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1. INTRODUCTION

1.1 Hardy spaces - background

The Hardy spaces did appear in the classical theorem of Burkholder, Gundy and Silver-
stein [6]. The paper considers real-valued, harmonic functions u(z) = u(z + iy) defined
in the upper half-plane {z = z + iy : y > 0}. It is proved there, that for fixed p,
0 < p < oo, a function u(z) = u(x + iy) = u(z,y) is the real part of a holomorphic
function F'(z) = u(z) + iv(z) that satisfies the HP-property
sup/ |F(z 4 1y)|Pdz < o0 (1.1.1)
y>0 JR
if and only if the maximal function
u*(z) = sup |u(z',y)| (1.1.2)
lz—a!|<y
belongs to LP(R).

The work of Feferman and Stein [23] gives other characterizations of the HP-property
by means of the real harmonic analysis on R. These lead to the notion of the real Hardy
spaces HP, which can be defined not only on R, but also on R? (see, e.g. [38]), or even
more generally on spaces of homogeneous type (see, e.g. [8], [29], [40]).

Let
t

|z —y|* + 12

exp(~tv/=B)f(a) =y |
R? (
be the Poisson semigroup related to the Laplace operator
d

82
A= —

Z ox

7j=1

on RY. By definition a tempered distribution f is bounded if and only if for all ¢ € S(R?)
(the Schwartz class) we have f x ¢ € L>(R?). Recall that exp(—tv/—A)f is well-defined

e fy) dy

SN )

smooth function whenever f is a bounded distribution (see [38, Chapter III, Section 1.1}).

Definition 1.1.3. A bounded distribution f is an element of the real Hardy space

Hh(Rd) if the mazimal function M /—x f = sup,~( | exp(—tv—A) f| belongs to LP(RY).
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Set u(z,y) = exp(—yv/—A)f(z). The result of [23] states that if f € Hh(]Rd),

then u* € LP(R?). Conversely, every harmonic function u(z,y), z € R? y > 0, with

u* € LP(R?) can be obtained in this way from some f € Hh(Rd).

The notion of the classical Hardy spaces remains the same if instead of using the

Poisson semigroup we use the heat semigroup {P;}i~0,

P.f(x) = /Rd Pz —y)f(y)dy, P,(z) = (47t) Y2 exp(—|z|? /4t) (1.1.4)

or more generally, the family of operators
®f0) = [ Blo—fWdy Bla) =B/,
where @ is any fixed Schwartz class function, such that fRd ® #£ 0. To be more precise let
Ma f(x) = sup [P, f(z)], (1.1.5)
>0
be the maximal function related to the heat semigroup.

Definition 1.1.6. The Hardy space HpA(]Rd) consists of all tempered distributions f for
which |Ma f|l1pray is finite.

It is also a result of [23] that the spaces H” —(R?) and H} (R?) coincide. If we equip

V-A
HA (RY) and Hh(}Rd) with the norms (quasi-norms)
1/ 1l 222 ey = [IM A S| Lo (a)s 1l ey = M=z fll o ey (1.1.7)

then [|f[| g ey ~ £l HP_ (RY): The same remains true if one considers the family of
operators {®;}+~¢ (see [38, Chapter IIIJ).

Since in the dissertation we restrict our attention to p = 1, we state further character-
izations of the classical Hardy spaces only for this case.

The Hardy space HlA(Rd) can be characterized by means of certain singular integral

operators, namely the Riesz transforms RJ-A, 7 =1,...,d. Formally,

0

Ar_ 7
ij_(?xj

(=AY, (1.1.8)
More precisely, we define RjA(Z) for ¢ € S(R?) by one of the following expressions:

. — Y;)9(y)
R2¢(z) = ¢4 lim M dy,
/ ( ) =0 J1z—y|>e |$ _y|d+1

S d
R o(z) = ¢ liny | Puo(z) 7.

e (1.1.9)
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Assume f € L'(R?). Then R]-Af is a tempered distribution given by (RJ-Af, o) = (f, RJ-Agb}.

These operators were investigated by a great number of authors and appeared to be
very useful in many circumstances. In particular, RjA are properly defined and bounded on
LP(R?) for p € (1,00). Another classical result (see [38, p. 123]) gives the characterization

of HA (RY) in terms of RjA.

Theorem 1.1.10. Assume that f € L'(RY). Then f € HA(R?) if and only if RjAf
belongs to L'(RY) for j = 1,...,d. In addition, there exists C > 1 such that

d
CH ey vy < N1l ey + ) IRD fll 2 ray < ClFII 1 (ray-
j=1

In order to state one more characterization of HX (R?) we shall need the notion of

atoms.

Definition 1.1.11. A function a is called an atom (more precisely, (1,00)-atom) if there

exists a ball B in R? such that:
e suppa € B,
e llao < 1B,
o [pa(z)dr=0.

The results obtained in [23] were used by Coifman [7] in the one-dimensional case
and by Latter [27] in R? to prove the following atomic decompositions of the elements of

HL (RY).

Theorem 1.1.12. For a function f € HA (R?) there exist complex numbers {\;}32, and
atoms {ar}32, such that f(x) = D22 Aeax(x) and Y oy |Ax| < oo. Moreover, one can

chose {\;}72 1 and {ay}72, so that

CTY Pl < Il @y < C D I (1.1.13)
k=1 k=1

where the constant C > 0 does not depend on f.

In our investigations we will concentrate our attention on the three definitions pre-
sented above, so we do not state numerous other definitions. However, we would like to
mention that the real Hardy space HIA(Rd) can be also described by, e.g. other maximal
functions, square functions, area integrals. For details we refer the reader to [38], [10],

23], [39].
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1.2 Definitions of Hardy spaces associated with semigroups of operators

Natural questions rise. What can be said about the Hardy space H' if we replace the
classical heat semigroup by another semigroup of linear operators in Definition 1.1.67
Can then the space be characterized by appropriate singular integral operators? Does it
admit relevant atomic decompositions?

In [18] and [19] Dziubanski and Zienkiewicz started a project of studying Hardy spaces
associated with Schrodinger operators. Some results of this dissertation are continuations
of their works. In the thesis we investigate Hardy spaces related to semigroups generated by
certain differential operators. In fact, we shall deal with Schrédinger operators with various
potentials, Laguerre and Bessel operators. All these operators are self-adjoint and positive
on an appropriate L?(X)-space, where X = (X, 1) denotes the measure space. Throughout
the whole thesis L denotes one of these operators. The related semigroups {K;};~o =

{exp(—tL)};~0 possess symmetric real-valued integral kernels Ky(z,y) = K;(y, x), i.e.

K, f(x) = /X Kz, 9) f(4) du(y)

holds for a.e. z € X when f € LP(X), 1 <p < co.

In this general context we define the Hardy space Hlll in the following way. Let

max

My, be the maximal operator related to {K;}i~o, that is
My, f(z) :iug|th(I)’. (1.2.1)
>

Definition 1.2.2. We say that an L'(X)-function f belongs to Himax if and only if

MLy f is in L'(X). The norm of the space Himax is given by

1l = IMLFlsx:

The second definition makes use of the Riesz transforms related to L, which are formally
the operators

RF = %L_lﬂ. (1.2.3)
J

Let us mention, that we have either X = R% or X = (0, 00) so that 5%_ are simply partial
derivatives. In each situation we first clarify the sense of Rgf f for f € L'(X), and then

define the space HIIA as follows.

Riesz

Definition 1.2.4. Assume that f € L'(X) and d is the Euclidean dimension of X. By
definition, f is in Hi pi..., ezactly when f, R?f € LY(X) for j=1,...d. For f € H}.

Riesz
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we set

d
Wl o = 1)+ 3 IR o).
j=1

The third description we are interested in is associated with atomic decompositions.
Let us assume, that a definition of L-atoms is given (see Definitions 2.1.2, 3.1.5, 4.1.6,
4.2.1, 4.2.12 for precise assumptions on L-atoms in a particular case) and each L-atom

a satisty |lal|px) < 1.

Definition 1.2.5. The atomic Hardy space H11‘ ot 18 @ subspace of LY(X) consisting of
functions f for which there exist complex numbers {\i}32, and L-atoms {ar}72, such

that f = 37321 Meaw and Y02, |Ak| < co. The norm of Hy, ,, is given by

[ee]
1l , = inf 3 1w,
k=1

where the infimum is taken over all decompositions as above.

1.3 Results and organization of the thesis

In the present section we describe shortly the results contained in the dissertation and
present the organization of the paper.

The results included in the thesis are divided into three parts that are enclosed in
Chapters 2, 3, and 4. The precise assumptions on L, X and {K;};~o are given at the
beginning of each chapter. We shall use the notion already described in Sections 1.1 and
1.2 in the whole paper, although some other symbols may be used locally, in a particular

chapter or even only in a proof.

1.3.1 Schriédinger operators I

Hardy spaces associated with semigroups of linear operators and in particular Schrodinger
semigroups associated to

L=-A+V,

where V is a function called potential, on R? attracted attention of many authors see,
e.g. [1], [3], [9], [15], [19], [21], [22], [26] and references therein.

In Chapter 2 we investigate the Schrodinger operators with potentials satisfying the
assumptions (A1) — (As), (D), (K) (see Section 2.1) that appeared previously in [21]. It
was proved there that Hardy spaces defined by Definitions 1.2.2 and 1.2.5, with a suitable
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chosen family of L-atoms, coincide. Our goal is to prove the Riesz transform character-
ization of these Hardy spaces (see Definition 1.2.4). The main result of the chapter is
Theorem 2.1.6.

We would like to note here, that the assumptions (A;)-(A4s), (D), (K), with suitable

chosen family O, are satisfied for several important classes of potentials, in particular for

1

1e(R) potentials in one dimension, or for non-negative, Reverse Holder

all non-negative, L

class potentials in dimension d > 3. More examples are provided in Section 2.2.

1.3.2 Schrodinger operators 1T

Chapter 3 is devoted to proving the equivalence of Definitions 1.2.2, 1.2.4, 1.2.5 of the
Hardy space assuming (A4) — (A4g) (see Section 3.1). We define families of L-atoms that
occur to be different to the families of L-atoms from Chapter 2. The results generalize
the theorems from [22] and [15]. The main idea is to refine the methods given there and
utilize the operator I — VL™! which gives an isomorphism of Himaw with the classical

Hardy space HA(R?). The most important theorems of Chapter 3 are Theorems 3.1.2,
3.1.4, 3.1.8.

1.3.3 Laguerre and Bessel operators

In Chapter 4 we work in the context of one of Laguerre systems {dqia_l)/ 2}2‘;0 (see 4.1.2)

related to the Laguerre operator

Lf(2) = —f"(2) = = f (&) +2*f (), x>0,

We give the proper definition of L-atoms such that the Hardy spaces HI{ Ries, and Hll.,at
coincide (cf. Definitions 1.2.4 and 1.2.5). The main result is stated in Theorem 4.1.8.
Our method takes advantage of [5], where the Hardy space associated to the Bessel

operator

fl(x), x>0,

was investigated. In order to use results from [5] we define and characterize the local
Hardy space related to L (see Definition 4.2.12 and Theorem 4.2.13) .

One of the crucial points is to find precise formulas for the kernels of the Riesz trans-
forms in the both settings (see Propositions 4.2.4 and 4.3.1), where precise constants, not

only asymptotics, are important.
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1.4 Final remarks

Let us note that there has been a big progress recently in studying function spaces associ-
ated with semigroups of linear operators (see, e.g. bibliography in [26]). In the paper [26]
published in 2011 the authors provide a general approach to the Hardy spaces related to
the semigroups satisfying the Davies-Gaffney estimates. They define the Hardy spaces H*
by using square functions and prove very abstract atomic decomposition. Those atoms
defined in [26] have totally different nature than these which occur in the doctoral dis-
sertation. Moreover, it is worth to remark that the atomic decompositions of the Hardy
spaces which are presented here, whose geometrical and cancellation properties of atoms
are indicated (see Definitions 2.1.2, 3.1.5, 4.1.6, 4.2.1, 4.2.12) have useful attributes. They
allow very often in a simple and direct way to determine relations among the spaces. It
turns out that different operators may lead to the same Hardy spaces. For example H'-
spaces for the Schrodinger operators: —A + |z|* 4+ |z|?> +1 and —A + |z|* do coincide. One
can prove this by considering their atomic decompositions (cf. Chapter 2, Example 2.2.4).
On the other hand, as it was noticed in [22], in the case of Schrodinger operators with
compactly supported potentials on R%, d > 3, any small perturbations of the potential
lead to essentially different Hardy spaces.

Finally, I strongly believe that the combination of different, recently developed methods

may lead to new interesting theorems for larger and larger classes of semigroups.
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2. HARDY SPACES RELATED TO SCHRODINGER OPERATORS I

2.1 Background and main result

Let us assume that we have a family of closed cubes Q = {Q;}2; in R?. We shall always

impose that there exist C, 6 > 0 for which the following conditions are satisfied:
(A1) 1QiNQj =0 for i #j,

(Ag) R\ U721 Q) is of Lebesgue measure zero,

(As) if Q™ N Q™ # 0 then d(Q;) < Cd(Q;),

where d(Q) is the diameter of ) and Q* denotes the cube with the same center as @ such
that d(Q*) = (1 + £)d(Q). Clearly, if (A1)—(As) hold then there is a constant C' > 0 such
that

D 1gpe(z) < C. (2.1.1)
Jj=1

Now, we recall from [21] the notion of the local atomic Hardy space associated with

the collection Q.

Definition 2.1.2. We say that a function a is an Q-atom if there exists Q € Q such that

either
e a=1Q| '1g or

e a is the classical atom with support contained in Q* (that is, there exists a cube,

such that: Q' C Q*, suppa C @', [a=0, |alle < |Q'|71).

Then the space H é ot 18 given by Definition 1.2.5 with Q-atoms given above.
Let

L=-A+V(x),

be a Schrédinger operator on R, where V() is a locally integrable non-negative potential,

V £ 0. It is well known that —L generates the semigroup {K;};~¢ of linear contractions



10 2. Hardy spaces related to Schrédinger operators 1

on LP(R?), 1 < p < oo, and self-adjoint on L?(R?). The Feynman-Kac formula (see, e.g.

[30] and [26] for references and details concerning definitions) asserts that

Kifo) = [ K= (on (- [vE)a) ). ey

where B; is the d-dimensional Brownian motion. It implies that the integral kernels

K (z,y) = Ki(y, x) of the semigroup {Kj}:>o satisfy
0 < Ki(z,y) < Pz —y), (2.1.4)

where P;(z) is the classical heat kernel defied in (1.1.4). The Hardy space Hy, ,,,, related

max

to L is defined in Chapter 1 (see (1.2.1) and Definition 1.2.2), i.e.

[nalys

L,max

= MLl 11 ra)-

We shall see, under some additional assumptions, that the space H é o coincide with
the Hardy space related to the Schrodinger operator. To this end, following [21] we impose

two additional assumptions on the potential V' and the collection Q, namely:
(D) supyeq- fK2nd(Q)2 (v,y)dr < Cn~'7¢ for Q € Q,n €N,
(K) [ (1g=V) * Py(x)ds < C (£/d(Q)2)° forz € RY, Q € Q, t < d(Q)?,

with some C,e,d > 0.

The Hardy space for the Schrédinger operator with a family Q satisfying (A;) — (As),
(D), (K) was considered in the work of Dziubarski and Zienkiewicz [21]. It was proved
there that the spaces Himaz and H IQ,at coincide (see [21, Theorem 2.2]) and there exists

C > 0 such that

C Wy, < Iflay,.. < Clfllay., (2.1.5)

t L,max t

In other words, the result (2.1.5) means that Q-atoms coincide with L-atoms.
Denote this space by Hﬁ and equip it with whichever of these norms. For j =1,...,d,
let )
—
REf() = lim [ LK@
be the Riesz transform %L_l/ 2 associated with L, where the limit is understood in the
sense of distributions (see Section 2.3).

The main result of this chapter (see [16]) is to prove that the operators R} characterize

the space Hﬁ, that is, the following theorem holds.
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Theorem 2.1.6. Assume that a potential V> 0 and a collection of cubes Q are such that
(A1)-(As), (D) and (K) hold. Then there exists a constant C' > 0 such that

d
CMI Ay < I flpray + D IRF Fllziray < Cllf [l - (2.1.7)
j=1

2.2 Remarks and examples

The conditions (D) and (K) can appear to the reader as quite technical and complicated.
Roughly speaking, (D) means that the integral kernel of the semigroup {K;}¢~q is small
for t > d(Q)? and y € Q* (see, e.g. Lemma 2.3.5 and [21, Lemma 3.8]), whereas (K) says
that K; is close to Py for t < d(Q)? when we act on functions supported in Q* (see, e.g.
Lemma 2.3.8 and [21, Lemma 3.11]). Before going to the proof we provide some important
examples of non-negative potentials V' and appropriate families Q for which we can apply

Theorem 2.1.6.

