Riesz transforms related to the Bessel operator L̃f(x) = −f ′′(x)−α
xf
′(x),

where the scale of localization is adapted to the auxiliary function ρ(y). To do this we

consider the Bessel semigroup:

K̃tf(x) =
∫ ∞

0
K̃t(x, y)f(y)dµ(y),

K̃t(x, y) = (2t)−1 exp
(
−x

2 + y2

4t

)
I(α−1)/2

(xy
2t

)
(xy)−(α−1)/2 (4.1.10)

and observe that for small t the kernel (4.1.10) is close to the kernel (4.1.4). Thanks to

this, RL(x, y) is comparable to R
eL(x, y) after some suitable localization defined by the

function ρ, where ReL(x, y) denotes the Riesz transform kernel in the Bessel setting. This

requires a precise computation of constants appearing in singular parts of the kernels (see

Propositions 4.2.4 and 4.3.1). The next step is to use results of Betancor, Dziubański and

Torrea [5], which give characterizations of a global Hardy space for the Bessel operator (see

Theorem 4.2.2), to define and describe local Hardy spaces for L̃. Having all these prepared

we prove the theorem.

We would like to remark that the Hardy space H1
L,at we consider here is also charac-

terized by means of the maximal function:

MLf(x) = sup
t>0
|Ktf(x)|,

that is, ‖f‖H1
L,at

is comparable with ‖MLf‖L1(X). For details concerning the maximal

function characterization of the space H1
L,at we refer the reader to [12].

There are other expansions based on the Laguerre functions for which Hardy spaces

were investigated. For example, when α > −1 systems {ϕαk}∞k=0 and {Lαk}∞k=0, where

ϕαk (x) = ck,αe
−x2/2xα+1/2Lαk (x2), Lαk (x) = ck,αe

−x/2xα/2Lαk (x),

are orthogonal on L2((0,∞), dx). These systems are related to the operators

L̂α = − d2

dx2
+ x2 +

1
x2

(
α2 − 1

4

)
, Lα = −x d

2

dx2
− d

dx
+
x

4
+
α2

4x
,

respectively. In [4] and [11] the authors proved that the Hardy spaces associated with

{ϕαk}∞k=0 and {Lαk}∞k=0 are characterized by: the maximal functions, the Riesz transforms,
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and certain atomic decompositions. Moreover, in [13] the author obtained an atomic

description of the Hardy space originally defined by the maximal function related to the

system

`αk (x) = ck,αL
α
k (x)e−x/2, k = 0, 1, ..., on L2((0,∞), xαdx).

The functions `αk are eigenfunctions of the operator

Lα = −x d
2

dx2
− (α+ 1)

d

dx
+
x

4
.

Finally, we would like to note that the system {ψ(α−1)/2
k }∞k=0 we consider in the present

chapter is well-defined and orthogonal on L2(X) for α > −1. However, the case −1 < α ≤

0 is not included in our investigations.

The chapter is organized as follows. In Section 4.2 we present a singular integral

characterization of local Hardy spaces associated with the Bessel operator L̃. Section 4.3

is devoted to stating detailed estimates for RL(x, y) and proving some auxiliary results.

The proof of Theorem 4.1.8 is given in Section 4.4. In Section 4.5 we provide proofs of

estimates of the kernels ReL(x, y) and RL(x, y) stated in Propositions 4.2.4 and 4.3.1.

4.2 Hardy spaces in the Bessel setting

4.2.1 Global Hardy space

The Hardy spaces H1eL related to the Bessel operators L̃ were studied in [5].

Definition 4.2.1. We call a function a an L̃-atom if there is an interval I ⊂ (0,∞) such

that:

• supp(a) ⊆ I,

• ‖a‖∞ ≤ µ(I)−1,

•
∫∞
0 a(x)dµ(x) = 0.

Using L̃-atoms we define the space H1eL,at (see Definition 1.2.5).

The singular integral kernel of the Riesz transform ReL is defined by

R
eL(x, y) =

∫ ∞
0

∂

∂x
K̃t(x, y)

dt√
t
, where x 6= y.

Before giving a distributional sense of ReLf for f ∈ L1(X) we recall results from [5].

Theorem 4.2.2. For f ∈ L1(X) the following conditions are equivalent:
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(i) f ∈ H̃1
at(X),

(ii) ReLf ∈ L1(X),

(iii) supt>0 |K̃tf | ∈ L1(X).

Moreover,

‖f‖H1eL,at ∼
(
‖f‖L1(X) + ‖ReLf‖L1(X)

)
∼
∥∥∥ sup
t>0
|K̃tf |

∥∥∥
L1(X)

.

In the present chapter we use the following notion of dilations: for a function f defined

on (0,∞) and y > 0 we denote fy(x) = y−α−1f(x/y). Let

A = A(α) = − 2Γ(1 + α/2)
Γ((1 + α)/2)

= −2γ1

γ2
, B = B(α) = −α+ 1√

π
. (4.2.3)

The following proposition (see [35, Proposition 2.3]) will play a crucial role in our inves-

tigations.

Proposition 4.2.4. Let A,B be as in (4.2.3). Then for x 6= y we have

R
eL(x, y) =

A−B
xα+1 + yα+1

+
B

xα+1 − yα+1
+ hy(x),

where

h ∈ L1(X) and |h(x) +A− 2B| ≤ Cx for x ≤ 1/2. (4.2.5)

The proof of Proposition 4.2.4 is postponed until Section 4.5.1. To give a precise

definition of ReL on L1(X) we need a suitable space of test functions. One of possible

choices is

Ω(X) =
{
ξ ∈ C1(0,∞)

∣∣∣ ‖ξ‖∞, ∥∥∥ξ(x)
x

∥∥∥
L1(X)

, ‖xξ′(x)‖∞ <∞
}

with the topology defined by the semi-norms γi, i = 1, 2, 3, where,

γ1(ξ) = ‖ξ‖∞, γ2(ξ) =
∥∥∥ξ(x)
x

∥∥∥
L1(X)

, γ3(ξ) = ‖xξ′(x)‖∞.

Denote by Ω′(X) the dual space.

The space f ∈ L1(X) is contained in Ω′(X) in the natural sense, i.e. if f ∈ L1(X),

then

< f, ξ >=
∫ ∞

0
fξ dµ, ξ ∈ Ω(X).

Next, for f ∈ L1(X), ξ ∈ Ω(X), we define

〈ReLf, ξ〉 = 〈f,
(
R

eL)∗ ξ〉, (
R

eL)∗ ξ(y) = lim
ε→0

∫
|x−y|>ε

R
eL(x, y)ξ(x)dµ(x). (4.2.6)
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Alternatively, we define the Riesz transform as follows:

〈ReLf, ξ〉 = 〈f,
(
R

eL)∗ ξ〉, (
R

eL)∗ ξ(y) = lim
ε→0

∫ ε−1

ε

∫
X

∂

∂x
K̃t(x, y)ξ(x)dµ(x)

dt√
t
.

(4.2.7)

Proposition 4.2.8. For ξ ∈ Ω(X) and y > 0 we have
(
ReL)∗ ξ(y) =

(
ReL)∗ ξ(y). More-

over, ∥∥∥(R
eL)∗ ξ∥∥∥

∞
≤ C

(
‖ξ(x)‖∞ + ‖xξ′(x)‖∞ +

∥∥∥ξ(x)
x

∥∥∥
L1(X)

)
.