Example 2.2.1. The Hardy space Hlll associated with one-dimensional Schrodinger op-
erator —L was studied by Czaja and Zienkiewicz [9]. It was proved there that for any
non-negative V€ Li (R) the collection Q of maximal dyadic intervals @ of R that are

defined by the stopping time condition

Q| /16Q Viy)dy <1 (2.2.2)

fulfils (D) for certain small 8 > 0 (see [9, Lemma 2.2]). The authors also remarked that
(K) is satisfied. Indeed,

2t 1/2
ds <C’t

Vars T @’

2t 2t
/O (1gweV) # Pa(z) ds < /0 I Lge V1 [Pl e ds < /0 Q!

where in the second inequality we have used (2.2.2).

Example 2.2.3. V(z) = v|z|72,d > 3, v > 0. Then for Q being the Whitney decom-
position of R\ {0} that consists of dyadic cubes the conditions (A4;)-(43), (D) and (K)
hold (see Theorem 2.8 of [21]).

Example 2.2.4. d > 3, V satisfies the reverse Holder inequality with exponent ¢ > d/2,
that is

1 1 1
(/ V(y)? dy) <C— [ V(y)dy for every ball B C R%. (2.2.5)
1Bl Jp 1Bl /B

Clearly, any non-negative nonzero polynomial V' satisfies (2.2.5). Define the family Q by:
Q € Q if and only if Q is the maximal dyadic cube for which diam(Q)?|Q|™* fQ Viy)dy <
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1. Then the conditions (A1)—(A43), (D) and (K) are fulfilled (see [21, Section 8]). Let us
mention that the Riesz transforms characterization of the Hardy spaces associated with
Schrédinger operators with potentials satisfying the reverse Holder inequality was proved

in [19].

We finish this section by giving the following three remarks that give examples how

we can construct in some cases other family of cubes from families that we already know.

Remark 2.2.6. For ¢ > 0 denote by Qy(R™) any partition of R™ into cubes whose di-
ameters have length /. Assume that for a locally integrable non-negative potential V; on
R? and a collection Q of cubes the conditions (D) and (K) hold. Consider the potential
V(zy,x2) = Vi(xy), 21 € RY, x5 € R”, and the family 0 = {Q1 xQ2: Q1 € Q, Qs €
Qugr)(R™)} of cubes in R4, Then the pair (V, Q) fulfils (D) and (K).

Proof. Assume that Q = Q; x Qo € Q, where Q1 € Q and d(Qy) = d(Q1) = C; /2d(Q).
Let Ki(z,y) denotes the integral kernel of the semigroup generated by A — V on R,
Then Ky(z,y) = Kfl)(xl,yl)Pt(Q)(xg,yg), where Kt(l)(xl,yl) is the integral kernel of the
semigroup related to A — V; on R? and Pt@) is the classical heat semigroup on R”. Let

us check (D):

1)
sup Komgoyz(z,y)dr < sup K (z1,y1)dxy
e Jritn Q) peor Jrd c02md(Q1)?

< C(m+logyco) 7 <Cm™17e.
By using Ps(z) = Ps(l)(xl)PS(Q) (z2), where 21 € R? and x5 € R" we obtain
(LgwV) * Py() < (1gg=+ Vi) * PV (21)

which leads directly to (K) since d(Q) ~ d(Q1) (in fact, we get (K) only for t < c51d(Q)?,

where ¢y > 1, but one could check that this ¢y 1'is unimportant to the theory). O

Remark 2.2.7. One can check that Theorem 2.2 of [21] (see 2.1.5) and Theorem 2.1.6
together with their proofs remain true if we replace cubes by rectangles in the defini-
tion of atoms and in the conditions (D) and (K), provided the rectangles have all side-
lengths comparable to their diameters. As a corollary of this observation we obtain that
if V(z1,22) = Vi(z1) + Va(x), 1 € R?, x5 € R™, where Vi and V5 satisfy conditions
(D) and (K) for certain collections Q1 and Qs of cubes on R? and R™ respectively, then

the Hardy space Hﬁ associated with the operator L = —A + V(z1,z2) on R¥™ ad-

;max

mits (thanks to Theorem 2.1.6) the atomic and the Riesz transforms characterizations.
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Indeed, for any @; € Q1 and Qi € Q2 we divide the rectangle @); x )y into rectan-
gles Q% ), s =1,2,..., 55, with side-lengths comparable to min(d(le-), d(Q%)). The above
construction leads to V/(z1,22) and the collection @7, for which (D) and (K) hold.

Proof. Take Q3 as above. We can assume that d(Q; ;) = cj_,iﬂd(Ql), where 0 < ¢ <

cjr < C independently of j and k. Let K(x,y), Kt(l)(xbyl), Kt(2) (z2,y2) be the integral
kernels of the semigroups generated by A —V (on R%™), A —V; (on R?), and A — V;
(on R™), respectively. Then Ky(z,y) < Kt(l)(xl,yl)Pt(xg,yg) and (D) follows identically
as in the proof of Remark 2.2.6. We check (K):

2t
/O (X(Q?,k)*** V) * Ps(l‘)ds S /O
< C(t/d(Q))%)° + C(t/d(Qr)*)° < C(t/d(Q5))°.

Notice, that we have got (K) only for t < cld(Q;k)2 (with ¢; < 1 independent of j, k, s)

2% 2t
(X@:= V1) * P (1) ds +/ (x@j+Va) * P (a2)ds
0

but, as we noticed at the end of the proof of Remark 2.2.6, it is enough. O

Remark 2.2.8. Let Vi, V5 be non-negative potentials on R, which together with families
of cubes Q1 1 Q9 satisfy (D) and (K). Assume additionally that Q;, Q2 consist of dyadic
cubes. For Q1 € Q1, Q2 € Qs the cubes are either disjoint or one contains another. Let
Q1 N Q2 denote the smaller one. Then the family Q = {Q1 A Q2 : Q1 € Q1,Q2 € Qa}
covers R? and satisfies (D) and (K) for V =V} + V5.

Proof. Denote by Ki(z,y), Kt(l) (z,y), Kt(2) (z,y) the integral kernels for Schrédinger semi-
groups with potentials V, Vi, V3, respectively. Then K;(x,y) < min(Kt(l)(a:, Y), Kt(Q) (z,9)).
Assume that Q1 = Q1 A Q. For x € R% and t < d(Q1)? we simply observe that

2t ¢ é ¢ é ) + 0
and (K) is satisfied. Also, we check (D):

(1) —1-¢
sup Kon 2(x,y)dx < sup / K, (z,y)dx < Cn .
ven Jra 2md(Q1) yeQus Jra 2@

2.3 Auxiliary lemmas

Lemma 2.3.1. For every a > 0 there exists a constant C > 0 (independent of V') such
that for j =1,...,d and y € R* we have

J.

2

iKt(ac, )| exp(alz —y|/Vt)de < Ct=4271 (2.3.2)

aTj
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J.

The lemma seems to be known. For reader’s convenience we give a sketch of a proof

0
7Kt(x7 y)

B exp(alz —y|/Vt) de < Ct~V/2, (2.3.3)
j

in Section 2.5.

Fore >0, 5=1,...,d, we define the operator

/ y) dy,

We will check in a moment that for f € L'(R?) the limits lim._ Rﬁe [ exist in the sense

_1
where R}:E(az,y) = f; %Kt(af,y)%.

of distributions and define tempered distributions which are denoted by R]I-‘ f. Moreover,

for ¢ € S(R?) we have

(RE£, 0] < Cllf s ey (kum(w + [ rnd ) (2.34)

To see this we write

1/e dt 1 5 dt
( / /Rd Ox; t(,y)p(z) dz Vi /g e t(z,y) oz, o(x) dx i

Since
an

Jun

0
—K
6% t(ﬂf ?J)

2 2 qt o0 y
dx go/ t 1 g < o
| e

//IK(xy)dtdx<2
wao T NE T

(see Lemma 2.3.1), we conclude that (R][»:E) ©(y) converges uniformly, as ¢ — 0, to

and

a bounded function which will be denoted by (Rg“)* ©(y), and

&2 o] <€ (Ioliaen + |50 )

For fixed Q € Q and 0 < e < 1, let

d(Q)? .
fe @) %Kt(x,y)% if e<d(Q)?<1/¢
i qo(@,y) = q [11° 32 Ko, y) L it d(Q)? > 1/e;

0 if d(Q)? <e;

Ao B K@ )% if e < d(Q)? <1/

R goo(@,y) =40 it d(Q)?>1/e;

JE Ky i dQ) <
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Clearly, Rjg(x y) = R§:87Q70(m,y) + R]I-:&Q’OO(J},y) for every Q € Q and 0 < ¢ < 1. For
f € LY(RY) denote

RYof(@) =lim | RY o o(z,y)f(y)dy,

e—0 JRd

R, o f(2)=1lim [ RY o (z,9)f(y)dy,

e—0 Rd

which of course exist in the sense of distributions.

For @ € Q we define

Q) =1{Q € Q: Q" N(Q)™ # 0},
Q//(Q) — {Q// c Q . Q*** N (Q )*** @}

Lemma 2.3.5. Assume that (D) holds. Then there exists a constant C > 0 such that for

every QQ € Q we have

/ sup |RjaQoo(x y)lde < C  forye U Q™. (2.3.6)
R 0<e<1 0'eQ'(Q)

Proof. Fix y € Ugeg(q) @™ Let Q" € Q(Q) be such that y € Q™. Denote by S the
left-hand side of (2.3.6). Then

adQ')? ‘
S S/ / (z,y dx—i—/ /
R4 Jmin( d(Q")) 855] \/> R Jd(Q")2

=57 + 5.

dt

@w¢ﬂ

Recall that d(Q) ~ d(Q’). Using (2.3.3), we get
d(Q")?
S <C t~hdt < C.
min(d(Q), d(Q"))?

Applying (2.3.3) and (D), we obtain

27+1d(Q
%= Z/Rd/g ‘8% xy)\[
S LI 7
n—0 7/ R¢ J2rd(Q")? R4
dt

8{[} E on— ld(Ql ZL‘ z ‘T2n ld Q/) (Z y) d2;7d$
N 2n+1d @ )2 2\—1/2

<CZ/ T2n 1dQ’) (zy)dz<C+CZn1€<C

n=1

and the lemma is proved. O
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For 0 < e < d(Q)? let

(Q)?
Wieq(@,y) :/ 0 (Kt(JU y) — Pt(x—y)) (2.3.7)

837]
Set Wjcof(x) = [Wico(z,y)f(y)dy, Wjqf =W;oof.

dt
N
Lemma 2.3.8. Assuming (K) there exists a constant C > 0 such that for every Q € Q

/ / (Q)?
sup
yeQ* JRd 85’7]

Proof. The proof borrows some ideas from the estimates of maximal functions associated

one has

(Kt(:c y) — Pi(z,y) ‘dm<C’

with (K¢ — P) in dimension one which are given in [9, Lemma 2.3]. Fix j € {1,...,d}
and denote
st = [ o) - ma )|
x,y) = x,y x—vy))| —.
N 0 dxj t t Vit
The perturbation formula asserts that
t
Kt - Pt == —/ Pt,SVKS ds. (239)
0

Therefore

Vi(2)Ka(z,y) dz ds 2

d(Q)?  rt/2
Jo(z,y) < / / /
0 Rd

ijptfs(l‘ — Z)

Vit

d(Q)? '

+ 7P 5 — V KS , d d et
/0 //2/Rd dx; 2)| Vi(2)Ks(z,y) dz 7
a(Q)? . . .
+/0 / /Rd ox; F (z —2)| Va(2) s(Z,y)dzds%

!/

= Ji(z,y) + J{(2,y) + Ja(z,y),
where Vi (z) = V(2)1gw, Va(z) = V(z) — Vi(z).

To evaluate J| observe that

/ 0
R4

Ox;
Thus, using (K), we get

Q) rt/2 dt
/ Ji(z,y)dx < C/ / / t7 Y2V (2)Py(2 — y) dz ds —
*k Rd \/E

<o [ (Ggm) Gi=e
Similarly,

Q) t dt
/ J(z,y)dx < C’/ / / (t —s)"V2Vi(2) Pz — y) dz ds
»x 0 t/2 JRa Vit

Q)72
:C"/ Vi(z)P(z —y)dzdt < C.
0 R4

— Pz —y)|de < Ct™V? for0<s<t/2.
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In order to estimate Js we notice that

0
0

for 0 < s <t<d(Q)? z¢ Q™ z € Q. Lemma 3.10 of [21] asserts that

sup / / (z,y)dzds < C.
yERd Rd

Hence, by (2.3.10), we obtain

Z_Pp_y(x — 2)| < Cd(Q) e cllz—/d@))? (2.3.10)

AQ)? rt dt
| repar<cart [T [ [ vk das 7
- 0 0 JRrd Vit
dQ)?* rt dt
< Cd(Q)_l/ / / V(2)Ks(z,y)dzds —
0 0 JRd \/i
cd(Q)™ / g
< — < (.
We now turn to estimate Jg(z,y) for ¢ Q™ and y € Q*. Clearly,
dt
(z,y)dx </ / x,y)| — dx
Jor 7 ok faienly
= J5H + T
/**c/ 8;10] ’ \f Q Q

By using (2.3.2) combined with the Cauchy-Schwarz inequality we get

d(Q)? 2 L 1/2 . 1/2
JH < / / 62‘ 7 dx (/ e_2| ﬁyd:c> dt
0 Q**C *%C \/i
d 2 N 1/2
< C/ @ 4—d/4=1/2 / <\/E> dx dat <C.
=<, v\ Vi

The estimates for jQ go in the same way. Hence,

0
—K
895] t(ff y)

(2.3.11)

sup / Jo(z,y)dx < C,
yGQ* *%C

which completes the proof of Lemma 2.3.8. 0

Let {¢g}geco be a family of smooth functions that form a resolution of identity as-
sociated with {Q*}geco, that is: ¢g € C(Q*), 0 < ¢g < 1, |Veg(z)| < Cd(Q)™*
ZQEQ ¢Q(x> - 1 a.e.

The following corollary follows easily from Lemma 2.3.8.
Corollary 2.3.12. For f € L'(R%) we have:
m|[W;.0(¢f) = Wiq(¢a )@y =0,

IW;o(@Q /)l mey < Clloqfllrr me
with C' independent of Q and f.
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Lemma 2.3.13. There exists a constant C' > 0 such that for every Q € Q and every
f € LYRY) such that supp f C Q = Ugreo(g) @ we have

IR} (6Q) = 6aR fll1@e) < Cll Sl ) (2.3.14)
Proof. Note that
R} (6o f)(x)=dq(2)R] f(x)
1/e d
= limy i /Rd <§;Kt<w7y>) (0Q(y) — ¢q()) f(y) dy\/ti-

From (2.3.3) we conclude

LI

( Ko, y>> (balu) — da(a))| 7 da

@ 0 z —y|
< 7 Ki(a, dt da (2.3.15)
d(Q) /Rd/o 9 J t( y)‘ \/{5
C / /d(Q)2 o
< — —Ki(z,y)|e” WV Gt d < O,
S4Q) Juahy oY :
Now (2.3.14) follows from (2.3.6) and (2.3.15). O

Lemma 2.3.16. There exists a constant C' > 0 such that

ZH1Q***R]L( 3 nguf)‘
QEeQ

QNGQ”
Proof. Let S denote the left-hand side of (2.3.17). Applying (2.1.1), we have

s<yY % H1Q*MR (bor f ‘LI(W -y ¥

Ll(Rd) S C”fHLl(Rd) (2317)

QEQ Q// Q// QNGQ QGQN Q//
<C ), e (2.3.18)
,, ((Q)*+)
Q"eQ
=02 (HR Q"0 ¢Q”f)’ LY((Q")**<) HR Q00 (¢Q”f)‘ Ll((@“)**c))'

Q"eQ
By using (2.3.6) and (2.1.1), we get

[REor (@@ D], ey SC 2 6@l < Ol flres.  (23.19)
Q"e€Q Q"eQ

Similarly to (2.3.11), for y € (Q")*, we have

/ /d(Q”)2
( //)**c 0

> [REarot@er D,y gyey <€ X M@ flnms < Clf s, (2320
Q//eQ QNEQ

The lemma is a consequence of (2.3.18)—(2.3.20). O

dm<C

%Kt(%?/) \[

which implies

QN)**C)
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2.4  Proof of Theorem 2.1.6

In order to prove the second inequality of (2.1.7) it suffices by (2.3.4) and (2.1.5) to verify

that there exists a constat C > 0 such that
IR} all 11 (za) < C (2.4.1)

for every Q-atom a and j = 1,...,d. Assume that a is an Q-atom supported by a cube

Q*, Q € Q. Then
Rja(z) = lim (Rj. g0a(?) + Rj.qgc0(x))

= lim (Wj757Qa(:L') +H,.qga(x) + R£E7Q7ooa(x)) ,

e—0

where H; . ga(x) = fd(Q)2 O (g% Py)(x)%L. Similarly to (2.3.4), the limit

€ ox;

<

H;qa(z) = lim H;. ga(z)

exists in the sense of distributions. Moreover, by the boundedness of the local Riesz trans-
forms on the local Hardy spaces (see [24]), we have [[H; gal| 1 (gey < C with C' independent
of a. Using Lemmas 2.3.8 and 2.3.5, we obtain (2.4.1).

We now turn to prove the first inequality of (2.1.7). To this end, by the local Riesz
transform characterization of the local Hardy spaces (see [24, Section 2]), it suffices to

show that

> 180Nl < C (Il @ + IRE @) s §=1wd  (242)
Qe
Clearly,
H;q(60f) = —W;q(dof) + Rigo(def).

Lemma 2.3.8 together with (2.1.1) implies

Z IWio(@QHlpmey <C Z 6@ flln ey < CIfll L1 ay- (2.4.3)
QeQ QeQ
Note that
Rjqo(¢af) = [R? <¢Q > (¢Q'f)) - ¢QR§J( > (¢Q’f)>}
Q'eQ(Q) Qe (Q) (2'4.4)

~Rlga(0af) + QRIS —0qRY( Y (00))).
QIEQ(Q)
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Lemmas 2.3.13, 2.3.5, and 2.3.16 combined with (2.4.4) imply

> IREG 06Ny <C Y (D oo flmms + lloefllo @)
QeQ QeQ QeQ(Q)

+ 6QRY Il msy ) + Cllf Il e
< C (Il ety + IRE oy ) -

Now (2.4.2) follows from (2.4.3) and (2.4.5).

(2.4.5)

2.5 Appendix

2.5.1 Proof of Lemma 2.3.1

Proof. The argument is based on estimates of the semigroup K; acting on weighted L?
spaces. This technique was utilized, e.g. in [14], [25], [20].
Fix yo € R? and o > 0. The semigroup {K;}s~o acting on L?(e®*=%ldz) has the

unique extension to a holomorphic semigroup K¢, ¢ € {¢ € C: |Arg(| < 7/4} such that
/2
||KC||L2(ealzfyoIdx)ﬁm(ealzfyoldx) < Ce® % (2.5.1)

with C' and ¢ independent of V' and y (see, e.g. [20, Section 6]). Let —A,,, denote
the infinitesimal generator of {K;}s~¢ considered on L?(e®*=%ldz). The quadratic form

Q = Qq 4, associated with A, ,, is given by

R4

— : |z—yo -
Q(f,9) = — flx)—qg(z)eX* Yl dr + Viz)f(x xea‘w yo‘dﬂ:
(fg) j§1/d9jf()ajg() ()f( )9()

d 9 9
+ / 2)g(z) =0l gy,
; i f(@)g( )8%,

.95,
= : 1/2 0 2( palz—yol -
J
Note that
ieo“x_yo‘ < Cae®l*=wl for o £ .
a’L'j
Clearly,

1Q(f,9) < Callfllallglq

with C, independent of yy and V', where

d
2 _
=, (32

2
+V(@)|f (@) + | f(2)]” | el da,

0
aixjf(x)
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Moreover, there exists a constant C' > 0 independent of V' and gy such that

1£1% < CQ(F, ). (2.5.2)

The holomorphy of the semigroup K; combined with (2.5.1) imply
_ Iy 2
HAa,yoKtQHL?(ealz—yoldx) < Clttecte Hg”L2(ea\Z—yo\dx) (2.5.3)

with constants C’ and ¢’ independent of V' and yo. Setting g(z) = Ky /5(z,90), f(z) =
K/ 9(z) = Ki(z,y0) and using (2.5.2), (2.5.3), (2.5.1), and (2.1.4), we get

2

0
7K1("B7y0)

< 2
9 < 1714

L2(e2lz=voldz)

<CQ(f,f) (2.5.4)
< CllAayo fll 12 (eate—volaz) | f 1| L2 (eotz—v0l 4z

2
< C//HQHLQ(ealzfyoldx) <"

with C"” independent of yo and V. Since Ky(z,y) = t~¥2K\(z/\/t,y/\t), where Kq(z,y)
is the integral kernel of the semigroup {IA(;}DO generated by A — tV (v/tx), we get (2.3.2)
from (2.5.4), because C” is independent of V' and yo. Now (2.3.3) follows from (2.3.2)

and the Cauchy-Schwarz inequality. O
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3. HARDY SPACES RELATED TO SCHRODINGER OPERATORS II

3.1 Background and main results

This chapter is devoted to proving three characterizations (see Theorems 3.1.2, 3.1.4, 3.1.8)
of the Hardy space H{ related to the Schrédnger operator Lf(z) = —Af(x) + V(z) f(x),
on R? for another class of potentials V. The results of this chapter are mostly contained

in [17] and [15]. During the whole chapter we assume that V' satisfies:

(A4) there exist V; > 0, V; # 0, such that

(As) for every i € {1,...,m} there exists a linear subspace V; of R? of dimension d; > 3

such that if Iy, denotes the orthogonal projection on V; then

Vz(l') = Vi(HVix)v

(Ag) there exists k > 0 such that for i = 1,...,m we have
Vie L"(V;)
for all r satisfying |r — d;/2| < k.

In this chapter we are using the notion already provided in Section 1.2. In particular,
K; = exp(—tL) and P; = exp(tA) denote the semigroups of linear operators associated
with —L and A respectively. Note that the estimate 0 < K;(x,y) < P/(z — y) and the
perturbation formula P, = K; + fg P, sVK;ds still hold (see (2.1.4) and (2.3.9)).

Let My, and M a be the associated maximal operators (see (1.1.5) and (1.2.1)). Recall,

mae a0d the corresponding norm (cf. Definition 1.2.2) are given

that the Hardy space Hi
by
F €M e <> MufeL'®Y, [l = IMiflp.

The goal of the chapter is to prove three characterizations of the space Hlll (see The-

max

orems 3.1.2, 3.1.4, 3.1.8).
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Denote by L™! and A~! the operators with the integral kernels
o o
My = [ Kieg)dt and Talo-y)=- [ Ryt
0 0
respectively. Clearly,
t
0< [ Ki(a)ds <Tu(ey) < Tale-) = Cals =y (L1
0

We shall see that operators I — VL™! and I—V A~! are bounded on L'(R%). The first

main result of Chapter 3 is the following characterization of the Hardy space Himw.

Theorem 3.1.2. Assume f € L'(R?). Then f belongs to Hﬁ
VL) f belongs to the classical Hardy space Hx (RY). Moreover,

if and only if (I —

,max

1l ~ 1= VET) f s oy
We define the auxiliary function w by

w(z) = lim Ki(z,y) dy.

t—o0 Rd

The above limit exists because, by (2.1.4) and the semigroup property, the function ¢ —

K;1(x) is decreasing and takes values in [0, 1]. Clearly, for every ¢ > 0,

w(z) = Kw(z) = y Ki(z,y)w(y) dy. (3.1.3)

We shall prove that there exists § > 0 such that § < w(x) <1 (see Proposition 3.2.10).
We are now in a position to state the second main result of this chapter.
Theorem 3.1.4. Let f € L*(R%). Then f belongs to HL if and only if wf belongs to
HX (R?). Additionally,
1Ly .~ o s quay-
From Theorem 3.1.4 we immediately obtain atomic characterizations of the elements
of H}

L,max"

Definition 3.1.5. We call a function a an L-atom if it satisfies:
e there exists a ball B = B(y,r) such that suppa C B,
o llalloe < |BI7Y,

o [paa(x)w(x)dr =0.
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Corollary 3.1.6. The spaces HI{ and Hﬁ,at (see Definitions 1.2.5 and 1.2.5) coincide.

max

Also, the corresponding norms are comparable.

We denote by % the partial derivative in the direction of the j-th canonical coordinate
of R, where j = 1,...,d. For f € L*(R?%) the Riesz transforms RJI»‘ associated to L (cf.
(1.1.9) and (1.2.3)) are given by

=9 dt
L T
Ry f= ilH(l)/E a9, th—\/i (3.1.7)

We shall see that the last limits are well-defined in the sense of distributions.

The third main result of this chapter is to obtain the following characterization of

1
L,max"

Theorem 3.1.8. An L'(R%)-function f belongs to Hi}
LYR%) for j =1,...,d. Additionally,

if and only if R]Lf belong to

,max

[nalye!

L,max

d
~ N fllLr ey + Z IRY £l 11 ray-
7=1

The results included in this chapter generalize the theorems of [22] and [15], where the
spaces Hi were studied under assumptions: V > 0, supp V is compact, V € LT(Rd) for
some r > d/2. Obviously such potentials V' satisfy the conditions (A4) — (Ag). To prove
Theorems 3.1.2, 3.1.4, and 3.1.8 we develop methods of [22] and [15].

3.2 Auxiliary lemmas

We shall use the following notation. For z € R? and a subspace V; of R? we write
2=z +2z, z=Iy,(2), z=Iyi(2), cz = dime =d—d;.

Notice that if V; = R, then, in fact, there is no Vil.

The following two lemmas state crucial estimates that will be used in many proofs.

Lemma 3.2.1. There exists A > 0 such that

suIé)d 401K —y‘27d+'LLHLr(Rd) <C forre[l,1+ A and p € [-\ A (3.2.2)
ye

Proof. Tt suffices to prove (3.2.2) for V = V;. For fixed y € R? we have

_ Vl(zl)’” ~
V.._2d+urr <C// — — dz1dz.
V()] - —yl ||L (RE) = vy vt 2 — y1|fr(2fd+u) +|z1 — y1|fr(27d+,u) #1621
(3.2.3)
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Observe that if A > 0 is sufficiently small, € [1,1 4 A], and p € [=\, A] then

1
/L (’21 _ ylrr(ZfdJru) + ’51 _ glrr(2fd+u)> dz
A%

1
<C R E e B -nlettmaz
|21 —y1[>]21 -1l |21 —y1|<[Z1 -]

< C|Zl . yl‘r(Q—d-‘ru)—I—Jl'

(3.2.4)
Thus, by (3.2.4),
VA()]- —912_d+MHZT(Rd) <C Vi(21) |21 — g [T
lz1—y1|<1
+ C Vl(zl)r’21 — ylyr(Q_d—'—u)-i_Jl le. (3.2.5)
|z1—y1]|>1
Note that by (Ag) there exist ¢,s > 1 such that V" € LY(Vy) N L¥(Vy) and
Xz <1y (202 [FETHWT € LF VL), X1y (2) | [fCTH TR € L)

for 7 € [1,1 4+ A] and p € [\, A] provided XA > 0 is small enough. Thus (3.2.2) follows

from the Holder inequality. O

Corollary 3.2.6. The operators I — VA~ and I — VL™ are bounded on L'(RY) and
I-VL HI-VA Yf=0-VAHYI-VL Y f=f for feL'RY. (3.2.7)

Formally, (3.2.7) can be easily seen, by inserting V' = L + A. However, since we deal
with unbounded operators, it is not so straightforward. We provide the detailed proof in

the appendix (see Section 3.6).

Lemma 3.2.8. There ezists 0, > 0 such that for s € [1,1+¢] and R > 1 we have

sup / V(2)%z —y|** D dz < CR. (3.2.9)
yERL J|z—y|>R

Proof. 1t is enough to prove (3.2.9) for V = V;. Fix ¢ > 1 and ¢ > 0 such that d;/q(1 +
g) —2>0and V; € LI+ (V) N LY(Vy) (see (Ag)). Set o = dy/q — 2. For s € [1,1+ €]

we have

/ o Vi(2)°)z =y dz S/ X{jz—yl> 1} (2)Vi(2)[21 = 1 2D dz
zZ—Y|>

|21 —y1[>]21 -]

i / X|z—y>r(2)V1(2)°[21 — 752D g,
21 —y1]<|Z1— 71

~T(R) + S(R).
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If |21 —y1| > |21 —v1] and |z — y| > R > 1, then |21 — y1| > R/2 > 1/2. Thus,

T(R) < C/ 121 — 1| AV (z1) 21— P dz
|z1—y1|>R/2

1/q
S CH‘/lHiqs(Vl) (\/| |>R/2 ‘Zl — yl‘(s(zfd)‘i’d*dl)q/ d21> — CR*(T.
21—y

Similarly, if |21 — 1] < |21 — 71| and |z —y| > R > 1, then |z1 — 1| > R/2 > 1/2 and

1/¢
S(R)<C VAl / da | -z
|Z1—1|>R/2 |21 —y1|<[Z1—71]

<C 2, — [P D+ /e gz = CRO.
|Z1—1|>R/2

O]

We shall need the following properties of the function w similar to those that hold in

the case of compactly supported potentials (cf. [22, Lemma 2.4]).
Proposition 3.2.10. There exist v, > 0 such that for z,y € R% we have
(a) lw(z) —w(y)| < Cylz —y[,

(b) 0 <w(z)<1.

Proof. The property (a) can be proved by a slight modification of the proof of (2.6) in
[22]. Indeed, thanks to (3.1.3) and 0 < w(x) < 1, it suffices to show that there is C,v > 0
such that for |h| < 1 we have

[ JKa(e+ hoy) = KaGe )l dy < CIAP (3:2.11)
R4
To this purpose, by using (2.3.9), it is enough to establish that

Z/Rd

Consider one summand that contains V. Utilizing the fact that Ps(x) = Ps(z1)Ps(T1),

/ /Rd s(x+h—z)— Ps(z — 2))Vi(2)K1-5(2, y) dzds’dygc‘hp.

where Ps(x1) and Ps(Z1) are the heat kernels on Vi and Vi respectively. We have

-
Rd

/ /Rd s(@+h—z) = Ps(z — 2))Vi(2) K1-s(2,y dzds‘dy
/ / (x4 h — 2) = Po(a — 2)|Vi(z) dzds
R4
/ Ps(x1 + hy — 21) |P 1:1+h1—z1) Ps@l—gl)’%(zl)dzds

Rd
/ /d (1 — 21 ‘P (x1+h1 — 21) — Ps(z1 — 21) |V1 z1)dzds
R

(3.2.12)
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By taking g > d; /2 such that V; € L9(V;) and using the Holder inequality we obtain

1 -
I'< /0 ||Ps($1)||Lq’(V1)||V1(Z1)||Lq(vl) /Vl |Ps(Z1 + h1 — 21) — Ps(z1 — Z1)| dz1 ds
1

1 , 1/q
+/ < |Ps(l‘1 +hy —2z1) — Ps(z1 — 21)’(1 dzl) 1Vi(21)[ Lav,) ds
o \Jv;
< O[] +|m]),
(3.2.13)

which finishes the proof of (a).

Next we note that
Ki(z,y) >0 fort>0and z,y € R (3.2.14)

The proof of (3.2.14) is a straightforward adaptation of the proof of [22, Lemma 2.12]. We
omit the details.

Our next task is to establish that there exists § > 0 such that
w(zx) > 0. (3.2.15)

The proof' of (3.2.15) we present here is based on the Holder inequality and goes by
induction on m. Assume first that we have only one potential V7, that is, m = 1. Then,
Ki(z,y) = Kfl}(wl,yl)Pt(ffl — 1), where Kfl}(a:l,yl) is the kernel of the semigroup
generated by A — Vi(x1) on Vi and P(Z1) is the classical heat semigroup on Vi. Hence
w(x) = wo(x1), where wp(z1) = im0 fVl Kfl}(xl, y1) dy1. Therefore, there is no loss of
generality in proving (3.2.15) if we assume that V = R?. If we integrate (2.3.9) over R?
and take the limit as ¢t — co, then we get
1—wle) = [ Vol di<C [ Ve =y lay.  (3216)
By (A4g) and the Holder inequality we find ¢,s > 1 such that V € L{(R%) N L¥(R?),
X{|m|§1}(x)|x]2*d e LV (R™), and X{‘x|>1}(1‘)]m|2*d e L¥ (RY). Thus (3.2.16) leads to
lim V)lr —yl>?dy=0 and lim w(z)=1. (3.2.17)

|z[—00 JRd |z[—00

The equation (3.1.3) combined with (3.2.14) and (3.2.17) imply that w(xz) > 0 for every

x € R?%. Since w is continuous (see (a)) and limpy o w(r) = 1, we get (3.2.15).