The proof can be deduced from (4.1.10) and Proposition 4.2.4. We will not go into

details here. However, we would like to notice that from Proposition 4.2.8 it is easily seen,

that the Riesz transform ReL is the same as the one defined by the spectral theorem (see,

e.g. [33], [32]).

4.2.2 Local Hardy spaces

Fix a non-negative function φ ∈ C∞c (−2, 2) such that φ(x) = 1 for |x| ≤ 3/2. Similarly

to the classical case, for m > 0 we define scaled local Riesz transforms r̃m for f ∈ L1(X),

ξ ∈ Ω(X) as follows:

〈r̃mf, ξ〉 = 〈f, (r̃m)∗ξ〉, (r̃m)∗ξ(y) = lim
ε→0

∫ ∞
0,|x−y|>ε

R
eL(x, y)φ

(
x− y
m

)
ξ(x)dµ(x).

As in the global case these operators are well-defined and

‖(r̃m)∗ξ‖∞ <∞. (4.2.9)

For an interval I = B(y, r) ⊆ X and k > 0 let kI = B(y, kr) ⊆ X.

Lemma 4.2.10. The operators r̃m are bounded on L2(X) with norm-operator bounds

independent of m.

Proof. Because of the dilatation structure (see (4.5.20)) it is enough to prove the lemma

in the case m = 1. Assume additionally for the moment that suppf ⊆ I = B(y0, 1). Then

r̃1f(x) = 0 for x /∈ 3I. Also

‖r̃1f‖L2(X∩3I) ≤ ‖(r̃1 −R
eL)f‖L2(X∩3I) + ‖ReLf‖L2(X).

It is well known that ‖ReLf‖L2(X) ≤ C‖f‖L2(X) (see [31]). Moreover,

|ReL(x, y)|χ{|x−y|>3/2} ≤ C(xy)−α/2 + |hy(x)| ≤ C(xy)−α/2 + |h1(x, y)|+ |h2(x, y)|,

(4.2.11)
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where

h1(x, y) = y−α−1(h−Dχ(0,1))(x/y), h2(x, y) = D(χ(0,1))y(x) = Dy−α−1χ(x,∞)(y).

Here D = A− 2B. We claim that

‖(r̃1 −R
eL)f‖L2(X∩3I) ≤ C‖f‖L2(X).

To prove this we consider the three summands from (4.2.11) separately. By the Cauchy-

Schwarz inequality we get∥∥∥∫
I
(xy)−α/2f(y)dµ(y)

∥∥∥2

L2(X∩3I)
≤ C

∫
3I
‖f‖2L2(X)dx ≤ C‖f‖

2
L2(X).

From (4.2.5) we deduce

sup
y>0

∫ ∞
0
|h1(x, y)|dµ(x) + sup

x>0

∫ ∞
0
|h1(x, y)|dµ(y) <∞.

Thus the operator with the kernel h1(x, y) is bounded on every Lp(X), 1 ≤ p ≤ ∞. The

part which contains h2 is bounded on L2(X) due to the Hardy inequality (see, e.g. [2,

p. 124]).

To omit the assumption suppf ⊆ B(y0, 1) let us notice that

‖r̃1f‖L2(X) ≤
∞∑
j=1

‖r̃1(f · χ(j−1,j))‖L2(X) ≤ C
∞∑
j=1

‖f · χ(j−1,j)‖L2(X) = C‖f‖L2(X).

The local Hardy space h̃1,m(X) is a subspace of L1(X) consisting of functions f for

which r̃mf ∈ L1(X). In order to state atomic characterization of h̃1,m(X) we define

a suitable family of atoms.

Definition 4.2.12. We call a function a a local L̃{m}-atom, when there exists an interval

I = B(y0, r) ⊂ (0,∞) such that

(i) supp(a) ⊆ I and r ≤ m,

(ii) ‖a‖∞ ≤ µ(I)−1,

(iii) if r ≤ m/4, then
∫∞
0 a(x)dµ(x) = 0.

Theorem 4.2.13. Assume that f ∈ L1(X). Then r̃mf ∈ L1(X) if and only if there exist

sequences λk ∈ C and local L̃{m}-atoms ak, such that f =
∑∞

k=1 λkak, where
∑∞

k=1 |λk| <

∞. Moreover, we can choose {λk}k, {ak}k, such that

C−1
∞∑
k=1

|λk| ≤ ‖f‖L1(X) + ‖r̃mf‖L1(X) ≤ C
∞∑
k=1

|λk|,

where C is independent of m > 0.
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Remark 4.2.14. Assume in addition supp(f) ⊆ I = B(y0,m). Then, in the above

decomposition, one can take atoms with supports contained in 3I.

Proof. The proof is similar to the classical case. For reader’s convenience we provide

some details. Without loss of generality we may assume that m = 1. The operator r̃1 is

continuous from L1(X) to Ω′(X) (see (4.2.9)), so the first implication will be proved when

we have obtained

‖r̃1a‖L1(X) ≤ C (4.2.15)

for every local L̃{m}-atom a. Notice, that the weak-type (1, 1) bounds of r̃1 also reduces

the proof to (4.2.15).

Assume then, that a is an h̃1,1(X)-atom supported by an interval I = B(y0, r). Note

that r̃1a(x) = 0 on (9I)c. Consider first the case where r > 1/4. Recall that µ has the

doubling property (see (4.1.1)). By the Cauchy-Schwarz inequality and Lemma 4.2.10 we

arrive at

‖r̃1a‖L1(X∩9I) ≤ µ(9I)1/2‖r̃1a‖L2(X) ≤ Cµ(I)1/2‖a‖L2(X) ≤ C.

If r < 1/4 then a is an L̃-atom, so by Theorem 4.2.2 it follows that ‖ReLa‖L1(X) ≤ C.

Therefore ‖r̃1a‖L1(X) ≤ C + ‖(ReL − r̃1)a‖L1(X). Because of the cancellation condition we

have

(ReL − r̃1)a(x) =
∫ (

R
eL(x, y)(1− φ(x− y))−ReL(x, y0)(1− φ(x− y0))

)
a(y)dµ(y).

Thus it is enough to verify the estimate

sup
y∈I

∫ ∞
0

∣∣ReL(x, y)(1− φ(x− y))−ReL(x, y0)(1− φ(x− y0))
∣∣dµ(x)

= sup
y∈I

∫ ∞
0

Ξ(x, y)dµ(x) ≤ C.
(4.2.16)

Fix y ∈ I. From Proposition 4.2.4 we obtain:

Ξ(x, y) = 0 for |x− y0| ∈ (0, 1),

Ξ(x, y) ≤ C x−α + |hy(x)|+ |hy0(x)| for |x− y0| ∈ (1, 3), (4.2.17)

Ξ(x, y) ≤ C |x− y0|−2x−α + |hy(x)|+ |hy0(x)| for |x− y0| ∈ (3,∞),

where in the last inequality we have used that φ(x−y) = φ(x−y0) = 0 and the mean-value

theorem. From (4.2.17) we get (4.2.16) and, consequently, ‖(ReL − r̃1)a‖L1(X) ≤ C. This

ends the proof of (4.2.15).
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For the converse, assume that f, r̃1f ∈ L1(X) and, in addition, suppf ⊆ I = B(y0, 1).