! We would like to note that (3.2.15) can also be deduced from [36]. The author learnt about the results

of [36] when the thesis was already written down.
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Using induction, we assume that (3.2.15) is true for V being a sum of m — 1 potentials.
Take V = V) + ... + V,;,. As in the case of m = 1, we can assume that lin{Vy,...,V,,} =
RY. Consider the semigroup {S;}/~o generated by —A + Vi + ... + V;,. Let wi(z) =
limy oo [pa St(,y) dy. By the inductive assumption wy(x) > d;. Similarly to (3.2.16), the

perturbation formula

t
St == Kt + / Stfsles ds
0

implies

01 <wi(y) Sw(y) + C/Rd Vi(z)]z =y dz <w(y) + C s Vi(z1)|z1 — nl* " da,
(3.2.18)
where the last inequality is proved in (3.2.4). If y; — oo then the integral on the right
hand side of (3.2.18) goes to zero. Hence, w(y) > ¢1/2 provided |y1| > R;. We repeat
the argument for each Va, ..., V; instead of V; and deduce that there exists R, > 0 such
that w(x) > ¢ for |z| > R. Consequently, by using (3.1.3), (3.2.14) and continuity of w we
obtain (3.2.15). ]

3.3 Proof of Theorem 3.1.2

By (2.3.9) we get
K; - P,(I-VL™ ) =Q — Wy, (3.3.1)

where

t o0
W, = / (Pry—P)VK,ds, Qi / P, VK, ds.
0 t

Let
T :m <i>x :m t _s(x—2) — Pi(x — 2))Vi(2)Ks(z zds
Witr) =3 W) =3 [ [ (Pele=2) = Rl = DG Ku(eon) deds
x = v <Z>.7J = Y T,z - i\ Z z sdaz
Q) =300 =3 [ ) [V i

be the integral kernels of W; and Q; respectively. In order to prove Theorem 3.1.2 it is
sufficient to establish that the maximal operators: f +— sup;o|W¢f|and f — sup;~q |Q¢f|
are bounded on L'(R%). The proofs of these facts are presented in the following four

lemmas.

Lemma 3.3.2. The operator f +— sup,.o |W,f| is bounded on L'(R?).
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Proof. 1t suffices to prove that

Sup/ sup |Wi(z, y)| dz < oo.
yeRd JRE t>2

Without loss of generality we can consider only Wt<1>(93, y). For 0 < < 1, which will be

fixed later on, we write
) t
W, (x,y) = / /d(Pt_s(a: —2) = Pz — 2))\V1(2)Ks(z,y) dzds
0 JR
t# t
= / +/ . = Fi(z,y;t) + Fo(z,y;t).
0 8
To estimate F; observe that for ¢ > 2 and s < % < ¢ there exists ¢ € S(R?) such that
5
|P—s(x — 2) — Pi(z — 2)| < C;qﬁt(x—z). (3.3.3)

Here and subsequently, till the end of the present chapter, fi(z) = t~%2f(z/\/t). From
(3.3.3) and (3.1.1), we get

|Fi(z,y; 1) < Ct_Hﬁ/ du(x — 2)Vi(2)|z — y[*dz.
Rd
Since supysqt gy (z — 2) < C(1 + |z — 2) 7472728 we have that

sup / sup | Fi(z,y; t)|dx < C/ Vi(2)|z —y>~4dz < C,
yeRd JRE t>2 R4

where the last inequality comes from Lemma 3.2.1.
To deal with Iy we write

t

Fy(z,yit) = /t; /}Rd P o(z — 2)Vi(2)Ks(2,y) dzds—/t

8 /]Rd Py(z — 2)Vi(2)Ks(z,y) dzds

Observe that for s € [t7,] we have
Ky(z,y) < Ct P42 exp (—|z— y|2/4t) . (3.3.4)
Also
t t
/ P_s(x—2z)ds = / Py(z —z)ds < Clz — 2> Texp (—|z — 2[*/ct) . (3.3.5)
0 0
As a consequence of (3.3.4)—(3.3.5) we obtain

Fy(z,y;t) < C/ 02| — 22~ exp (—|o — z|?/ct) Vi(z1) exp (—|z — y[*/4t) d=.
R4
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Then, for € > 0,
stu12)t_ﬁd/2 exp (—|z — z|2/ct) exp (—|z — y|2/4t)
>

< Csupt™'"Cexp (—|z — 2|*/ct) - sup P21+ oxp (—lz — y|*/4t)
t>2 >2

<Cl+|x— 2|)_2_2€]z — y|2+2€_3d.

Consequently,

2—d
T —z
sup/ sup Fi(x,y;t) dx<Csup/ / | | 55 |z — y>T2 P (2) da d
yeRd JRE ¢>2 yeRd JRE Rd —|—|x )+ €

< C sup / |z — y2 2704 (1) d.
yeRd Rd

If we choose 8 < 1 close to 1 and e small, then we can apply Lemma 3.2.1 and get

sup/ sup Fi(x,y;t) dw < C.
R

yeRd JRE t>2

We now turn to estimate FJ (z,y;t). Observe that for £ > 0 we have
t 00
/ Ks(z,y)ds < C/ 0557 4/24 exp (—|z — y|2/(4s)) ds < CtP8|z — y|27d+2,
28] t8

Then from Lemma 3.2.1 we conclude that

sup/ sup Y/ (x,y; t) d:L’<CSllp/ / supt P P(x — 2)V1(2)|z — y|> " dx dz
R Rd JR

yeRd d t>2 yeRd d t>2

SCS‘””/ / (1+ |z — 2) 2=V (2) ]2 — 2% dar dz
yeRd Rd JRd

<Csuwp [ ViE)e-yP i <,
Rd

y€Rd

provided € > 0 is small enough.

Lemma 3.3.6. The operator f + sup,<o [Wyf| is bounded on LY(RY).

Proof. 1t is enough to prove that

sup/ sup\Wt<1>(x,y)]dx < 0.
yeRd JRA £<2

We have

/Ot /Rd(Pts(z —2) — Pz — 2))Vi(2)Ks(z,y) dzds = /Ot/2 ot /t/:

= F3(z,y;t) + Fu(z,y;t).
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To deal with F3 observe that for t < 2, s < ¢/2 we have
|Pr—s(z — 2) — Pi(x — 2)| < Cy(x — 2),
where ¢ € S(R?), ¢ > 0. Therefore

sup |Fiy(, ;)| < Csup | gu(w = 2)Vi(2)]2 = yf*~de.

Denote by Mg) the classical local maximal operator associated with ¢, that is

MY (f)(x) = sup |¢y * f(z)].
<2
Then
sup |Fs(z,y;t)| < CMY(&,) (),

where &,(2) = Vi(2)|z — y[>~¢. We claim that

sup / sup | F3(z,y)|dx < C sup Mg(ﬁy)(x) dx < C. (3.3.7)
yeRd JRA 1<2 yeRd JRE

To obtain (3.3.7) we write
&y(z) = ny,k(z),
k=1
where
Eya(z) = Vi(z)|z _y|2_dXB(y,2)(Z)7 Eyr(2) = ‘/l(z)|z_y|2_dXB(y,2k)\B(y,2k*1)(Z>7 k> 1.
From Lemma 3.2.1 it follows that there exists s > 1 such that
supp&y1 € B(y,2) and &1l s ey < C < C|B(y,2)[ /7. (3.3.8)

Consider &, for k > 1. Set ¢ < dy/2 such that V; € LY(Vy). Then

supp &, x C B(y, 2%).

1€y kll Laray < C2 D VA| oy 2M97 00 < C|B(y, 2%)| 719274, (3.3.9)

where p = dy/q — 2. Now, our claim (3.3.7) follows from (3.3.8), (3.3.9), and the classical
theory of local maximal operators.

It remains to analyze Fy = F5 — Fg, where
t
Blogit) = [ [ P - VK y) deds,
t/2 JRd

Fs(z,y;t) = /t/2 /]Rd Pz — 2)Vi(2)Ks(z,y) dzds.
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Clearly,

sup Ki(z,y) < Ct~ Y2 exp (—|z — y|*/et) .
SE[t/2,t]

Therefore, for 0 <t <2 and 0 < v < 1 close to 1 we get

t/2
Fy(z,y;t) < C'/ / t TV Py(x — 2)Vi(2)t YV exp (—|z — y|?/ct) dzds
0 JRd
< C/ |z — 2>~ 7 exp (—|z — z|2/ct) Vi(2)|z —y| PP dz
Rd
< C’/ |z — 2|2 exp (—|o — 2|?/d) Vi(z)|z — y| =2 dz.
Rd

Thus, by using Lemma 3.2.1, we get

sup/ sup Fys(z,y;t)de < C.
yeRd JR 0<t<2

To deal with Fg we observe that for 0 < ¢ <2 and 0 < v < 1 close to 1 we have

Fy(z,y;t) < C | tP(x — 2)Vi(z1)t™ Y% exp (—|z — y\2/ct) dz
Rd

< /d |z — z|270l727 exp (—|:L‘ — 2\2/0’) Vi(z)|z — y|7d+2’7 dz
R

and, consequently,

sup/ sup Fg(z,y;t)dx < C.
yeRd JRE t<2

Lemma 3.3.10. The operator f v sup,~, |Q¢f| is bounded on L'(R%).

Proof. Notice that for e > 0 and t > 2 we have
o] o} ]2
/ Ks(z,y)ds < C’/ s7es e oxp <—’y42|> ds < Ct¢|y — z[*74T2% (3.3.11)
t t S
It causes no loss of generality to consider only Q,gl)(a:, y). If t > 2, then

0 < Qém(%y) < C Pt(l' — Z)Vvl(z)tfs‘y _ 2’27d+2€ dz.
Rd
Since sup;sot P (x — 2) < C(1 + |z — 2|) 792, we find that

sup [ supQe)de < Csup [ [ (1o = ) V)l - o deda
yeRd JRE ¢>2 yeRd JRA JRd

< C sup / Vi(z)|ly — 2|2 % dz < C.
yeRd R4

(3.3.12)

The last inequality follows from Lemma 3.2.1. O
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Lemma 3.3.13. The operator f +— sup,<, |Q¢f| is bounded on L'(R?).

Proof. The estimate ftoo Ky(z,y)ds < Clz — y[>~¢ implies

sup Qu(z,y) < Csup /R B(e - V()]s -

<2 <2

yl> = dz.

We claim that for fixed y € RY the foregoing function (of variable x) belongs to L'(R%)

and
sup / sup Q¢(z,y) dr < co.
yerd JRA <2
The claim follows by arguments identical to that we used to prove (3.3.7). O

Now, Theorem 3.1.2 follows directly from Lemmas 3.3.2, 3.3.6, 3.3.10, 3.3.13.

3.4 Proof of Theorem 3.1.4

Proof. Thanks to (3.2.16) and Proposition 3.2.10, for g € L'(R?), we obtain

— -1 w)(x)dr = 9(z) T — x x M T
La-viee@a = [ 28w [ [ verge)iDaya
) (9 )
= b (LSt ) G
= /Rdg(y) dy
First, we are going to prove that
oo flly ey < 15 1 (3.4.2)

,max

Theorem 3.1.2 combined with (3.2.7) implies that (3.4.2) is equivalent to

Jw(T - VA_l)fHHlA(Rd) < Oy (ray- (3.4.3)

Assume that a is a classical (1, 00)—atom associated with B = B(yo, ), i.e.

suppa C B, |alleo < |B|I7Y, / a(x)dx = 0. (3.4.4)
B

By the atomic characterization of HA (RY) the inequality (3.4.3) will be obtained, if we

have established that b = w(I — VA~Ya € HX (R?) and
16/l 771, (may < C

with a constant C' > 0 independent of a.

(3.4.5)
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By (3.2.7), a = (I - VL 1)(b/w). Hence, using (3.4.1) we get

/ b(x)dz = 0. (3.4.6)
Rd

The proof of (3.4.5) is divided into two cases.

Case 1: » > 1. Set

b(z) = (b(2) = exan(@) + D (B@)xaem o1 5(2) + kX201 5(2) = Rx2p(2))
k=2

= Zbk(x), where ¢ = —QkB|_1/ b(z) dz, kE=1,2,...
=1 (QkB)c

Here and throughout, pB = B(yo, pr) for B = B(yo, 7).

We claim that

D bkl gy mey < C. (3.4.7)
k=1
From Lemma 3.2.8 and Proposition 3.2.10 we conclude that there exists ¢ > 0 such that
lek| < ]2kB|_1/ V(z)|A  a(x)| de
(2kB)c
s [ vl -y ety e (3.48)

< PR BI- 1/ la(y |/ 2) & — yol>dw dy < C|28 B[ (2kr)

Note that supp by C 2¥B and [, b (x) dz = 0. Therefore (3.4.7) follows, if we have verified
that there exists ¢ > 1 such that

Z ”b/~:||Lq(1Rd)|2kB|1_l/q <, (3.4.9)
k=1

where C' does not depend on a.

If k=1, then

[b1(2)| < leslxen(2) + la(@)| + V (2)|A™ a(2)[x25(2)

and
1/q
”bl”Lq(Rd) < C|23|‘1+1/q + (/ V(l‘)q|A_1(l(ZE)|qd$> .
2B

Notice that

(1, Viemattrae) ™ < oo il (/ viwra)™
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We can consider only the summand with V;. By the Holder inequality

1/q ~
218 ([ vatar) < OB R et O
— C‘B’flJrl/qT,Qfdl/(sq).
Choosing ¢, s > 1 such that V; € L%(V;) and 2 — d;/(gs) < 0 we get
161l a(ray < CJ2B|1H1. (3.4.10)
For k > 1, by the definition of b, we get that
10k || Lo (ray < lek—1][2" 7 B + || |28 B 4 101l La 2k B\26 -1 BY

From (3.4.8) we see that first two summands can be estimated by C|2F B|~1+1/42=%¢ Then
it remains to deal with the last summand. By using Lemma 3.2.8 there exists o’ > 0 such

that for ¢ € (1,1 + €] we have

1/q
q
TSP sc( / ( / v<x>|xy|2—d|a<y>|dy) d:c>
2kB\2k-1B \JB

1/q
, 3.4.11
<C < / V(x)|z — yo\q@d)dx) < C(2Fr)=° ( )
(gk—lB)c

_ C|2F B a(aky) o Himdla < ok g| 14 fagkD
provided that § = —o’ +d — d/q > 0.
The estimate (3.4.9) follows from (3.4.10) and (3.4.11). This ends Case 1.
Case 2: r < 1. Fix N € NU {0} such that 1/2 < 2¥r < 1. Then
N
ba) =(a@)w(z) — eonxa(@) + 3 colB] (127 B xar 1 (a) — 2B xarp()

=1
N
+ (b(@) — a(@)w () + co| Bl|2V B xon p(2)) = do(w) + ) di(w) + ¥/ (x),
=1

where
co = |B\1/Ba(:z:)w(x) dx.
By using [ pa =0 and property (a) from Proposition 3.2.10, we obtain
|col < BII/B |a(x)||w(@) — w(yo)|de < r°|B|~". (3.4.12)
Observe that suppdy C B, [pdo = 0, and ||do||c < C|B|~!. Similarly, for I = 1,...,N,

suppd; C 2'B, [d; =0 and ||d||oc < C7°|2!B|7L. Therefore

N
Z ”leHlA(Rd) <C+CNrP<C-Cr® logor < C.
1=0
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Denote B’ = 2V B. Obviously |B’| ~ 1. To deal with b'(z) we apply the method from

Case 1 with respect to B’, i.e
V' = (b (z) — c)xep () + Z ( X2k B\ 2k— 15/(%) + o1 Xok-15 () — ChXorpy (33))

= Zb;c, where ¢} = |2kB'\_1/ V(x)dx = —2kB'|_1/ b (z)dz.
2k B’ (QkB’)C

The arguments that we used in Case 1 also give

o
|kl < CI2°B[7127% for k=1,2,... and Y ||bj |l wey < C. (3.4.13)
k=2

It remains to obtain that

1641171, ey < C- (3.4.14)

It is immediate that supp b, C 2B’ and [, 5, b] = 0. Also,

1/q
16111 Lo ey < (/ V(%')q\A_la(w)‘q) + Cleo|[BI|2B'| 714 4 €|y |12B']/9. (3.4.15)
2B
By (3.4.12) and (3.4.13) only the first summand needs to be estimated. Observe that

Cr2—d if |z — yol < 2r

Aa(z)] < /B & — 52~ %a(y)|dy < < Ol — ol

|2—d

Clz — yo if |z —yo| > 2r

Therefore, by using Lemma 3.2.1, we get
1611l Lo (ray < C

and (3.4.14) follows, which finishes off Case 2 and the proof of (3.4.2).

In order to complete the proof of Theorem 3.1.4 it remains to prove that
1flg . < Cllofllas oy (3.4.16)
In virtue of Theorem 3.1.2 the inequality (3.4.16) is equivalent to
I(T= VL) (9/0) | g, gty < Cllliy ey (3.4.17)

Assume that a is an Hj (RY)-atom (see (3.4.4)). Set b= (I — VL™ !)(a/w). The proof
will be finished if we have obtained that

16/l 771, (may < C (3.4.18)

with C independent of atom a. By (3.4.1), we have

/Rdb(m)dx:/Rda(a:)dmzo.
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Note that the proof of (3.4.5) only relies on estimates of |I'a(z,y)| from above by C|x —
y|>~¢. The same estimates hold for I'y,(z,y). Moreover, the weight 1/w has the same
properties as w, that is, boundedness from above and below by positive constants and the
Hélder condition. Therefore the proof of (3.4.18) follows by the same arguments. Details

are omitted. O

3.5 Proof of Theorem 3.1.8

By (2.3.9) we get a formula similar to (3.3.1).

K, - P,I-VL!)=Q, - W, (3.5.1)
where
t o]
W, = / P,V K;ds, Q= / P, VK;ds.
0
Recall that for j = .,d we denote by a - the derivative in the direction of j-th

standard coordinate. For f € L'(R?) from (3.3. 1) and (3.5.1) we get

-1 —1

€ d € d
[ ks T [ P VE ) S WS4 QG WS+ Qs (352)

Iz Vit dz; Vit
-1
_[F 94t ;[P ot
Q],s/Q T%Qtﬁa Qj,s/s‘ T%Qtﬁ7
g1 2
0 dt 0 dt
Wie=—[ W7, w<=—/w'.
J,€ /2 6%']' t\/i J,€ . al,j t\/i

All the operators above are well-defined and bounded on L!(R?). Recall Theorem
1.1.10, which says that RAf = lim._o [7 L Pl e LNRY for every j = 1,....d.
exactly when f € Hj (R?) and

d
1 Lz ray ~ 1F ey + D IR fll o zay- (3.5.3)
=1

The subsequent four lemmas prove that the operators Q;., W, E,W converge

JE’

strongly as ¢ — 0 in the space of L'(R%)-bounded operators.

Lemma 3.5.4. For every j = 1,...,d the operators Q. converge as € — 0 in norm-

operator topology.

Proof. The operators Q;. have the integral kernels

dt
Qje(x,y) / / /Rd 8—%3 x—2)V(2)Ks(z,y)dz ds 7
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The lemma will be proved when we have obtained

sup | QY (x,y)de < C,

yERd Rd
dt
bz — 2)|Vi(2) Ks(2,y) dz ds —.

@) ///Ram NG

Since |8%th(x —2)| < Ct712¢;(x — 2) for some ¢ € S(RY) we get

Rd@ xydx<C’/Rd/ / /Rd 7124y (x — 2)Vi(2) K (zy)dzdsjl[dx

C’/ / / tWi(2)Ks(z,y) dzds dt
R4

C’/ / / t17E Vi (2)s ™Y 24 exp(—|z — y|? /4s) dz ds di
2 Jt R4

C </ t_l_adt> : </ Vi(z)|z — y|>~4+% dz> <C,
2 Rd

where in the last inequality we use Lemma 3.2.1 and C does not depend on y € R4, [

where

IN

(3.5.5)

IN

IN

Lemma 3.5.6. For every j = 1,...,d the operators W;. converge as € — 0 in norm-

operator topology.

Proof. The operators Wj; . have the integral kernels

-1
Wije(z,y) = /28 /Ot /]Rd (;zj(Pts(x —2) — Pz — 2))V(2)Ks(z,y) dz ds fZ
Set
W (z,y) = /OO /t/ O By —2) = Pa — 2) Vi) Ko (2, ) dz ds 2L
2 Jo Jra |0z, Vi
The proof will be completed when we have obtained that
sup W§-i> (z,y)dx < C. (3.5.7)

yERd Rd

For fixed y € R? and 0 < 3 < 1,  will be determined later on, we write

[enis < [ [T [ [ o2 (st =2) - Rl -2 VK ) deds &

th t
S/ ...ds+/ ..ds=J1 + Jo.
0 tp8

Observe that there exists 1) € S(R?), 1 > 0 such that for s € (0,¢”) and ¢t > 2 we have

‘881{7 (Pr—s(x) — Pi(2)) | < st/ 2qpy(w).
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Thus by using Lemma 3.2.1 we get

Jlg/Rd/:o/o /Rdt2¢tw—z) i(2)Ks(z,y) dzdsdt dx

o0 (3.5.8)
< C’/ t=2+P dt - / Vi(2)|z — y|*~%dz < Cy.
2 R4

Note that if t > 2 and s € [t,#] then K (z) < Ct=P%/2 exp(—|z|?/ct). Choosing 0 < § < 1,
0 close to 1, and applying Lemma 3.2.1 we obtain

Ja < /Rd/ / /Rd <wt St:C__SZ) + Qﬁt(ff/g— Z)> Vi(2)Ks(z,y) dzdsid/tidm

< C/ / /]Rd ((t — S)t)_l/Q + t_l) V'i(z)t—ﬂd/Q exp(—\z o y|2/ct) dz ds dt

/ / 2)t~ 5d/26xp(—|z—y| /ct)dzdt<C’/ 2)|z—vy |2 Pddy < Cy.
R4

(3.5.9)

Notice that the constants C; and Cy in (3.5.8) and (3.5.9) do not depend on y € R%. Thus
(3.5.7) follows. O

Lemma 3.5.10. For j = 1,...,d the operators W]/',s converge as € — 0 in norm-operator

topology.
Proof. The operators VV]’-’(E have the integral kernel

, 2ot o) dt
W (z,y) :/E /0 /Rd a—ijt_s(x —2)V(2)Ks(z,y)dzds 7

The lemma will be proved if we have shown that

sup W§i>/(x,y) de < C, (3.5.11)
yeRd R4

wWew= [ [ Ll5:

Fix y € R%. Observe that

W :Uyda:<////
R4 R4 R4

t/2
§/ .ds+/ ...ds=J3+ Jy.
0 t/2

where

dt
Vi(2) K (2, y)dzdsﬁ

P_g(x —
83:Jt ?)

dt
i(2)Ks(z,y)dzds 7i dx

ax]Pt s(x—2)
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There exists ¢ € S(R?), ¢ > 0, such that

nef | : / v / d(t(t ) V(o — Vi) Ka(ery) dzds di da

<C/// tWi(2)K4(2,y) dz ds dt
]R‘i

<C/ / tWi(2)|z — y|* Yexp (—|z — y[*/ct) dz dt

]Rd

< Vi(e)| -y dz + / Vi(2)lz -y log |z — ylldz < Cs
|z—y|>1/2 lz2—y|<1/2

and

2t 2
Jy < C/ / / / (t(t — ) V2 y_s(z — 2)Vi(2)t Y exp (—M> dzds dt dx
Rd t/2 JR ct
12 E yl2
< C/ / / (ts) 1/2V t_d/2 exp < ) dzdsdt
R4

2
<C W(z)/ +/2 ox p< |2 ty| )dtdz<C/ —y[Q_ddz§C4
Rd 0

C

with constants C3 and Cj independent of y € R?. So we have obtained (3.5.11). O

Lemma 3.5.12. For j = 1,...,d the operators Q;’E converge strongly as € — 0.

Proof. The kernels of Q' _ are given by

dt
Qi c(z,y) / / /Rd T%Pt xfz)V(z)Ks(z,y)dzds%.
For f € L'(R?) we have

Q. f(x) / Qi (x,y) f(y) dy

Note that Q (z,y) = Hj*dy(x), where ¢y(z) = V(2)I'L(2,y), Hj.(2) = ff %Pt(g;)%,
It follows from the theory of singular integrals operators (see [37, Chapter II]) that for
g € L"(RY), r > 1, the limits lim._o H; . * g(z) = H;g(z) exist for a.e.  and in L"(R?)

norm. Obviously, H; are LT(Rd)—bounded operators. Moreover,

| sup (e wall], o < Cllollgey (3.5.13)
Notice that for |z| > 1/2 we have
sup |H;(2)] < Cnlz| ™V, (3.5.14)

0<e<?
From (3.5.13) and (3.5.14) we deduce that if a is a function supported in a ball B(yg, R),

R >1/2, and ||a||,r(gay < 7|B|~"/7 > 1, then

Cr. (3.5.15)

H sup |H;. *a]‘

0<e<2 L1(R9)
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Using Lemma 3.2.1 we get that for every y € R? the limit lim._ Q;,s(x7 y) = Q;.(:L", Y)
exists for a.e. x € R% The lemma will be proved by using the Lebesgue dominated

convergence theorem if we have established that:

sup / sup |Q} (z,y)|dr < C and (3.5.16)
yeRd JR? 0<e<2 ’
liH(l) Q) (x,y) — Qj(x,y)|dz =0 for every y. (3.5.17)
E— R4 ’

For fixed 3 € R? let

$1(2) = ¢y (2)XB2)(2),  k(2) = &y (2)X By 26N\ By,2v-1)(2), k> 2.

Then ¢, = 372, ¢k, where the series converges in L!(R?) and L"(R?) norm for  slightly
bigger than 1. Notice that supp ¢, C B(y, 2¥), @1/ r(ray < C, and

||¢k||2r(Rd) = / ‘/l(z)r|z _ y|(2—d)7“ dz < 2k‘(2—d)1”/ V'l(z)r dz
B(y,2F)\B(y,2F~1)

B(y,2%)
< OQk(Zfd)TQk(dfdl)H‘/l‘|rqu(Vl)2kd1/q’ — C(2k)fdr+d+2rfd1/q. (3518)
Therefore, for ¢ < dy/2r such that Vi € L™(Vy), we get
6kl ey < CIB(y, 2°)| 1172k, (3.5.19)

where o = dy/(¢qr) — 2 > 0. By using (3.5.15) combined with (3.5.19) we obtain

/R sup |4 (z,)|dx = /R sup [H;. # éy(x)| da

d 0<e<?2 d 0<e<?2
[e.¢]
< Z/ sup |Hj. * ¢p(x)|dx
1 /R 0<e<2

[ee]
<0y 2F <, (3.5.20)
k=1

which implies (3.5.16), since the last constant C' does not depend of y. Additionally

(3.5.17) is a consequence of (3.5.16) and the Lebesgue dominated convergence theorem. [J
Now, Theorem 3.1.8 follows directly by applying (3.5.2), (3.5.3), and Theorem 3.1.2.

Note that the existence of the limits (3.1.7) has been shown parallel.

3.6 Appendix

3.6.1 Proof of Corollary 3.2.6

As it was mentioned after Corollary 3.2.6, the aim of this subsection is to prove the formula

(3.2.7). Recall that d > 3 and that L~ and A~! were initially given by the integral kernels
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I'y, and T'a respectively (see Section 3.1). Lemma 3.2.1, in its simple form, asserts that

VL~! and VA~! are bounded on L!(R?), since

[ verdend< [ verdeoles=c [ velk- e
Rd Rd Rd

independently of y € R?. This estimate justify many of the following calculations and will

be used without referring to it. Notice that for 1 € C°(RY), f € L'(RY) we have
L7 (@) + AT (@) <O +a))*™ ATH LT € LYRT) + L¥(RY)

Since in (3.2.7) we only deal with L'(R?)-bounded operators, we can only consider
a dense subspace of L'(R?%), namely we shall prove (3.2.7) for f € C°(R%).
Recall that, for given semigroup T; on L' (R%), the domain of its infinitesimal generator

A (A=A or A=-L)is given by
Dom(A) = {f € L}(RY) | Af = %iH(l] t~1(Tsf — f) exists in the L'(R%)-norm}. (3.6.1)

Let us distinguish the infinitesimal generators —L and A from the differential operators

—L and A, where

0? 0*
d

for f € C*(RY).
It is well known that C2°(R?) C Dom(A) and for ¢ € C°(RY) we have Ay = Ad.
Now we check that the same holds for L.

Lemma 3.6.3. The class C°(R?) is contained in Dom(—L) and for ¢ € C*(R?) we
have

Ly = L1) (3.6.4)

Proof. Denote: V;, = min(V,n), L, = —A +V,,, K} - the semigroup generated by —L,,
on Ll(Rd). Since V,, is bounded, —L,, is a perturbation of A by the operator bounded
on L'(R%). Thus Dom(—L,) = Dom(A) D C°(R?) and for ¢ € C°(R?) we have L1 =
L) = =AY+ Vi (see, e.g. [34, Chapter 3]). For f € L'(R?) and o) € C°(R?) we obtain

the following convergences in L'(R?):
lim K'f = K;f, lim ¢t~ (KM — ) = =L, (3.6.5)
n—00 t—0

where the first limit follows from (2.1.3).
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Next,
lim Lpy = L1 (3.6.6)

in L'(R?), which we have got from the Lebesgue dominated convergence theorem since

/ (Lo —L0<C [ Xvimrom @V (@) dz — 0,
L1(R4) supp ¥

as n — 0o. Let us consider

t
t7 () - Kfp) =GP = t—l/ K"L,v ds. (3.6.7)
0
Considering the left-hand side of (3.6.7) we obtain the following L'(R¢)-convergence.

lim GP =t (¢ — K1) (3.6.8)

n—oo

By using the right-hand side of (3.6.7) we write

Gr=t"! (/Ot K™(L, — L) ds + /Ot(K’; — KLy, ds + /Dt K, L1 ds) . (36.9)

Since K? are contractions on L!(RY), by (3.6.6) we see that the first summand tends to 0
in L'(R?) as n — co. We claim that the same holds for the second summand. To see this

we first note that

t t
| [ —wocvas|, < [ 102 KLl ds

and

12— K £ 1 gty < 2P (1€ | 1 ey (3.6.10)

Now, applying (3.6.5) and the Lebesgue dominated convergence theorem we obtain the

claim. Summarizing,

n—oo

t
lim G :t—l/ K Ly ds (3.6.11)
0

in L'(R%). Joining together (3.6.8) and (3.6.11), and using the strong continuity of the

semigroup {Kj;}:~o, we have

¢
lim t T K — o) = — lim t—l/ K Ly ds = — L), (3.6.12)
— — 0

which finishes the proof of the lemma. O

Lemma 3.6.13. Let A denotes either —L or A. For f € LY(R?), o € C*(R?Y) we have:
(A™Hf Ap) = (f, AT'AY) = (f,¥) (3.6.14)

AA NY(z) = AL AY(x) = () for x € RY, (3.6.15)

L 'Ly =1 for a.e. x € R? (3.6.16)
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Proof. Denote by T; the semigroup generated by A. We already know that Cgo(Rd) C

Dom(A). Let us consider

871
(Tof = Toos fo)) = (f, Teth — Too1t)) = —(f,/ T, A dt). (3.6.17)
Passing to the limit with ¢ — 0 we prove (3.6.14). Here we have used that
sup / (JAY(2)| + V(@) [ (2))|z — y|* L de < oo. (3.6.18)
y€eR? J LI (RY)

The formula (3.6.16) is a direct consequence of (3.6.14). Also, (3.6.15) holds, due to the
fact that ¢, A=Ay, AA~14) are continuous (or even smooth) and taking f = ¢ € C°(RY)
in (3.6.14) we have (A7, Ag) = (1, ¢). O

Fix &, (x) = &(x/n), where £ € C°(B(0,2)),0<¢ <1,&(x) =1 for x € B(0,1). Then
[Vénlloo < C/n and ||A, |00 < C/n?. Fix also § € C°(B(0,1)) such that [ =1, >0,
§(x) = §(—=x), and denote &;(z) = t~96(z/t).