Fix τ = µ(I)−1
∫
I fdµ, g = f − τχI . We have

‖ReLg‖L1(X) ≤ ‖r̃1f‖L1(X) + ‖τ r̃1(χI)‖L1(X) + ‖(ReL − r̃1)g‖L1(X). (4.2.18)

By using the first part of the proof we deduce that ‖τ r̃1χI‖L1(X) ≤ C‖f‖L1(X). Note that

supp g ⊆ I,
∫
g dµ = 0, so (4.2.16) implies ‖(ReL − r̃1)g‖L1(X) ≤ C‖g‖L1(X) ≤ C‖f‖L1(X).

Therefore, by Theorem 4.2.2, there exist L̃-atoms aj (j = 1, ...) such that

f − τ χI = g =
∞∑
k=1

λkak.

Moreover
∑∞

k=1 |λk| ≤ ‖f‖L1(X) + ‖r̃1f‖L1(X). Denote λ0 =
∫
I fdµ, a0 = µ(I)−1χI and

fix ψI ∈ C∞c
(

4
3I
)

satisfying ψI ≡ 1 on I and ‖ψI‖∞ ≤ C. What we have obtained is

f = fψI =
∞∑
k=0

λk(ψIak). (4.2.19)

It remains to show that each ψIak can be written in the form: ψIak =
∑Nk

i=1 κi,kbi,k, where

bi,k are local L̃{1}-atoms supported in 3I and
∑Nk

i=1 |κi,k| ≤ C, where C > 0 is independent

of k. For k = 0 the claim is clear. Fix k ≥ 1 and suppose that supp ak ⊆ J = B(z0, r).

Obviously, if (4
3I)∩J = ∅ then ψIak = 0. Moreover, if r > 1/4 then ψIak = κb, where b is

a local L̃{m}-atom and |κ| ≤ C. So, suppose that (4
3I) ∩ J 6= ∅ and r < 1/4. Under these

assumptions we write

ψI(x)ak(x) =
(
ψI(x)ak(x)− σµ(2J)−1χ2J(x)

)
+
N−1∑
i=1

σ
(
(µ(2iJ))−1χ2iJ(x)− (µ(2i+1J))−1χ2i+1J(x)

)
+ σ(µ(2NJ))−1χ2NJ(x),

where σ =
∫∞
0 ak(z)(ψI(z)−ψI(z0))dµ(z) and N is such that 2−N−1 ≤ r < 2−N . One can

check that this is the required decomposition, since |σ| ≤ Cr. Let us note that we have

just proved Remark 4.2.14.

To deal with the general case we take a smooth partition of unity {ψj}∞j=1 ⊆ C∞(0,∞),

i.e.

∞∑
j=1

ψj(x) = χ(0,∞)(x), 0 ≤ ψj ≤ 1, suppψj ⊆ Ij = B (yj , 1) , sup
j∈N
‖ψ′j‖∞ ≤ C.

Consider

gj = r̃1(ψjf)− ψj r̃1(f).
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Obviously, supp gj ⊆ 3Ij and for x ∈ 3Ij we have

|gj(x)| =
∣∣∣ ∫ ∞

0
R

eL(x, y)φ(x− y)f(y)(ψj(y)− ψj(x))dµ(y)
∣∣∣

≤ C
∫ ∞

0
|ReL(x, y)|χ{|x−y|≤2}|f(y)||x− y|dµ(y). (4.2.20)

Moreover, from Proposition 4.2.4 we have

sup
y>0

∫
|x−y|≤2

|ReL(x, y)||x− y|dµ(x) ≤ C. (4.2.21)

From (4.2.20) and (4.2.21) we deduce that

‖gj‖L1(X) ≤ ‖f‖L1(X∩5Ij).

Therefore
∞∑
j=1

‖r̃1(ψjf)‖L1(X) ≤
∞∑
j=1

(
‖ψj r̃1(f)‖L1(X) + ‖gj‖L1(X)

)
≤ C

(
‖f‖L1(X) + ‖r̃1(f)‖L1(X)

)
.

(4.2.22)

By using (4.2.19) and the subsequent remark for each ψjf we get the decomposition

ψjf =
∑

k λ
j
ka
j
k, where ajk are local L̃{1}-atoms and∑

k

|λjk| ≤ C
(
‖ψjf‖L1(X) + ‖r̃1(ψjf)‖L1(X)

)
. (4.2.23)

The proof is completed by noticing that

f =
∑
j,k

λjka
j
k,

where ∑
j,k

|λjk| ≤ C
(
‖f‖L1(X) + ‖r̃1f‖L1(X)

)
is guaranteed by (4.2.22) and (4.2.23).

4.3 The Riesz transform in the Laguerre setting

Let φ be the function defined in Section 4.2.2 and ρ be as in (4.1.5). The following

proposition (see [35, Proposition 3.1]) gives an essential information about the kernel of

the Riesz transform associated with the Laguerre expansion.

Proposition 4.3.1. Let A and B be as in (4.2.3). The kernel R(x, y) can be written in

the form

R(x, y) = φ

(
x− y
ρ(y)

)(
B

xα+1 − yα+1
+

A−B
xα+1 + yα+1

)
+ g(x, y),
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where

sup
y>0

∫ ∞
0
|g(x, y)|dµ(x) <∞. (4.3.2)

The proof of Proposition 4.3.1 is a quite lengthy analysis. We provide details in Section

4.5.2.

For f ∈ L1(X), ξ ∈ Ω(X), we define the Riesz transform RLf as follows

〈RLf, ξ〉 = 〈f,
(
RL
)∗
ξ〉,

(
RL
)∗
ξ(y) = lim

ε→0

∫
|x−y|>ε

RL(x, y)ξ(x)dµ(x),

One can easily check using Proposition 4.3.1 that this limit exists and

∥∥ (RL
)∗
ξ
∥∥
∞ ≤ C

(
‖ξ(x)‖∞ + ‖xξ′(x)‖∞ +

∥∥∥ξ(x)
x

∥∥∥
L1(X)

)
. (4.3.3)

Denote by G the operator with the kernel g(x, y). Obviously, by (4.3.2), G is bounded

on L1(X). In the proof of Theorem 4.1.8 we will need the following lemma.

Lemma 4.3.4. Let z ∈ (0,∞), f ∈ L1(X), I = B(z, ρ(z)), and η ∈ C∞ (0,∞) satisfies

0 ≤ η ≤ 1, supp η ⊂ I, ‖η′‖∞ ≤ C1ρ(z)−1. Then

‖RL(ηf)− η((RL −G)f)‖L1(X) ≤ C‖f‖L1(X∩4I),

with a constant C which depends on C1, but it is independent of z ∈ (0,∞) and f ∈ L1(X).

Proof. Note that

RL(ηf)(x)− η(x)(RL −G)f(x) =
∫

(RL(x, y)− g(x, y))(η(y)− η(x))f(y)dµ(y)

+
∫
g(x, y)η(y)f(y)dµ(y)

=
∫
W1(x, y)dµ(y) +

∫
W2(x, y)dµ(y).

Applying (4.3.2) we easily estimate the summand that contains W2. The function W1(x, y)

vanishes if either |x−y| > 2ρ(y) or x, y ∈ Ic. Therefore it can be verified that W1(x, y) = 0,

if either x /∈ 4I or y /∈ 4I. Thus Lemma 4.3.4 follows by∫
4I

∣∣∣ ∫
4I
W1(x, y)dµ(y)

∣∣∣dµ(x) ≤ C
∫

4I
|f(y)|

(∫
4I

∣∣∣ 1
xα+1 − yα+1

∣∣∣ |x− y|
ρ(z)

dµ(x)
)
dµ(y)

≤ C
∫

4I
|f(y)|dµ(y).
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4.4 Proof of Theorem 4.1.8

Before proving the main theorem we state a crucial consequence of Propositions 4.2.4 and

4.3.1.

Lemma 4.4.1. For y0 > 0 we have

sup
y∈B(y0,ρ(y0))

∫ ∞
0

∣∣∣RL(x, y)− r̃ρ(y0)(x, y)
∣∣∣dµ(x) ≤ C, (4.4.2)

Proof. By (4.2.5) and (4.3.2) we only need to establish that

sup
y∈B(y0,ρ(y0))

∫ ∞
0

∣∣∣φ(x− y
ρ(y)

)
− φ

(
x− y
ρ(y0)

) ∣∣∣ ∣∣∣ B

xα+1 − ya+1
+

A−B
xα+1 + ya+1

∣∣∣dµ(x) ≤ C.

In fact we will prove a stronger estimate, namely,

sup
y∈B(y0,ρ(y0))

∫ ∞
0

∣∣∣φ(x− y
ρ(y)

)
− φ

(
x− y
ρ(y0)

) ∣∣∣ · 1
|xα+1 − ya+1|

dµ(x) ≤ C. (4.4.3)

Consider the case y > y0 (if y < y0 we use the same type of arguments). The integrant

in (4.4.3) is non-zero only when 3/2 ρ(y) < |x− y| < 2ρ(y0). But always ρ(y0) < 2ρ(y) if

y ∈ B(y0, ρ(y0)). Now, one can check that

sup
y>0

∫ ∞
0

χ{3/2 ρ(y)<|x−y|<4ρ(y)}
1

|xα+1 − yα+1|
dµ(x) ≤ C,

which implies (4.4.3).

Proof of Theorem 4.1.8. Assume f ∈ H1
L,at. The operator RL : L1(X) → Ω′(X) is

continuous (see (4.3.3)), so the first implication will be proved if we have established that

there exists C > 0 such that

‖RLa‖L1(X) ≤ C

for any L−atom a. Suppose a is associated with I = B(y0, r) (recall that r ≤ ρ(y0)). We

have that

RLa = (RLa− r̃ρ(y0)a) + r̃ρ(y0)a.

The L1(X)-norm of the function r̃ρ(y0)a is bounded by a constant independent of a, because

a is also a local L̃{ρ(y0)}-atom (see Theorem 4.2.13). Therefore, the first part of the proof

is finished by (4.4.2).

To prove the converse assume that f,RLf ∈ L1(X). Introduce a family of intervals

I = {In = B(zn, ρ(zn))}∞n=1 such that X =
⋃∞
n=1 In and I∗ = {4I : I ∈ I} has bounded

overlap. Denote by ηn a smooth partition of unity associated with the family I, i.e.

ηn ∈ C∞ (0,∞) , supp ηn ⊂ In, 0 ≤ ηn ≤ 1,
∞∑
n=1

ηn(x) = χ(0,∞)(x), |η′n(x)| ≤ Cρ(zn)−1.
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We are going to prove an atomic decomposition of f =
∑∞

n=1 ηnf . Note that

r̃ρ(zn)(fηn) =
(

(r̃ρ(zn) −RL)(fηn)
)

+
(
RL(fηn)− ηn(RL −G)(f)

)
−ηn ·G(f)+ηn ·RL(f).

By using (4.4.2), Lemma 4.3.4, and (4.3.2) we get
∞∑
n=1

‖r̃ρ(zn)(fηn)‖L1(X) ≤ C
∞∑
n=1

(
‖ηnf‖L1(X) + ‖χ4Inf‖L1(X)

+ ‖ηnGf‖L1(X) + ‖ηnRLf‖L1(X)

)
≤ C

(
‖f‖L1(X) + ‖RLf‖L1(X)

)
.

(4.4.4)

Applying Theorem 4.2.13, we arrive at

ηn · f =
∞∑
j=1

λn,jan,j , where
∞∑
j=1

|λn,j | ≤ ‖r̃ρ(zn)(f · ηn)‖L1(X), (4.4.5)

and an,j are local L̃{ρ(zn)}-atoms. From (4.4.4) and (4.4.5) we have obtained

f =
∞∑

n,j=1

λn,jan,j with
∞∑

n,j=1

|λn,j | ≤ C
(
‖f‖L1(X) + ‖RLf‖L1(X)

)
. (4.4.6)

Remark 4.2.14 states that supp an,j ⊆ 3In for j ≥ 0. Notice that for y ∈ 3 In there exists

C > 0 such that

ρ(zn)/C ≤ ρ(y) ≤ Cρ(zn) for all n ≥ 1 and y ∈ In. (4.4.7)

Because of this, each an,j can be decomposed into a sum of at most N L-atoms (where

the number N depends only on α and the constant C from (4.4.7)). Finally, Theorem

4.1.8 follows by applying (4.4.6).

�

4.5 Proofs of Propositions 4.2.4 and 4.3.1

This section is devoted to proving Propositions 4.2.4 and 4.3.1. The letters c, C,N,M will

denote positive constants (N,M are arbitrarily large). We also make the convention that∫ q
p · · · = 0, whenever p ≥ q. For further references we figure out some properties of the

Bessel function Iν (ν > 0) (see, e.g. [41]):

∂

∂x

(
x−νIν(x)

)
= x−νIν+1(x) for x > 0, (4.5.1)

0 < Iν(x) = 2−νΓ(ν + 1)−1xν +O(xν+2) for 0 < x < C, (4.5.2)

Uν(x) = (2π)−1/2 +O(x−1) for x > C, (4.5.3)

where

Uν(x) = Iν(x)e−x
√
x.
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4.5.1 Proof of Proposition 4.2.4

Proof. Assume y = 1. By using (4.1.10) and (4.5.1) we get

R
eL(x, 1) =−

∫ ∞
0

(2t)−2 exp
(
−x

2 + 1
4t

)
x−(α−3)/2I(α−1)/2

( x
2t

) dt√
t

+
∫ ∞

0
(2t)−2 exp

(
−x

2 + 1
4t

)
x−(α−1)/2I(α+1)/2

( x
2t

) dt√
t

=
∫ ∞

0
Q̃1(x; t)dt+

∫ ∞
0

Q̃2(x; t)dt. (4.5.4)

In calculations below we will often use the following formula:

exp
(
−x

2 + 1
4t

)
Iν

( x
2t

)√ x

2t
= exp

(
−(x− 1)2

4t

)
Uν

( x
2t

)
.