The following obvious estimates are needed in the proceeding.
Lemma 3.6.19. For ¢,¢ € C(R?%) we have:

(a) |V - A7 p(z)] < O+ Jz|)' 7,

(b) |A™ ()] + [L71p| < C(1 + |2))*79,

(c) sup, |Véu(z)| < C(1+ [z])~,

(d) sup, |A&n(z)| < C(1 +[z[) 72,

(¢) [AQ * (ATLe))(x)] = |0y % Lo(a)| < Co(1+ |2])~7,

(f) IV (6 (A7 L)) ()| < C(1 + [2)' 4,

(9) 60 % (AT L) ()| < Cy(1 + |a])>~7

Corollary 3.6.20. For v, ¢ € C°(RY) it holds:

(LA™, LTIAG) = (4, 9), (3.6.21)
LYW, VALY = (0, ¢) + (b, AT L) (3.6.22)
Proof. Let us consider Wy = (L£(&, A1), L~ A¢). By using Lemma 3.6.13 twice we
obtain
lim Wy = lim (£(6 A7), L7 A¢) = lim (647, Ad) = (AT, Ag) = (1, 9).
(3.6.23)
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On the other hand

Wi = (L& A1), LT Ag)
= (ELATIY, LTI AG) — (2VE, - V(ATI), LT AQ) — ((A&)(A™19), L7 Ag).
(3.6.24)
The first summand tends to (LA™, L7'A¢) as n — oo, because LA 1Y) = —p +
VA ' € L'(RY) and L~'A¢ € L*®(R%). The second and third summands tend to 0
as n — oo by the Lebesgue dominated convergence theorem, i.e. the integrants tend
pointwise to 0 and there are appropriate estimates (see (a) — (d) from Lemma 3.6.19). In

this way, the formula (3.6.21) is proved.
Now, we turn to (3.6.22). Consider

Wa =L, A(&n - (8 A7 Lg)))
=LY, &, - A(6; % ATLL)) + (L7 1ep, 2VE, - V(5 x A7 L)) (3.6.25)
+ (L7, Agy - (6 + ATILA)),
Fix ¢ > 0. Thanks to (b) — (g) of Lemma 3.6.19, the second and third summands tend
to 0 as n — oo. Note that the function L& = —A¢ + V¢ belongs to L'(R?) and has

a compact support. Thus from (3.6.14) we obtain that A(8; x A™1Lp) = §; * L. Tt follows
that

lim lim W, = hm lim (LY, &, - (6 % L)) = Um (L1, 6, % L)
t—0n—oo t—0n—oo t—0 (3.6.26)

= (L7, L) = (v, 9),
where in the last equality we have used (3.6.16).

Let us focus attention on the expression

W = (L1, L(&n - (6% AT'LY)) = (.65 - (0 + AT L))
It is easily seen that

lim Tim W = lim(s), 6 « A~ o) = lim (8 * ), A Loy = (p, ATILY).  (3.6.27)

t—0n—oo

Moreover,

lim lim (W + Wa) = lim Tim (VL™',6,(61 + (A7 £6))) = lim (VL' 6, + (A7 £g))
= lim (3, « VL™'p, A7 L6) = (VL' A7 o).
(3.6.28)

Finally, (3.6.22) is a direct consequence of (3.6.26), (3.6.27), and (3.6.28). O
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Proof of Corollary 5.2.6. It is enough to see that for ¢, ¢ € C°(R?) we have

(I-VLTHIX=VAT),6) = (1, 9), (3.6.29)
(T-VA™HI-VL ), ) = (¥, 9), (3.6.30)
as it was mentioned at the beginning of Subsection 3.6.1.
Let g = (I—- VA~ Yy € LY(R?). From (3.6.14) we obtain
(I-VLNg,¢) = (g,0) — (¢, L (A + L)¢)
= <ga¢> - <97L_1A¢> - <g7L_1£¢> = _<g7L_1A¢>'

Further,

(9. L7'A¢) = (I-VA™)y, L Ag)
= (, L7 A¢) — (L +A)A™ ), L™ Ag)
= (, L' Ag) — (LA™Y, LT Ag) — (AA™'y, L1 Ag)
= (LAY, LT Ag) = — (¥, 9),

where the last inequality follows from (3.6.21). The proof of (3.6.29) is finished.
We turn to prove (3.6.30). Using (3.6.15) we see that

(I-VAHI-VL Y, ¢) =(I-VL )y, I-A7V)g)
=@ -VL 9,6 — A7 A+ L)¢)
= (), ATILG) + (L1, VATILY).

In view of (3.6.22) the proof is finished. O
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4. CHAPTER 4: HARDY SPACES RELATED TO THE LAGUERRE
OPERATOR

4.1 Background and main result

In this chapter X denotes the half-line (0,00) with the measure du(z) = x®dz, where
a > 0 is fixed. The space X equipped with the Euclidean distance d(z,y) = |x — y| is
a space of homogeneous type in the sense of Coifman-Weiss [8], namely it satisfies the

doubling condition, i.e. there exists C' > 0 such that for all x € X and r > 0 we have that

u(B(x,2r)) < Cu(B(z,r)). (4.1.1)
On L?(X) we consider the orthogonal system of the Laguerre functions {w(o‘ D/ 2( )220,
1/2
(a-1)/2, \ _ 2k! o, e
i (@) = <F(k‘—|—a/2+1/2)) Ly (z7)e ) (4.1.2)

where L is the k-th Laguerre polynomial (see [28, p.76]) given by

7& d’n

« _ .Z'
Lk) (':L') =e n| d.’L‘n

— (e~ %" t?), n=20,1,... .

Each 1/1,(;)‘_1)/ % is an eigenfunction of the Laguerre operator

Liw) = — @) - 2 pw) 4 a2p(a),

where the corresponding eigenvalue is B = 4k + a + 1. Let
K./ = Zexp (—tB) (o Py
k=0
be the semigroup of the self-adjoint linear operators on L?(X) generated by —L, where
Dom(—L) = {f € L*(X) : Y, ﬂk|<f,1/) o 1)/2>|2 < oo} is the domain of —L.

It is well known (see, e.g. [28], [33]) that K; has the integral representation, i.e.

Kif(@) = [ Ko f0)auty). (4.13)
where
26_2t(a;y)_(a_1)/2 1l+e ¥ 9 2e 2t
Ki(r,y) = 1 _ o4t exp <—2 1 _ o—at (" +y )) I(a—l)/2 <1_6_4t$y) .

(4.1.4)
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Here I, denotes the Bessel function of the second kind. The operators (4.1.3) define
strongly continuous semigroups of contractions on every LP(X), 1 < p < oc.

Through this chapter we shall use the following notation: for an interval I C (0, 00)
we denote by |I] its Euclidean diameter, B(z,r) = {y € X : |z —y| < r}, and x4 is the
characteristic function of the set A. We define the auxiliary function

p(4) = x(00) () + ;xw (). (4.1.5)

Definition 4.1.6. A function a is called an L—atom if there exists an interval I =

B(yo,r) C (0,00) such that:

e supp(a) C I and r < p(yo),
o Jlafloo < ()71,

o if r < p(yo)/4, then [°a(x)du(z) = 0.

We define the space HIIJ o+ and the corresponding norm as it was described in Definition
1.2.5.

Let 6 = L 4a,0" = —L42-2 Then L = (a+1)T+6%5, 59\ * V/? = —2yEay* T/
The Riesz transform RY, originally defined on L2 (X) (see, e.g. [32], [33]) by the formula

4km

=1, . _/ __OO
RMf = vmoL™' 2 = Z<4k+a—|—1

k=1

> <f’1/)a 1)/2>¢a+1 7

turns out to be the principal value singular integral operator

[e.9]

R"f(z) = lim R™(z,y) f(y)du(y),

e=0Jo, [a—y|>e

with the kernel

~ 0 dt
L
pr— —
R*(z,y) /0 <8x +3:)Kt(ac y)ﬁ
Since the kernel

&0 dt
Mo) = [ ekt

satisfies sup,~ [ |T'(z,y)|du(x) < oo, it defines a bounded linear operator on L'(X).
Hence, for our purposes, we restrict our consideration to the Riesz transform RVf =

ﬁ%L_l/ 2f. Clearly, R is a principal value singular integral operator with the kernel

> 9 dt
L(ﬂc,y)z/0 %Kt(x,y)%. (4.1.7)

The action of R¥ on L'(X)-functions is well-defined in the sense of distributions (see
Section 4.3 for details).

The main goal of the chapter is to prove the following theorem (see [35]).
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Theorem 4.1.8. A function f € L'(X) belongs to the Hardy space Hiat if and only if

R f belongs to L'(X). Moreover, the corresponding norms are equivalent, i.e.

C Ml ,, < Il + IRE L) < ClF g, (4.1.9)

The main idea of the proof is to compare the kernel RY(z,y) with kernels of appropri-
ately scaled local Riesz transforms related to the Bessel operator L f (z) = — f”(z)— 21 (),
where the scale of localization is adapted to the auxiliary function p(y). To do this we

consider the Bessel semigroup:

R, f(z) = /O " Rule, o) Fo)duly),

_ - 2% 4 g2 2y o
Ki(z,y) = (2t) ' exp <— m > Lia-1y/2 (27> (wy)~ (D2 (4.1.10)

and observe that for small ¢ the kernel (4.1.10) is close to the kernel (4.1.4). Thanks to
this, RY(z,y) is comparable to Rf‘(:n,y) after some suitable localization defined by the
function p, where Ri(az, y) denotes the Riesz transform kernel in the Bessel setting. This
requires a precise computation of constants appearing in singular parts of the kernels (see
Propositions 4.2.4 and 4.3.1). The next step is to use results of Betancor, Dziubanski and
Torrea [5], which give characterizations of a global Hardy space for the Bessel operator (see
Theorem 4.2.2), to define and describe local Hardy spaces for L. Having all these prepared
we prove the theorem.

We would like to remark that the Hardy space HIIJ o+ We consider here is also charac-
terized by means of the maximal function:

My f(z) = sup [K¢ f(x)],
t>0

that is, || f|| ", is comparable with |[Mpf| 11(x). For details concerning the maximal
function characterization of the space HIIJ ot We refer the reader to [12].

There are other expansions based on the Laguerre functions for which Hardy spaces

were investigated. For example, when o > —1 systems {¢f}72, and {£3}72,, where
@ _ —x2/2 a+l/2Loz 2 L _ —xz/2 a/QLa
i (z) = crae z k(%) R(2) = crae™ " k()

are orthogonal on L?((0,00),dx). These systems are related to the operators

~ 1 1 — d? d r o
[ B S B T —_ & _ 4 . o
o= TR T <a 4)’ T TR T 1 i

respectively. In [4] and [11] the authors proved that the Hardy spaces associated with

{312, and {L$}72 ) are characterized by: the maximal functions, the Riesz transforms,
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and certain atomic decompositions. Moreover, in [13] the author obtained an atomic
description of the Hardy space originally defined by the maximal function related to the
system

5 (x) = cng(az)e—m/?, k=0,1,.., on L?*((0,00),z%x).

The functions £f are eigenfunctions of the operator
2 d =
Ly =—2— — 1)—+ —.
¢ Vi (@ +1) dx * 4

Finally, we would like to note that the system {wlgafl)/ 2}2":

o we consider in the present
chapter is well-defined and orthogonal on L?(X) for a > —1. However, the case —1 < o <
0 is not included in our investigations.

The chapter is organized as follows. In Section 4.2 we present a singular integral
characterization of local Hardy spaces associated with the Bessel operator L. Section 4.3
is devoted to stating detailed estimates for RY(z,y) and proving some auxiliary results.

The proof of Theorem 4.1.8 is given in Section 4.4. In Section 4.5 we provide proofs of

estimates of the kernels Rf‘(x, y) and RY(z,y) stated in Propositions 4.2.4 and 4.3.1.

4.2 Hardy spaces in the Bessel setting
4.2.1 Global Hardy space
The Hardy spaces H% related to the Bessel operators L were studied in [5].

Definition 4.2.1. We call a function a an L-atom if there is an interval I C (0,00) such

that:
e supp(a) C I,
o llalloc < p(I)71,
o [T a(z)du(z)=0.

Using L-atoms we define the space H% u (see Definition 1.2.5).

The singular integral kernel of the Riesz transform R is defined by
dt
ﬁ’

Before giving a distributional sense of R f for f € L'(X) we recall results from [5].

Ri(:c,y)=/ ;f(t(x,y) where x # y.
0 s

Theorem 4.2.2. For f € L'(X) the following conditions are equivalent:
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(i) feHL(X),
(ii) RVf € LM (X),
(iii) sup;so |Kef] € LY(X).

Moreover,

i i
£y, ~ (17l + IREF o)) ~ [sum Rt

In the present chapter we use the following notion of dilations: for a function f defined

on (0,00) and y > 0 we denote f,(z) =y~ L f(z/y). Let

IR (ET T N TR TS
A=A = e = e BRI

The following proposition (see [35, Proposition 2.3]) will play a crucial role in our inves-

(4.2.3)

tigations.

Proposition 4.2.4. Let A, B be as in (4.2.3). Then for x # y we have

T A—-B B
L _
R™(x,y) = 2o+l fgatl T gatl _gatl + hy(2),
where
he LYX) and |h(z)+A—-2B|<Czx for x<1/2. (4.2.5)

The proof of Proposition 4.2.4 is postponed until Section 4.5.1. To give a precise
definition of RY on L'(X) we need a suitable space of test functions. One of possible

choices is

A(X) = {5 e 0.0 | el |22

o' (o)l < o0}

L1(X)’

with the topology defined by the semi-norms ~;, i = 1,2, 3, where,

1@ = leler %@ =2 0 = e @)l

L{(X)’
Denote by '(X) the dual space.
The space f € L'(X) is contained in Q(X) in the natural sense, i.e. if f € LY(X),
then
<hes= [ fedn o).
Next, for f € L'(X), &£ € Q(X), we define

®EF6 = (1, (RF) ), (RF) ¢(y) = lim RY(2,y)é(@)dp(e).  (4.2.6)

€20 Jp—y|>e
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Alternatively, we define the Riesz transform as follows:

®EL9 = (1. (RE) 0. (RE) &) = lim / / SRl e@)dute) .

e—0 t
(4.2.7)
Proposition 4.2.8. For £ € Q(X) and y > 0 we have (Rf‘>*§(y) = (Bi>*§(y). More-

over,

| (r%)"¢], < ¢ (Il + lag @l + | 2

: Ll(X)) '

The proof can be deduced from (4.1.10) and Proposition 4.2.4. We will not go into

details here. However, we would like to notice that from Proposition 4.2.8 it is easily seen,
that the Riesz transform R is the same as the one defined by the spectral theorem (see,

g [33], [32]).

4.2.2 Local Hardy spaces

Fix a non-negative function ¢ € C2°(—2,2) such that ¢(z) = 1 for |z| < 3/2. Similarly
to the classical case, for m > 0 we define scaled local Riesz transforms t™ for f € L'(X),
€ € Q(X) as follows:

o0

F1.6) = (£.(F")'E), (F)€(y) = lim R e)o (0 stoauto)

e—0 0,|lz—y|>e

As in the global case these operators are well-defined and

1) |00 < oo (4.2.9)
For an interval I = B(y,r) C X and k > 0 let kI = B(y,kr) C X

Lemma 4.2.10. The operators ¥™ are bounded on L?(X) with norm-operator bounds

independent of m.

Proof. Because of the dilatation structure (see (4.5.20)) it is enough to prove the lemma
in the case m = 1. Assume additionally for the moment that suppf C I = B(yo, 1). Then
tlf(x) =0 for x ¢ 31. Also

HFlfHLQ(XOBI) <|IEF - RL)f||L2(Xﬁ3I) + ||RLf||L2(X)
It is well known that HRLfHLz ) < C|fllz2cx) (see [31]). Moreover,

|R™ (2, 9)[X{amy|>3/2) < Clay) ™ + [y ()] < Clay) ™ + b1 (2, y)| + |ha(,y)],
(4.2.11)
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where
hi(z,y) =y~ '(h — Dxo1)(®@/y), ha(z,y) = D(x01))y(*) = Dy~ "X(2.00)(%)-
Here D = A — 2B. We claim that
|G = RE)fl 2xnan < Ol llzco-

To prove this we consider the three summands from (4.2.11) separately. By the Cauchy-

Schwarz inequality we get

H /I(wy)a/zf(y)du(y)‘ i

L2(

2 2
wrsny S€ L IBaeyde < Uy

From (4.2.5) we deduce

sup / Il (2, ) dja() + sup / 1 (2, )| duly) < oo.
y>0J0 z>0J0

Thus the operator with the kernel hj(x,y) is bounded on every LP(X), 1 < p < oo. The
part which contains hsy is bounded on L?(X) due to the Hardy inequality (see, e.g. [2,
p. 124]).