Define

h(x) = R
eL(x, 1)− A−B

xα+1 + 1
− B

xα+1 − 1
.

To prove (4.2.5) we consider three cases.

Case 1: x > 3/2.

Under this assumption (x− 1) ∼ x. Then we get estimates:∫ x

0
|Q̃2(x; t)|dt ≤ C

∫ x

0
t−2 exp

(
−(x− 1)2

4t

)
U(α+1)/2

( x
2t

)
x−α/2dt

≤ C
∫ x

0
t−2

(
t

x2

)N
x−α/2dt ≤ Cx−M ,∫ x2

x
|Q̃2(x; t)|dt ≤ C

∫ x2

x
t−2

(
t

x2

)N
x

1−α
2

(x
t

)α+1
2 dt√

t
≤ C

∫ x2

0

tN−3−α
2

x2N−1
dt ≤ Cx−α−3,∫ ∞

x2

|Q̃2(x; t)|dt ≤ C
∫ ∞
x2

t−2x−(α−1)/2
(x
t

)(α+1)/2 dt√
t
≤ C

∫ ∞
x2

xt−3−α/2dt ≤ Cx−α−3,

which imply ∫ ∞
0
|Q̃2(x; t)|dt ≤ C x−α−3. (4.5.5)

Our next task is to obtain

∣∣∣ ∫ ∞
0

Q̃1(x; t)dt− A−B
xα+1 + 1

− B

xα+1 − 1

∣∣∣ ≤ Cx−α−2. (4.5.6)

By using the same methods as we have utilized to estimate the integral
∫ x
0 |Q̃2(x; t)|dt

we deduce ∫ x

0
|Q̃1(x; t)|dt ≤ Cx−M . (4.5.7)
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Moreover,

∣∣∣ ∫ ∞
x
Q̃1(x; t)dt− A

xα+1

∣∣∣ =
∣∣∣− ∫ ∞

x
(2t)−2 exp

(
−x

2 + 1
4t

)
x−

α−3
2 I(α−1)/2

( x
2t

) dt√
t

+
∫ ∞

0
(2t)−2 exp

(
−x

2

4t

)
x−

α−3
2

2−(α−1)/2

Γ
(
α+1

2

) ( x
2t

)α−1
2 dt√

t

∣∣∣
≤
∣∣∣ ∫ ∞

x
(2t)−2

(
exp

(
−x

2 + 1
4t

)
− exp

(
−x

2

4t

))
x−

α−3
2 I(α−1)/2

( x
2t

) dt√
t

∣∣∣
(4.5.8)

+
∣∣∣ ∫ ∞

x
(2t)−2 exp

(
−x

2

4t

)
x−

α−3
2

(
I(α−1)/2

( x
2t

)
− 2−(α−1)/2

Γ
(
α+1

2

) ( x
2t

)α−1
2

)
dt√
t

∣∣∣
+
∣∣∣ ∫ x

0
(2t)−2 exp

(
−x

2

4t

)
x−

α−3
2

2−(α−1)/2

Γ
(
α+1

2

) ( x
2t

)α−1
2 dt√

t

∣∣∣
and ∣∣∣ A

xα+1
− A−B
xα+1 + 1

− B

xα+1 − 1

∣∣∣ ≤ Cx−2α−2 for x > 3/2. (4.5.9)

Applying (4.5.2) and the mean-value theorem to (4.5.8), we get

∣∣∣ ∫ ∞
x

Q̃1(x; t)dt− A

xα+1

∣∣∣ ≤ Cx−α−3. (4.5.10)

Now (4.5.6) is a consequence of (4.5.7), (4.5.9), and (4.5.10). From (4.5.5)–(4.5.6) we

conclude that∫ ∞
3/2
|h(x)|dµ(x) =

∫ ∞
3/2

∣∣∣ReL(x, 1)− A−B
xα+1 + 1

− B

xα+1 − 1

∣∣∣dµ(x) ≤ C. (4.5.11)

Case 2: x < 1/2.

From (4.5.2)–(4.5.3) it follows:∫ x

0
|Q̃1(x; t)|dt ≤ C

∫ x

0

x1−α
2

t2
exp

(
−(x− 1)2

4t

)
Uα−1

2

( x
2t

)
dt ≤ Cx1−α

2

∫ x

0
tN−2dt ≤ Cx,∫ 1

x
|Q̃1(x; t)|dt ≤ C

∫ 1

x
t−2 exp

(
−x

2 + 1
4t

)
x−

α−3
2

(x
t

)(α−1)/2 dt√
t
≤ Cx

∫ 1

0
tMdt ≤ Cx,∫ ∞

1
|Q̃1(x; t)|dt ≤ C

∫ ∞
1

t−2 exp
(
−x

2 + 1
4t

)
x

3−α
2

(x
t

)α−1
2 dt√

t
≤ Cx

∫ ∞
1

t−2−α
2 dt ≤ Cx,

Thus
∫∞
0 |Q̃1(x; t)|dt ≤ Cx. By the same arguments we also obtain

∫∞
0 |Q̃2(x; t)|dt ≤

Cx. Hence, |ReL(x, 1)| ≤ Cx. As a consequence, for x < 1/2, we have

|h(x) +A− 2B| =
∣∣∣ReL(x, 1)− A−B

xα+1 + 1
− B

xα+1 − 1
+A− 2B

∣∣∣ ≤ Cx, (4.5.12)∫ 1/2

0
|h(x)|dµ(x) ≤

∫ 1/2

0

(
|ReL(x, 1)|+

∣∣∣ A−B
xα+1 + 1

+
B

xα+1 − 1

∣∣∣) dµ(x) ≤ C. (4.5.13)
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Case 3: 1/2 < x < 3/2.

In this case a slightly different form of (4.5.4) is needed, i.e.∫ ∞
0

∂

∂x
K̃t(x, 1)

dt√
t

= −(x− 1)
∫ ∞

0
(2t)−2 exp

(
−x

2 + 1
4t

)
x−(α−1)/2I(α−1)/2

( x
2t

) dt√
t

+
∫ ∞

0
(2t)−2 exp

(
−x

2 + 1
4t

)
x−(α−1)/2

(
I(α+1)/2

( x
2t

)
− I(α−1)/2

( x
2t

)) dt√
t

=
∫ ∞

0
Q̃3(x; t)dt+

∫ ∞
0

Q̃4(x; t)dt.

We claim that ∫ ∞
0
|Q̃4(x; t)|dt ≤ C|x− 1|−1/2. (4.5.14)

Indeed, by using (4.5.2) and (4.5.3) we get∫ 1

0

∣∣∣Q̃4(x; t)
∣∣∣dt ≤ C ∫ 1

0
t−2 exp

(
−(x− 1)2

4t

)
x−α/2

∣∣∣U(α+1)/2

( x
2t

)
− U(α−1)/2

( x
2t

) ∣∣∣dt
≤ C

∫ 1

0
t−2

(
t

(x− 1)2

)1/4 t

x
dt ≤ C|x− 1|−1/2,∫ ∞

1

∣∣∣Q̃4(x; t)
∣∣∣dt ≤ C ∫ ∞

1
t−2x

1−α
2

((x
t

)α+1
2 +

(x
t

)(α−1)/2
)
dt√
t
≤ C

∫ ∞
1

t−2−α/2dt ≤ C.