To omit the assumption suppf C B(yo, 1) let us notice that

IF' fll2 ) < D0 IF (F - X1 lpex <CZHf XG-19lle20) = Cllfll2 -
j=1

7j=1
O

The local Hardy space h1™(X) is a subspace of L'(X) consisting of functions f for
which ¥"f € L*(X). In order to state atomic characterization of h'"™(X) we define

a suitable family of atoms.

Definition 4.2.12. We call a function a a local E{m}—atom, when there exists an interval

I = B(yo,r) C (0,00) such that

(i) supp(a) CI and r <m,
(i) [lalloc < p(I)77,

(iii) if r < m/4, then [;° a(z)du(x) = 0.

Theorem 4.2.13. Assume that f € LY(X). Then " f € L'(X) if and only if there exist
sequences A\, € C and local L™ -atoms ay,, such that F =200 Akag, where Y 22 M| <
00. Moreover, we can choose {\i}k,{ax}k, such that

12 Akl < Ay + IF™ fllerx) < CZ | Ak,

where C' is independent ofm > 0.
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Remark 4.2.14. Assume in addition supp(f) € I = B(yo,m). Then, in the above

decomposition, one can take atoms with supports contained in 31.

Proof. The proof is similar to the classical case. For reader’s convenience we provide

some details. Without loss of generality we may assume that m = 1. The operator T is
continuous from L!'(X) to Q/(X) (see (4.2.9)), so the first implication will be proved when
we have obtained

[T'al|fix) < C (4.2.15)

for every local L{m™} _atom a. Notice, that the weak-type (1,1) bounds of ' also reduces
the proof to (4.2.15).

Assume then, that a is an El’l(X)—atom supported by an interval I = B(yp,r). Note
that T'a(x) = 0 on (97)¢. Consider first the case where r > 1/4. Recall that u has the
doubling property (see (4.1.1)). By the Cauchy-Schwarz inequality and Lemma 4.2.10 we

arrive at

[ allzs (xron < 1ODY2[Fall 20x) < Cu(D)all ) < C.

If » < 1/4 then a is an L-atom, so by Theorem 4.2.2 it follows that HRf‘aHLl(X) < C.
Therefore HiﬂaHLl(X) <C+ H(RE - Fl)a||L1(X). Because of the cancellation condition we

have

(RE — (o) = [ (RE @)1 - oo — ) — REGo0) (- 6o - ) aly)duly).
Thus it is enough to verify the estimate

sup | R @) (1 - bz — ) — R¥(, 90)(1 — 8(x — 30))|diu(x)
yel JO

o (4.2.16)
—sup [ Z(a,)duta) < C.
yel JO
Fix y € I. From Proposition 4.2.4 we obtain:
=(z,y) =0 for |x — yo| € (0,1),
E(a,y) < Ca® + hy(@)| + |y (@) for [v— ol € (1,3),  (4.217)
E(z,y) < Cla —yo| 27 + |hy(x)] + [hyo(2)]  for |z —yo| € (3,00),

where in the last inequality we have used that ¢(x—y) = ¢(z—yp) = 0 and the mean-value
theorem. From (4.2.17) we get (4.2.16) and, consequently, H(Rf‘ —T)allpix) < C. This
ends the proof of (4.2.15).
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For the converse, assume that f,T!f € L'(X) and, in addition, suppf C I = B(yo, 1).
Fix 7 = p(I)~* J; fdp, g = f —7x1. We have

IREg] 21 ) < IF Fllzacx) + 178 el ) + IRE = F)g]l2ax)- (4.2.18)

By using the first part of the proof we deduce that ||7T XIHLl y < Clfllrx)- Note that
suppg € I, [ gdju =0, s0 (42.16) implies [|(RE g1l (x) < Clallzs ) < Ol .
Therefore, by Theorem 4.2.2, there exist L-atoms a;j (j =1,...) such that

f=mXx1=9=>_ Mt

k=1
Moreover » 22 1 [Ax] < || fllL1(x) + ||r1f||L1 . Denote Ao = [; fdp, ao = p(I)"'x; and
fix Yr € CF° (%I) satisfying ¥y =1 on I and ||1/J1||OO < C. What we have obtained is

F=rvr=> M(vra). (4.2.19)

k=0
It remains to show that each ¥ja; can be written in the form: Yrar = Zﬁl K kbi i, where
b; ; are local L{}_atoms supported in 37 and Ef\;’“l |kik| < C, where C' > 0 is independent
of k. For k = 0 the claim is clear. Fix k > 1 and suppose that suppay C J = B(zg,1).
Obviously, if (%I) NJ = () then ¥rax, = 0. Moreover, if r > 1/4 then ¥ray, = kb, where b is
a local L{™}-atom and |x| < C. So, suppose that (31)NJ # 0 and r < 1/4. Under these

assumptions we write

Yr(z)ag(z) = (Yr(z)ar(z) — op(2J) " X2 (2))
N—-1

+ > o (') X (@) = (w21 T) " xgien ()

=1

a(p(2V )" o (@),

where 0 = [~ arx(2)(¥1(2) — ¥1(20))dp(z) and N is such that 27V~1 < r <27V, One can
check that this is the required decomposition, since |o| < Cr. Let us note that we have
just proved Remark 4.2.14.

To deal with the general case we take a smooth partition of unity {1/@}00 C C*(0, 00),

i.e.
D (@) = Xy (@), 0< 4y <1, suppep; C I = B (y;,1), sup [[4lloo < C.
-~ je

Consider

g =T (i f) — T (f).
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Obviously, supp g; € 31; and for x € 31; we have
5@ =] [~ R eéle = I, - v @)t
< [T IR @ )ixgaiea | FWlle = slduto) (4.2:20)

Moreover, from Proposition 4.2.4 we have

sup/| - |RY(z, y)||z — y|du(x) < C. (4.2.21)
r—y|<2

y>0

From (4.2.20) and (4.2.21) we deduce that

lgillzrxy < I fllrxrmsty)-
Therefore
ZH Ao <D U (Dl + lgillinn) < C (1l + IF (Dllze) -
7=1
(4.2.22)

By using (4.2.19) and the subsequent remark for each v, f we get the decomposition

vif =>4 )\iaf;, where ai are local Lt} -atoms and
Z XL < C (Il Fll o) + IF @ ) o)) - (4.2.23)

The proof is completed by noticing that

f= Z)\kak,

where

ZI/\ | < C (1l exy + IF Flle )

is guaranteed by (4.2.22) and (4.2.23). O

4.3 The Riesz transform in the Laguerre setting

Let ¢ be the function defined in Section 4.2.2 and p be as in (4.1.5). The following
proposition (see [35, Proposition 3.1]) gives an essential information about the kernel of

the Riesz transform associated with the Laguerre expansion.

Proposition 4.3.1. Let A and B be as in (4.2.3). The kernel R(x,y) can be written in
the form

B x—y B A-B
R(z,y) = ¢ ( o(y) ) ($a+1 ot T et +ya+l> +9(z,9),
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where

sup [ lota (o) < o (132)

The proof of Proposition 4.3.1 is a quite lengthy analysis. We provide details in Section
4.5.2.

For f € LY(X), &£ € Q(X), we define the Riesz transform RY f as follows

RVf6) =(f,(RY)"¢), (R ¢y) =1lm RY(z,y)¢(x)du(=),

e—0 lz—y|>e

One can easily check using Proposition 4.3.1 that this limit exists and

(R 6l < € (ol + ot @)l + 22

le) . (4.3.3)

Denote by G the operator with the kernel g(z,y). Obviously, by (4.3.2), G is bounded
on L'(X). In the proof of Theorem 4.1.8 we will need the following lemma.

Lemma 4.3.4. Let z € (0,00), f € LY (X), I = B(z,p(2)), and n € C™® (0,00) satisfies
0<n <1 suppn C 1, I < C1p(2)"". Then

IRY(nf) — n((R* = G) )l 11x) < ClIf Il (xran)s
with a constant C' which depends on Cy, but it is independent of z € (0,00) and f € L'(X).

Proof. Note that

RY(nf)(z) — n(z)R* - G) f(z) = /(RL(:C, y) — 9(z,y) (n(y) — n(@)) f(y)du(y)
+ /g(w,y)n(y)f(y)du(y)
— [ Wit w)dut) + [ Wate.)du(w)

Applying (4.3.2) we easily estimate the summand that contains Ws. The function Wi (z,y)
vanishes if either |z—y| > 2p(y) or x,y € I¢. Therefore it can be verified that Wi (z,y) = 0,
if either x ¢ 41 or y ¢ 41. Thus Lemma 4.3.4 follows by

[ [ weamlae <o [ 1ol ( [
<c [ Ifldnt).

patl i yotl |mp(_z)y‘dﬂ(x)> du(y)
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4.4 Proof of Theorem 4.1.8

Before proving the main theorem we state a crucial consequence of Propositions 4.2.4 and

4.3.1.

Lemma 4.4.1. For yy > 0 we have

sup / ‘RL(x,y) — ?p(yo)(x,y)‘d,u(x) <C, (4.4.2)
y€B(yo,p(yo)) /0

Proof. By (4.2.5) and (4.3.2) we only need to establish that

“l(r-y\ (r—y
yGB(Sylol,I;(yg))/O ‘gb < p(y) > 4 (P(M})) ‘

In fact we will prove a stronger estimate, namely,

= r—y r—y 1
o)) ‘ d C. 4.4.3
yeBi};ﬁ(yO))/o )qb ( P(y) > ¢ (p(yo)> ’ T — et ) = (4.4.3)

Consider the case y > yo (if y < yo we use the same type of arguments). The integrant

B A-B
xa+1 _ ya+1 $a+1 + ya+1

du(x) < C.

in (4.4.3) is non-zero only when 3/2p(y) < |x — y| < 2p(yo). But always p(yo) < 2p(y) if
y € B(yo, p(y0)). Now, one can check that

00 1
sup /0 X{s/zp(y)<\x—y|<4p(y>}mdﬂ(x) <G,

which implies (4.4.3). O

Proof of Theorem j.1.8. Assume f € H] The operator RY : L1(X) — /(X) is

,at®
continuous (see (4.3.3)), so the first implication will be proved if we have established that
there exists C' > 0 such that

HRLaHLl(X) <C

for any L—atom a. Suppose a is associated with I = B(yo, ) (recall that r < p(yp)). We
have that
Rla = (RVa — 770 q) 4 7°0)g,

The L'(X)-norm of the function ¥#0)¢ is bounded by a constant independent of a, because
a is also a local L{P(0)}atom (see Theorem 4.2.13). Therefore, the first part of the proof
is finished by (4.4.2).

To prove the converse assume that f,R¥f € L'(X). Introduce a family of intervals
T = {I, = B(zn, p(zn))}5% such that X = (J;2; I, and Z* = {4] : I € Z} has bounded
overlap. Denote by 7, a smooth partition of unity associated with the family Z, i.e.

M € C™(0,00), Supp 7 C In, 0 <y <1, > (@) = X(0,00) (@), 7 (2)] < Cplza) "

n=1
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We are going to prove an atomic decomposition of f =3">°  n,f. Note that

) (fn,) = <(f”(zn) - RL)(fnn)) +(R™(f1) = maRY = G)(f)) =1~ G(f) +na-RE(f).

By using (4.4.2), Lemma 4.3.4, and (4.3.2) we get

Z ) (Fn) || L1 ) < CZ (1l L1 x)y =+ xar, fll o o
n=1 n=1

(4.4.4
G o) + B s o) )
< C(Ifllprex) + ||RLfHL1(X)) .
Applying Theorem 4.2.13, we arrive at
- f =) Angang, where Y [l < [T (f )l (4.4.5)
j=1 j=1
and a,, ; are local L{r(=)} atoms. From (4.4.4) and (4.4.5) we have obtained
F= Angang with > Dl <C([florx) + IR fllax)) - (4.4.6)

n,j=1 n,j=1
Remark 4.2.14 states that suppa, ; C 31, for j > 0. Notice that for y € 3 I,, there exists

C > 0 such that

p(zn)/C < p(y) < Cp(z,) foralln>1andye,. (4.4.7)

Because of this, each a, ; can be decomposed into a sum of at most N L-atoms (where
the number N depends only on a and the constant C' from (4.4.7)). Finally, Theorem
4.1.8 follows by applying (4.4.6).

4.5 Proofs of Propositions 4.2.4 and 4.3.1

This section is devoted to proving Propositions 4.2.4 and 4.3.1. The letters ¢, C, N, M will

denote positive constants (N, M are arbitrarily large). We also make the convention that

f; .-+ = 0, whenever p > q. For further references we figure out some properties of the
Bessel function I, (v > 0) (see, e.g. [41]):
8830 (27" (2)) = 2741 () for z > 0, (4.5.1)
0<I(z)=2""T(v+1)"'2" + O(x"?) for0 <z < C, (4.5.2)
U,(z) = (2r)" 2+ 0z 1) for z > C, (4.5.3)
where

Uy(z) = I, (z)e *x.
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4.5.1 Proof of Proposition 4.2.4

Proof. Assume y = 1. By using (4.1.10) and (4.5.1) we get

~ o] B I'2+1 o T
Rt == [T e (<5 ) o (1)

R 224+ 1\ x
+/0 (2t) % exp (— o )w ORI (E)

:/00 él(fc;t)dt—i-/oo Qa(; t)dt. (4.5.4)
0 0

SIERSE

In calculations below we will often use the following formula:

e (<5 ) () = (25 o (3):

Define

A—-B B

h(z) = R*(x,1) — gotl 11 potl 1

To prove (4.2.5) we consider three cases.
Case 1: z > 3/2.

Under this assumption (z — 1) ~ x. Then we get estimates:

5 . ¢ -2 (:L' - 1)2 x —a/2
/0 |Q2(x;t)|dt < C /0 t~% exp <— m ) Ula+1)/2 <ﬂ> a~2dt
x t N
< C/ =2 <w2> 24 < Cax™M,
0
z? x2 N a+1 2 ,N—3—&
~ _ t 1—a /XT\ 2 dt t 2 o
. < 2( v -~ 2 < < a—3
/x \Q2<m,t)dt_c/x t (x2> x'e (t) 7 _C/D —yrdt < Ca 7,

o~ o° (a+1)/2 dt o
. < -2 —(a—1)/2 (T < / —3—a/2 34 —a—3
/932 |622(:1c775)dt_0/x2 t "’z <t> \/E_C g xt dt < Cx ,

which imply
/ |Qa(xs;t)|dt < C a5, (4.5.5)
0

Our next task is to obtain

o A-B B o
’ /0 Q1 (z;t)dt — P e S | < Cx . (4.5.6)

By using the same methods as we have utilized to estimate the integral [ Qo (;t)|dt

we deduce

[ 1@l < ca. (457)
0
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Moreover,

/I Ql(ﬂ«“%t)dt—ﬁ‘ :‘_/x (2t)“exp | — m >33 2 Ja-1)/2 (225)%
o0 22 s 2—(a—1)/2

+/ 2t) "2 exp (—) T ———

o W) T TE

z

(
A oo () (2 ()%

[e.9]

_ 22\ _a=s T 2-(@=1)/2 /N 25t dt
(e (<) (Im on (5) - Somgtr <%>2)ﬂ
x 2 —(a—1)/2 a-1
“2exp (%) 22522 zy At
+’/O (2t) eXp( 4t>x T () <2t> NG

A A—B B
.CCa+1 - xa+1+1 B xa—&-l -1

and

’ <Cr 2 foraz>3/2. (4.5.9)

Applying (4.5.2) and the mean-value theorem to (4.5.8), we get

o A
/ Qi )it — 2| < €. (4.5.10)

Now (4.5.6) is a consequence of (4.5.7), (4.5.9), and (4.5.10). From (4.5.5)—(4.5.6) we

conclude that

L
pa— —_— < . . .

Case 2: z < 1/2.
From (4.5.2)—(4.5.3) it follows:

°5 Talth (z—1)? z g [T N2
: < — a— — < -2 - <

/OlQl(x,tﬂdt_C/O > exp( = >U21(2)dt_(}x 2/0 =24t < O,
- 1 241 (a-1)/2 dt
/ \Ql(w;t)!dtéC/ thxp< s ) = (9)

o 0 2 1
| Gwoa<c [ t2exp( *) =
1 1

Thus [ |Q1(z;t)|dt < Cz. By the same arguments we also obtain I 1Qa(z;1)|dt <

=+ 8

< Czx / tMdt < Cr,

8

) — < Cx/ t727%dt < O,
1

Cz. Hence, ]Rf‘(x, 1)| < Cz. As a consequence, for z < 1/2, we have

A—-B B
potl 11 gotl 1

1/2 1/2 ~ A— B B
< L <C. (4.5.
[ ) < [ (1R @01+ | ) el < 0 @sas)

h(z) + A—2B| = )Rf(m,l) _ +A—QB‘ < Oz, (4.5.12)
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Case 3: 1/2 <z < 3/2.

In this case a slightly different form of (4.5.4) is needed, i.e.

9 _ o dt o 2 1N ey at
/0 %Kt(li, 1)% =—(r— 1)/0 (2t) " exp <_ At > L I(a /2 (275) \[

[ () o -t 3
/ Qg dt+/ @4($;t)dt.

We claim that
/ Qa(z;t)|dt < Cla — 1|72 (4.5.14)
0

Indeed, by using (4.5.2) and (4.5.3) we get
1, _ 1 _ 1)2 T T
) < -2 (= —a/2 TN
[ auofar <o [ ew (<5 )= o (5) - Uana (5)
Lo ¢ Ve 1/2
< B —dt < -1~
_C/Ot <(x_1)2) Lit < Cle — 1177,

a1

/100 )@4(ﬂc;t)‘dt < C/loot‘%l?a <<";C>; + (5:)(@1)/2> fl/ti < C/loo t=270 2 < C.

Next, observe that

0~ o (a—1)/2 dt
/1 ’QS(QJ; t)’dt < Clx — 1’/1 2~ (a=1)/2 (%) % <C. (4.5.15)
Moreover,
B(a+1)~ fx—l r—1)22\ _,n, 1 dt
/ Q3 Q? t - ‘/ exp _( ) T /2 -
a:a/ (x—1) 4t Vor t
(4.5.16)

o PG e () (Ve () - 72) 71

Applying (4.5.3) to (4.5.16) we deduce

’/01 O (w; t)dt — a/2 )7 (4.5.17)

One can easily check that

Bla+1)7! B A-B
r®/2(x —1) axotl—1 gotly]

<C. (4.5.18)

From (4.5.14), (4.5.15), (4.5.17), and (4.5.18) we conclude

3/2 3/2 B A-B
L
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Finally, as a consequence of (4.5.11)—(4.5.13), and (4.5.19) we obtain that h satisfies
desired properties (4.2.5). The proposition in the general case of y > 0 follows by applying

the homogeneity
Ri(x,y) = y_o‘_lRf‘ <x’ 1) . (4.5.20)
(Y

O

4.5.2  Proof of Proposition 4.3.1

Proof. Let us set

rT—y B A—-B
g@w)zRwa)—¢<p@))(ﬂwl_ywl—li+yM1>. (4.5.21)

We will prove that (4.3.2) is satisfied. By using (4.1.4) and (4.5.1) we get

© dt < dt Bl dt 1 dt
Rioy) = [ K@) T [ kP T = [k e T [ E )
o Vi o ! N Vi o ! Vit
(4.5.22)
where
-2t \ 2 —4t .2 2 —2t
1] _ 2e _a-1 l+eHai4y 2e
Ky (z,y) = (1_€_4t> y(zy)” 2 exp <—1 P T IQTH 1_o—u® )
9 2e2(1 4 e~ 4) _a-1 14 e g2 442 2e2t
Ky =~ o)™ T e (T ) e ()
“ot —at 4t 3 2
(3] 27 (1+e7™) _a-1 1+e a2 4y
K" (z,y) = —W@y) 2 (z —y)exp Tl % 9
26_2ta7y
*lagt 1_4) /
—9t —4t .2 2
4] 2 _a-1 l4+e x4y
K (z,y) = my(ﬂ/) 2 exp <—1 P T
26_2t 26_2t 1 +€—4t 26—2t
N1 Tyt T R g— Teg1 T
Note that
14 e g2 442 2e2t 2e 2t xy 1/2
exp <— =T I, T e_4t:cy " (4.5.23)

B 14 e 4t ($ _ y)2 (1 _ e—2t)2 26_2t:£y
o\t g )T W) Ul )
The formula (4.5.23) will be frequently used, without additional comments, when we
deal with 1,,(6) for 6 > C.

We provide the proof in six cases as it is shown in Figure 1 on page 66. The grey

part denotes the support of ¢ ((xz —y)/p(y)). Moreover, the dark grey color means that
¢ ((z—y)/p(y)) = 1.
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Fig. 4.1: Partition of X x X

In Cases 1, 2, 4, 5 we will use the decomposition (4.5.22) that contains Kt[l] and Kt[Q].
Case 1: y >3, z <y/2.

At the beginning we consider KP] and ¢t < 1. Under additional assumption zy < 1 we get

1 2 a+1
VKM (2, )] 2 e) " Fexp (L) (P2 7 4 o oM
[t <o [ e en (-5) (1) G<or,

zy

Ty 2 —2t
! Yy 2l Yoy - 2e“'xy t dt
it <o [ a5 on () e (1550) 5

Yy a t N T N
< C’/ t2y(zy) "2 (—2) dat<C <—) zo L
0 Y Y

In the last line we have used (4.5.23) and (4.5.3). If zy > 1 we similarly get
1
dt
K[l] l', < C —M.
| e < o

Next, we deal with Kt[l] and t > 1. If xy > €% then

a—1

log /Ty log /Ty _
/1 KM <a:,y>|% <c / ey ()T exp(—cy%(e—?txy)—%% <oy,

& dt a—1 2
K z,y)|— < C e My(zy)~ "7 e Y (e Hay) 2 — < Cy
L ez <o [ty () 2

Identically, when zy < e¢* we have [/ |Kt[1] (m, y)|% <CyM,

We can write the same estimates for Kt[2]. Thus we get

/ <‘Kt[1](.'1f,y)| + |Kt[2] (a;jy)|> ﬁ < C’y—M max(l, xM—a—l).
0 Vi
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Observe that g(z,y) = R¥(z,y) (see Figure 1), so the last estimate implies
y/2
sup/ lg(x,y)|dp(z) < oo. (4.5.24)
y>3J0
Case 2: = >3, y < 2x/3.

We proceed very similarly to Case 1 and obtain

/ <|Kt[1](x’y)’ + |K£2] (xay)|) a < Cz~M max(1, yM-271).
0 Vi

We have g(z,y) = R¥(z,y) (see Figure 1). Hence
oo o
sup [ lgGepldute) < oo, s [ g y)ldute) < . (4.5.25)
y<2J3 y=>2 J3y/2
Case 3: (x >3 ory>3)and |z —y| < y/2.
Notice that

—2t \ 1/2 —at 2
4 _(_2% —a/2 l+e ™ (x—y)
ke = () vt e (1 05 (4.5.26)
1— e_2t 2 / " "
X exp ((1_4)3/) (Vi@ + Vi ay) + V ).
where
—2t —2t
4] _ 2e 2e 1
Vi (x,y) T4t <U(a+1)/2 1_6_4txil/> - E )
” 1 2 —2t 1 —A4t 1— —2t\2
‘/;[4]<.I',y) = ‘ _ - +6_ = - ( ‘ ) 3
V2r \1l—e 4 1 —e 4 V2m (1 — e~ %)
[4///] B 1 + 8_4t 26_2t 1
Vit Hw,y) = R pp— U(afl)/2 1_ 6,4t$y - Vo)
By using (4.5.26) and (4.5.3) one obtains
! dt
K (2,y)|— < Clz —y|~V/2z7oL, (4.5.27)
| e
Also, as in Case 1, we get
= (kB 4 dt M
(5wl )l ) s e, (4.5.28)
Next,
! dt B(zy)~/? >
K JY)— — . —— = D1—Dg= D;—D;11), (4.5.29
/0 t ($ y)\/i X{ylz—y|<1} (Ct—i— 1)(1_ — y) 1 6 jzz:l( J J+1) ( )
where
1 eft(l + 674t) T —y 14+ e—4t (QU _ y)2 (1 _ 67216)2 dt
Dy = — —4t\3/2 a OXp | — —it exp |- —at YY)
0 Vm(l—e4) (xy)2 1—e 2 1—e Vit
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Dy = —/01 ! (zy) (2 — y) exp (—W> exp (—txy) &

At/ 4t t’
y2/4 (x —1y)? dt
D, — — —a/2(,. A S VA — —
4 /0 ) 4tﬁ(xy) (x —y)exp ( m ) exp (—txy) L
v (z—y)* dt
D; = —/ ——=(wy) " (w —y) exp <—> 7
N 4t t
. 0 ?‘” L oa—y o (g de (ay)~2
O T TXled< o e m @ T ) T Ml mn Ty

By using the mean-value theorem, (4.5.3), and (4.5.23) one obtains
|D; — D] < Ca™ Y2z —y|7V2 for j=1,2. (4.5.30)

To deal with D; — D11 for j = 3,4,5 we consider:

Subcase 1: y|lz —y| < 1.
1

dt
| D3 — Dy §C’/ t_lx_a|m—y|7 < C'x_a+2|1:—y|,
y=2/4
y?/4 (z—y)?/4 y?/4
‘D4—D5‘:/ :/ dt+/ L.dt =Y+ Y5,
0 0 (z—y)?/4
(z—y)?
vl < c/ pN-Lymar2)y -2 gy < gty gl (4.5.31)
0
y2/4 dt 1
Y2 < C 2|z —y| = < Ca™ 2|z — y|ln ——,
(z—y)?/4 t ylz — y|
© dt
|Ds — Dg| SC’/ tilea]a:—y]7 < Ca P2z — 9.
y=2/4

Subcase 2: y|lz —y| > 1.

1 Yy Hz—yl/4 1
‘Dg—D4‘ :/ :/ dt—l—/ dt:Y3+Y4,
y=2/4 y=2/4 y~Ha—yl/4

y~Hae—yl/4
|Y23| SC/ tN_2$_a’£L'—y|1_2thSCl‘_a+1_N|ﬂf—y|_N,
y~2/4
1
wil<o o ) N gl < Cam ey Y, (45
Yy olx—y
y2/4
|D4 . D5| < C/O tN—lx—a+2|x . y|1—2th < Cm—a+1—M|$ . y|—M’

v N-1,— 12N dt —a+1-M -M
Reassuming, (4.5.26)—(4.5.32) lead to

3y/2 B(xy)fa/2
su RY(z,y) — _ x)—————|du(r) < oc. 4.5.33
sup [ [BH )~ Xtgeonen @) 1 i [ (453
Moreover,

Blxy)~* B ___A-B
o+ 1)(x _ y) pot+l _ ya+1 o+l + ya—i-l

X{ylz—y|<2} (1‘)‘( ‘ < Cz— L. (4534)
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We claim that

3y/2 3y/2
sup / g(z,y)ldu(z) < C and  sup / g(x.y)ldp(z) < C. (45.35)
2<y<3J3 3<y Jy/2

To prove (4.5.35) we split the area of integration into three parts that correspond to white,

light grey, and dark grey regions from Figure 1.

o if ylz —y| > 2 we have ¢ ((x —y)/p(y)) = 0 and we deduce the statement directly
from (4.5.33).

e if 1 <y|z—y| <2 then we apply (4.5.33)—(4.5.34), and the inequality

Sup/ <
y>2 J1<y|z—y|<2

o if ylz —y| < 1 then ¢ ((x —y)/p(y)) = 1 and we use again (4.5.33)—(4.5.34).

B A-B
gotl _ yatl ‘ + ‘$a+1 Ty D dp(z) < C.

Case 4: z,y < 3, z < y/2.

By similar analysis to that we have used in Case 1 we obtain

W 2] dt A"
(I @+ P yl) s (D) e

vt o \y
/ (8 )+ 1P )]) B < )t
y Vi
= dt
[ (6wl + 1K) < c.

Therefore
vz

sup/ |R™(x,y)|du(x) < oo.
0

y<3

and, consequently,

y/2
Sup/ l9(z,y)|dp(z) < oo, (4.5.36)
y<3J0
since
y/2 B A - B
sup /O < o _yaﬂl g +ya+1]> dp(z) < 0.

Case 5: x,y < 3, y < 2x/3.

By using (4.5.2) and (4.5.3), similarly as in Case 2, one obtains

Yy dt M
1] 2 o (DM —a

2
T dt _ (V) et
/w K (x,y)\ﬁ_0<x> = (4.5.37)

1
1] (Y
/3:2 |Kt (xvy)|\/i—c(x) €T )

(1] (2] dt
K :]77 K :]:’ < C.
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Recall that A = —27y;7, !, where 41 = T'(a/2 4+ 1) and 72 = T'(( + 1)/2). We write

/1K[2]( 4t Az B —E i:(E Eii1) (4.5.38)
T, Y)—F= — 5 — L1 — Ly = i — Lj11), 0.
W OV G e =R
where
a—1
5 /1 2721 + e~4) . L+e a2 4+y2\ /[ e 2 \ 2z dt
2 oy (L—ei0)2 PUt—es 2 )2 \1—ex NG
By = / 2 a/2_1xexp (—x2 +y2> @
my ’72 4t t '
2,2
+y dt Y T
B, — —a/2-1 _z aw_om_ T
! 0 ’)’2 re 4t t V2 (22 4 y2)o/ 241
Applying (4.5.2) and the mean-value theorem, one gets
‘El — E2| < Cyzxfaf?),
‘EQ — E3| S C.%'_a+1,
|E3 — Ey| < Cmax(1,yMz=o"17M), (4.5.39)
Moreover,
B A—-B 0o
’E‘l Tt ol T ogadl 4 ya+1‘ < Cyz™"" (4.5.40)
As a consequence of (4.5.37)—(4.5.40) we get
B A-B
L(
zlig /y/2 ‘R x,y) — TorT el gatly gatl ‘du(az) < 0. (4.5.41)
Also,
3
B A-B
zlip/l X{y<2x/3} ( 2ol — gatl ’ 7ot 5 ot D dp(z) < oo. (4.5.42)

Observe that if x < 1 then ¢((x —y)/p(y)) =1 (see Figure 1). Therefore (4.5.41)-(4.5.42)

lead to

3
sup/ lg(x,y)|dp(z) < oco. (4.5.43)
y<2J3y/2

Case 6: z,y < 3, [z —y| <y/2.

By using the decomposition (4.5.26) one obtains

/ Yz, y)!f < Cla —y| V2270712, (4.5.44)
0

In addition

! dt o0 dt
K @, y) + K (2,9))) S < Camo, / K @, y) + K ()] = < C.
/xy <’ ¢ ()| + K (2 y)\) N T (’ iy + K (o y)\) N

1
(4.5.45)
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Denote
4
it dt B A-B
KPPV a,y)— — =F —F=Y (F—F
/0 t (HC,y)\/Z (xa+1—ya+1+xa+1+ya+1> 1 5 ;( J 1)
where

- Ty \/§6_t(1—|—6_4t) . _a . o B
R A e ORI

< (1 —e2t)2 >dt
Xexp | ————ay | —

L+e ™ (z—y)?
1—e 4 2

1— ef4t \/%’

B - [ e e e (—ﬁj”z) i,

I R W ) s
R A G P

Similar analysis to that we did in (4.5.39) leads to

|F; — Fiq| < Cx™ @7l i=1,...,4. (4.5.46)

Thanks to (4.5.44)—(4.5.46), we have

’ RE = A-B |, 4.5.4
z‘g ; X{Iw*y|<y/2}‘ (z,y) — gotl _yatl  pa+l +ya+1’ p(x) < oo. (4.5.47)
Observe that
3
B A—B
sup /0 X{lo—yl<y/2}X{|z—y|>1/2} ( s yaH( 2ot yotl D dp(x) < oo. (4.5.48)

Note that if |z —y| < 1/2 then ¢ ((z —y)/p(y)) = 1 (see Figure 1). Therefore, it is not
difficult to see that (4.5.47)-(4.5.48) imply

3 dt
su o x,y)|—=du(x) < oo. 4.5.49
p /0 Xty ot ) Zodula) (4.5.49)

Finally, the required estimate (4.3.2) follows directly from (4.5.24), (4.5.25), (4.5.35),
(4.5.36), (4.5.43), (4.5.49). O
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