Next, observe that∫ ∞
1

∣∣∣Q̃3(x; t)
∣∣∣dt ≤ C|x− 1|

∫ ∞
1

t−2x−(α−1)/2
(x
t

)(α−1)/2 dt√
t
≤ C. (4.5.15)

Moreover,∣∣∣ ∫ 1

0
Q̃3(x; t)dt− B(α+ 1)−1

xα/2(x− 1)

∣∣∣ ≤ ∣∣∣ ∫ ∞
1

√
2(x− 1)

4t
exp

(
−(x− 1)2

4t

)
x−α/2

1√
2π

dt

t

∣∣∣
(4.5.16)

+
∣∣∣ ∫ 1

0

√
2(x− 1)

4t
exp

(
−(x− 1)2

4t

)
x−α/2

(
U(α−1)/2

( x
2t

)
− 1√

2π

)
dt

t

∣∣∣.
Applying (4.5.3) to (4.5.16) we deduce∣∣∣ ∫ 1

0
Q̃3(x; t)dt− B(α+ 1)−1

xα/2(x− 1)

∣∣∣ ≤ C. (4.5.17)

One can easily check that∣∣∣B(α+ 1)−1

xα/2(x− 1)
− B

xα+1 − 1
− A−B
xα+1 + 1

∣∣∣ ≤ C. (4.5.18)

From (4.5.14), (4.5.15), (4.5.17), and (4.5.18) we conclude∫ 3/2

1/2
|h(x)|dµ(x) =

∫ 3/2

1/2

∣∣∣ReL(x, 1)− B

xα+1 − 1
− A−B
xα+1 + 1

∣∣∣dµ(x) ≤ C. (4.5.19)
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Finally, as a consequence of (4.5.11)–(4.5.13), and (4.5.19) we obtain that h satisfies

desired properties (4.2.5). The proposition in the general case of y > 0 follows by applying

the homogeneity

R
eL(x, y) = y−α−1R

eL(x
y
, 1
)
. (4.5.20)

4.5.2 Proof of Proposition 4.3.1

Proof. Let us set

g(x, y) = RL(x, y)− φ
(
x− y
ρ(y)

)(
B

xα+1 − yα+1
− A−B
xα+1 + yα+1

)
. (4.5.21)

We will prove that (4.3.2) is satisfied. By using (4.1.4) and (4.5.1) we get

RL(x, y) =
∫ ∞

0
K

[1]
t (x, y)

dt√
t

+
∫ ∞

0
K

[2]
t (x, y)

dt√
t

=
∫ ∞

0
K

[3]
t (x, y)

dt√
t

+
∫ ∞

0
K

[4]
t (x, y)

dt√
t
,

(4.5.22)

where

K
[1]
t (x, y) =

(
2e−2t

1− e−4t

)2

y(xy)−
α−1

2 exp
(
−1 + e−4t

1− e−4t

x2 + y2

2

)
Iα+1

2

(
2e−2t

1− e−4t
xy

)
,

K
[2]
t (x, y) = −2e−2t(1 + e−4t)

(1− e−4t)2
x(xy)−

α−1
2 exp

(
−1 + e−4t

1− e−4t

x2 + y2

2

)
Iα−1

2

(
2e−2t

1− e−4t
xy

)
,

K
[3]
t (x, y) = −2e−2t(1 + e−4t)

(1− e−4t)2
(xy)−

α−1
2 (x− y) exp

(
−1 + e−4t

1− e−4t

x2 + y2

2

)
×Iα−1

2

(
2e−2txy

1− e−4t

)
,

K
[4]
t (x, y) =

2e−2t

1− e−4t
y(xy)−

α−1
2 exp

(
−1 + e−4t

1− e−4t

x2 + y2

2

)
×

(
2e−2t

1− e−4t
Iα+1

2

(
2e−2t

1− e−4t
xy

)
− 1 + e−4t

1− e−4t
Iα−1

2

(
2e−2t

1− e−4t
xy

))
.

Note that

exp
(
−1 + e−4t

1− e−4t

x2 + y2

2

)
Iµ

(
2e−2t

1− e−4t
xy

)(
2e−2txy

1− e−4t

)1/2

(4.5.23)

= exp
(
−1 + e−4t

1− e−4t

(x− y)2

2

)
exp

(
−(1− e−2t)2

1− e−4t
xy

)
Uµ

(
2e−2txy

1− e−4t

)
.

The formula (4.5.23) will be frequently used, without additional comments, when we

deal with Iµ(θ) for θ > C.

We provide the proof in six cases as it is shown in Figure 1 on page 66. The grey

part denotes the support of φ ((x− y)/ρ(y)). Moreover, the dark grey color means that

φ ((x− y)/ρ(y)) = 1.
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Fig. 4.1: Partition of X ×X

In Cases 1, 2, 4, 5 we will use the decomposition (4.5.22) that contains K [1]
t and K

[2]
t .

Case 1: y > 3, x < y/2.

At the beginning we consider K [1]
t and t < 1. Under additional assumption xy < 1 we get

∫ 1
xy |K

[1]
t (x, y)| dt√

t
≤ C

∫ 1

xy
t−2y(xy)−

α−1
2 exp

(
−y

2

ct

)(xy
t

)α+1
2 dt√

t
≤ Cy−M ,

∫ xy
0 |K

[1]
t (x, y)| dt√

t
≤ C

∫ xy

0

y

t2
(xy)−

α−1
2 exp

(
−y

2

ct

)
e−ctxyUα+1

2

(
2e−2txy

1− e−4t

)√
t

xy

dt√
t

≤ C
∫ xy

0
t−2y(xy)−

α
2

(
t

y2

)N
dt ≤ C

(
x

y

)N
x−α−1.

In the last line we have used (4.5.23) and (4.5.3). If xy > 1 we similarly get∫ 1

0
|K [1]

t (x, y)| dt√
t
≤ Cy−M .

Next, we deal with K
[1]
t and t > 1. If xy > e2 then∫ log

√
xy

1
|K [1]

t (x, y)| dt√
t
≤ C

∫ log
√
xy

1
e−4ty(xy)−

α−1
2 exp(−cy2)(e−2txy)−

1
2
dt√
t
≤ Cy−M ,∫ ∞

log
√
xy
|K [1]

t (x, y)| dt√
t
≤ C

∫ ∞
log
√
xy
e−4ty(xy)−

α−1
2 e−cy

2
(e−2txy)

α+1
2
dt√
t
≤ Cy−M .

Identically, when xy < e2 we have
∫∞
1 |K

[1]
t (x, y)| dt√

t
≤ Cy−M .

We can write the same estimates for K [2]
t . Thus we get∫ ∞

0

(
|K [1]

t (x, y)|+ |K [2]
t (x, y)|

) dt√
t
≤ Cy−M max(1, xM−α−1).
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Observe that g(x, y) = RL(x, y) (see Figure 1), so the last estimate implies

sup
y>3

∫ y/2

0
|g(x, y)|dµ(x) <∞. (4.5.24)

Case 2: x > 3, y < 2x/3.

We proceed very similarly to Case 1 and obtain∫ ∞
0

(
|K [1]

t (x, y)|+ |K [2]
t (x, y)|

) dt√
t
≤ Cx−M max(1, yM−α−1).

We have g(x, y) = RL(x, y) (see Figure 1). Hence

sup
y<2

∫ ∞
3
|g(x, y)|dµ(x) <∞, sup

y≥2

∫ ∞
3y/2
|g(x, y)|dµ(x) <∞. (4.5.25)

Case 3: (x > 3 or y > 3) and |x− y| < y/2.

Notice that

K
[4]
t (x, y) =

(
2e−2t

1− e−4t

)1/2

y(xy)−α/2 exp
(
−1 + e−4t

1− e−4t

(x− y)2

2

)
(4.5.26)

× exp
(
−(1− e−2t)2

1− e−4t
xy

)(
V

[4′]
t (x, y) + V

[4′′]
t (x, y) + V

[4′′′]
t (x, y)

)
,

where

V
[4′]
t (x, y) =

2e−2t

1− e−4t

(
U(α+1)/2

(
2e−2t

1− e−4t
xy

)
− 1√

2π

)
,

V
[4′′]
t (x, y) =

1√
2π

(
2e−2t

1− e−4t
− 1 + e−4t

1− e−4t

)
= − (1− e−2t)2√

2π(1− e−4t)
,

V
[4′′′]
t (x, y) = −1 + e−4t

1− e−4t

(
U(α−1)/2

(
2e−2t

1− e−4t
xy

)
− 1√

2π

)
.

By using (4.5.26) and (4.5.3) one obtains∫ 1

0
|K [4]

t (x, y)| dt√
t
≤ C|x− y|−1/2x−α−1. (4.5.27)

Also, as in Case 1, we get∫ ∞
1

(
|K [3]

t (x, y)|+ |K [4]
t (x, y)|

) dt√
t
≤ Cx−M . (4.5.28)

Next,∫ 1

0
K

[3]
t (x, y)

dt√
t
− χ{y|x−y|<1}

B(xy)−α/2

(α+ 1)(x− y)
= D1 −D6 =

5∑
j=1

(Dj −Dj+1), (4.5.29)

where

D2 = −
∫ 1

0

e−t(1 + e−4t)
√
π(1− e−4t)3/2

x− y
(xy)

α
2

exp
(
−1 + e−4t

1− e−4t

(x− y)2

2

)
exp

(
−(1− e−2t)2

1− e−4t
xy

)
dt√
t
,
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D3 = −
∫ 1

0

1
4t
√
π

(xy)−α/2(x− y) exp
(
−(x− y)2

4t

)
exp (−txy)

dt

t
,

D4 = −
∫ y−2/4

0

1
4t
√
π

(xy)−α/2(x− y) exp
(
−(x− y)2

4t

)
exp (−txy)

dt

t
,

D5 = −
∫ y−2/4

0

1
4t
√
π

(xy)−α/2(x− y) exp
(
−(x− y)2

4t

)
dt

t
,

D6 = −χ{y|x−y|<1}

∫ ∞
0

1
4t
√
π

x− y
(xy)

α
2

exp
(
−(x− y)2

4t

)
dt

t
= −χ{y|x−y|<1}

(xy)−α/2√
π(x− y)

.

By using the mean-value theorem, (4.5.3), and (4.5.23) one obtains

|Dj −Dj+1| ≤ Cx−α−1/2|x− y|−1/2 for j = 1, 2. (4.5.30)

To deal with Dj −Dj+1 for j = 3, 4, 5 we consider:

Subcase 1: y|x− y| < 1.

|D3 −D4| ≤ C
∫ 1

y−2/4
t−1x−α|x− y|dt

t
≤ Cx−α+2|x− y|,

|D4 −D5| =
∫ y−2/4

0
=
∫ (x−y)2/4

0
... dt+

∫ y−2/4

(x−y)2/4
... dt = Y1 + Y2,

|Y1| ≤ C
∫ (x−y)2

0
tN−1x−α+2|x− y|1−2Ndt ≤ Cx−α+2|x− y|, (4.5.31)

|Y2| ≤ C
∫ y−2/4

(x−y)2/4
x−α+2|x− y|dt

t
≤ Cx−α+2|x− y| ln 1

y|x− y|
,

|D5 −D6| ≤ C
∫ ∞
y−2/4

t−1x−α|x− y|dt
t
≤ Cx−α+2|x− y|.

Subcase 2: y|x− y| > 1.

|D3 −D4| =
∫ 1

y−2/4
=
∫ y−1|x−y|/4

y−2/4
... dt+

∫ 1

y−1|x−y|/4
... dt = Y3 + Y4,

|Y3| ≤ C
∫ y−1|x−y|/4

y−2/4
tN−2x−α|x− y|1−2Ndt ≤ Cx−α+1−N |x− y|−N ,

|Y4| ≤ C
∫ 1

y−1|x−y|/4
t−2x−α(txy)−N |x− y|dt ≤ Cx−α+1−N |x− y|−N , (4.5.32)

|D4 −D5| ≤ C
∫ y−2/4

0
tN−1x−α+2|x− y|1−2Ndt ≤ Cx−α+1−M |x− y|−M ,

|D5 −D6| = |D5| = C

∫ y−2/4

0
tN−1x−α|x− y|1−2N dt

t
≤ Cx−α+1−M |x− y|−M .

Reassuming, (4.5.26)–(4.5.32) lead to

sup
y>2

∫ 3y/2

y/2

∣∣∣RL(x, y)− χ{y|x−y|<1}(x)
B(xy)−α/2

(α+ 1)(x− y)

∣∣∣dµ(x) <∞. (4.5.33)

Moreover,

χ{y|x−y|<2}(x)
∣∣∣ B(xy)−α/2

(α+ 1)(x− y)
− B

xα+1 − yα+1
− A−B
xα+1 + yα+1

∣∣∣ ≤ Cx−α−1. (4.5.34)
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We claim that

sup
2<y<3

∫ 3y/2

3
|g(x, y)|dµ(x) ≤ C and sup

3<y

∫ 3y/2

y/2
|g(x, y)|dµ(x) ≤ C. (4.5.35)

To prove (4.5.35) we split the area of integration into three parts that correspond to white,

light grey, and dark grey regions from Figure 1.

• if y|x − y| > 2 we have φ ((x− y)/ρ(y)) = 0 and we deduce the statement directly

from (4.5.33).

• if 1 ≤ y|x− y| ≤ 2 then we apply (4.5.33)–(4.5.34), and the inequality

sup
y>2

∫
1<y|x−y|<2

(∣∣∣ B

xα+1 − yα+1

∣∣∣+
∣∣∣ A−B
xα+1 + yα+1

∣∣∣) dµ(x) ≤ C.

• if y|x− y| < 1 then φ ((x− y)/ρ(y)) = 1 and we use again (4.5.33)–(4.5.34).

Case 4: x, y < 3, x < y/2.

By similar analysis to that we have used in Case 1 we obtain∫ xy

0

(
|K [1]

t (x, y)|+ |K [2]
t (x, y)|

) dt√
t
≤ C

(
x

y

)M
x−α−1,∫ 1

xy

(
|K [1]

t (x, y)|+ |K [2]
t (x, y)|

) dt√
t
≤ C(xy)−α/2x−1,∫ ∞

1

(
|K [1]

t (x, y)|+ |K [2]
t (x, y)|

) dt√
t
≤ C.

Therefore

sup
y<3

∫ y/2

0
|RL(x, y)|dµ(x) <∞.

and, consequently,

sup
y<3

∫ y/2

0
|g(x, y)|dµ(x) <∞, (4.5.36)

since

sup
y<3

∫ y/2

0

(∣∣∣ B

xα+1 − yα+1

∣∣∣+
∣∣∣ A−B
xα+1 + yα+1

∣∣∣) dµ(x) <∞.

Case 5: x, y < 3, y < 2x/3.

By using (4.5.2) and (4.5.3), similarly as in Case 2, one obtains∫ xy

0

(
|K [1]

t (x, y)|+ |K [2]
t (x, y)|

) dt√
t
≤ C

(y
x

)M
x−α−1,∫ x2

xy
|K [1]

t (x, y)| dt√
t
≤ C

(y
x

)2
x−α−1, (4.5.37)∫ 1

x2

|K [1]
t (x, y)| dt√

t
≤ C

(y
x

)2
x−α−1,∫ ∞

1

(
|K [1]

t (x, y)|+ |K [2]
t (x, y)|

) dt√
t
≤ C.
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Recall that A = −2γ1γ
−1
2 , where γ1 = Γ(α/2 + 1) and γ2 = Γ((α+ 1)/2). We write

∫ 1

xy
K

[2]
t (x, y)

dt√
t
− Ax

(x2 + y2)α/2+1
= E1 − E4 =

3∑
j=1

(Ej − Ej+1), (4.5.38)

where

E2 = −
∫ 1

xy

2e−2t(1 + e−4t)
(1− e−4t)2

x exp
(
−1 + e−4t

1− e−4t

x2 + y2

2

)
γ−1

2

(
e−2t

1− e−4t

)α−1
2 dt√

t
,

E3 = −
∫ 1

xy

2
γ2

(4t)−α/2−1x exp
(
−x

2 + y2

4t

)
dt

t
,

E4 = −
∫ ∞

0

2
γ2

(4t)−α/2−1x exp
(
−x

2 + y2

4t

)
dt

t
= −2

γ1

γ2

x

(x2 + y2)α/2+1
.

Applying (4.5.2) and the mean-value theorem, one gets

|E1 − E2| ≤ C y2x−α−3,

|E2 − E3| ≤ C x−α+1,

|E3 − E4| ≤ C max(1, yMx−α−1−M ). (4.5.39)

Moreover, ∣∣∣E4 −
B

xα+1 − yα+1
+

A−B
xα+1 + yα+1

∣∣∣ ≤ Cyx−α−2. (4.5.40)

As a consequence of (4.5.37)–(4.5.40) we get

sup
y<2

∫ 3

3y/2

∣∣∣RL(x, y)− B

xα+1 − yα+1
− A−B
xα+1 + yα+1

∣∣∣dµ(x) <∞. (4.5.41)

Also,

sup
y<2

∫ 3

1
χ{y<2x/3}

(∣∣∣ B

xα+1 − yα+1

∣∣∣+
∣∣∣ A−B
xα+1 + yα+1

∣∣∣) dµ(x) <∞. (4.5.42)

Observe that if x < 1 then φ((x− y)/ρ(y)) = 1 (see Figure 1). Therefore (4.5.41)-(4.5.42)

lead to

sup
y<2

∫ 3

3y/2
|g(x, y)|dµ(x) <∞. (4.5.43)

Case 6: x, y < 3, |x− y| < y/2.

By using the decomposition (4.5.26) one obtains∫ xy

0
|K [4]

t (x, y)| dt√
t
≤ C|x− y|−1/2x−α−1/2. (4.5.44)

In addition∫ 1

xy

(
|K [3]

t (x, y)|+ |K [4]
t (x, y)|

) dt√
t
≤ Cx−α−1,

∫ ∞
1

(
|K [3]

t (x, y)|+ |K [4]
t (x, y)|

) dt√
t
≤ C.

(4.5.45)
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Denote∫ xy

0
K

[3]
t (x, y)

dt√
t
−
(

B

xα+1 − yα+1
+

A−B
xα+1 + yα+1

)
= F1 − F5 =

4∑
j=1

(Fj − Fj+1),

where

F2 = −
∫ xy

0

√
2e−t(1 + e−4t)
√

2π(1− e−4t)
3
2

(xy)−
α
2 (x− y) exp

(
−1 + e−4t

1− e−4t

(x− y)2

2

)
× exp

(
−(1− e−2t)2

1− e−4t
xy

)
dt√
t
,

F3 = −
∫ xy

0

1
4
√
πt2

(xy)−α/2(x− y) exp
(
−(x− y)2

4t

)
dt,

F4 = −
∫ ∞

0

1
4
√
πt2

(xy)−α/2(x− y) exp
(
−(x− y)2

4t

)
dt = − (xy)−α/2√

π(x− y)
.

Similar analysis to that we did in (4.5.39) leads to

|Fi − Fi+1| ≤ Cx−α−1, i = 1, . . . , 4. (4.5.46)

Thanks to (4.5.44)–(4.5.46), we have

sup
y<3

∫ 3

0
χ{|x−y|<y/2}

∣∣∣RL(x, y)− B

xα+1 − yα+1
− A−B
xα+1 + yα+1

∣∣∣dµ(x) <∞. (4.5.47)

Observe that

sup
y<3

∫ 3

0
χ{|x−y|<y/2}χ{|x−y|>1/2}

(∣∣∣ B

xα+1 − yα+1

∣∣∣+
∣∣∣ A−B
xα+1 + yα+1

∣∣∣) dµ(x) <∞. (4.5.48)

Note that if |x − y| < 1/2 then φ ((x− y)/ρ(y)) = 1 (see Figure 1). Therefore, it is not

difficult to see that (4.5.47)-(4.5.48) imply

sup
y<3

∫ 3

0
χ{|x−y|<y/2}|g(x, y)| dt√

t
dµ(x) <∞. (4.5.49)

Finally, the required estimate (4.3.2) follows directly from (4.5.24), (4.5.25), (4.5.35),

(4.5.36), (4.5.43), (4.5.49).



72 4. Chapter 4: Hardy spaces related to the Laguerre operator



BIBLIOGRAPHY

[1] P. Auscher, X.T. Duong, A. McIntosh, Boundedness of Banach space valued singular

integral operators and Hardy spaces. Unpublished preprint (2005).

[2] C. Bennett, R. Sharpley, Interpolation of operators. Pure and Applied Mathematics

129, Academic Press, Boston, MA, 1988.

[3] F. Bernicot, J. Zhao, New abstract Hardy spaces. J. Funct. Anal. 255 (2008), 1761–

1796.
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[12] J. Dziubański, Hardy spaces associated with semigroups generated by Bessel operators

with potentials. Houston J. Math. 34 (2008), no. 1, 205–234.



74 Bibliography
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