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Jacek Dziubański · Marcin Preisner ·
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Abstract Let H(f )(x) = ∫
(0,∞)d

f (λ)Ex(λ)dν(λ), be the multivariate Hankel trans-

form, where Ex(λ) = ∏d
k=1(xkλk)

−αk+1/2Jαk−1/2(xkλk), with dν(λ) = λ2αdλ, α =
(α1, . . . , αd). We give sufficient conditions on a bounded function m(λ) which guar-
antee that the operator H(mHf ) is bounded on Lp(dν) and of weak-type (1,1), or
bounded on the Hardy space H 1((0,∞)d , dν) in the sense of Coifman-Weiss.

Keywords Spectral multiplier · Bessel operator · Hankel transform · Hardy space

Mathematics Subject Classification Primary 42B15 · Secondary 42B20 · 42B30

1 Introduction and Preliminaries

For a multiindex α = (α1, . . . , αd), αk > −1/2, we consider the measure space
X = ((0,∞)d , dν(x)), where dν(x) = dν1(x1) · · ·dνd(xd), dνk(xk) = x

2αk

k dxk ,
k = 1, . . . , d . The space X equipped with the Euclidean distance is a space of ho-
mogeneous type in the sense of Coifman-Weiss.
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For a function f ∈ L1(X) the (modified) Hankel transform Hf is defined by

H(f )(x) =
∫

(0,∞)d
f (λ)Ex(λ)dν(λ),

where

Ex(λ) =
d∏

k=1

(xkλk)
−αk+1/2Jαk−1/2(xkλk) =

d∏

k=1

Exk
(λk).

Here Jν is the Bessel function of the first kind of order ν, see [16, Chap. 5]. The
system {Ex}x∈(0,∞)d consists of the eigenvectors of the Bessel operator

L = −� −
d∑

k=1

2αk

λk

∂

∂λk

;

that is, L(Ex) = |x|2Ex . Also, the functions Exk
, k = 1, . . . , d , are eigenfunctions of

the one-dimensional Bessel operators

Lk = − ∂2

∂λk
2

− 2αk

λk

∂

∂λk

,

namely, Lk(Exk
) = x2

kExk
.

It is known that H is an isometry on L2(X) that satisfies H−1 = H (see, e.g., [23,
Chap. 8]). Moreover, for f ∈ L2(X), we have

Lk(f ) = H
(
λ2

k Hf
)
. (1.1)

For y ∈ X let τy be the d-dimensional generalized Hankel translation given by

H
(
τyf

)
(x) = Ey(x)Hf (x).

Clearly, τyf (x) = τy1 · · · τyd f (x), where for each k = 1, . . . , d , the operator τyk is
the one-dimensional Hankel translation acting on a function f as a function of the xk

variable with the other variables fixed. It is also known that, if αk > 0 for k = 1, . . . , d ,
then τy is a contraction on all Lp(X) spaces, 1 ≤ p ≤ ∞, and that

τyf (x) = τxf (y).

For two reasonable functions f and g define their Hankel convolution as

f �g(x) =
∫

X

τxf (y)g(y)dν(y).

It is not hard to check that f �g = g�f and

H(f �g)(x) = Hf (x)Hg(x). (1.2)
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As a consequence of the contractivity of τy , for α ∈ (0,∞)d , we also have

‖f �g‖L1(X) ≤ ‖f ‖L1(X)‖g‖L1(X), f ∈ L1(X), g ∈ L1(X). (1.3)

For details concerning translation, convolution, and transform in the Hankel set-
ting we refer the reader to, e.g., [13, 23], and [26].

For a function f ∈ L1(X) and t > 0 let ft denote the L1(X)-dilation of f given
by

(ft )(x) = tQf (tx),

where Q = ∑d
k=1(2αk + 1). Then we have:

H(ft )(x) = Hf
(
t−1x

)
, (1.4)

τy(ft )(x) = (
τ tyf

)
t
(x). (1.5)

Notice that Q represents the dimension of X at infinity, that is, ν(B(x, r)) ∼ rQ for
large r .

Let m : X → C be a bounded measurable function. Define the multiplier operator
Tm by

Tm(f ) = H(mHf ). (1.6)

Clearly, Tm is bounded on L2(X). Also note that if m(λ1, . . . , λd) = n(λ2
1, . . . , λ

2
d),

for some bounded, measurable function n on R
d , then from (1.1) it can be deduced

that the Hankel multiplier operator defined by (1.6) coincides with the joint spectral
multiplier operator n(L1, . . . ,Ld). The smoothness requirements on m that guarantee
the boundedness of Tm on, e.g., Lp(X) will be stated in terms of appropriate Sobolev
space norms.

For z ∈ C, Re z > 0, let

Gz(x) = Γ (z/2)−1
∫ ∞

0
(4πt)−d/2e−|x|2/4t e−t t z/2 dt

t

be the kernels of the Bessel potentials. Then

‖Gz‖L1(Rd ) ≤ Γ (Re z/2)
∣
∣Γ (z/2)

∣
∣−1 and F Gz(ξ) = (

1 + |ξ |2)−z/2
, (1.7)

where F Gz(ξ) = ∫
Rd Gz(x)e−i<x,ξ>dx is the Fourier transform.

By definition, a function f ∈ Ws
2 (Rd), s > 0, if and only if there exists a function

h ∈ L2(Rd) such that f = h � Gs , and ‖f ‖Ws
2 (Rd ) = ‖h‖L2(Rd ).

Similarly, a function f belongs to the potential space L∞
s (Rd), s > 0, if there is a

function h ∈ L∞(Rd) such that f = h � Gs (see [22, Chap. V]). Then ‖f ‖L∞
s (Rd ) =

‖h‖L∞(Rd ).
Denote Ar,R = {x ∈ R

d : r ≤ |x| ≤ R}. The main results of the paper are Theo-
rems 1.1, 1.2, and 1.3.
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Theorem 1.1 Assume that αk ≥ 1/2 for k = 1, . . . , d . Let

m(λ) = n
(
λ2

1, . . . , λ
2
d

)
, (1.8)

where n is a bounded function on R
d such that, for certain real number β > Q/2 and

for some (equivalently, for every) non-zero radial function η ∈ C∞
c (A1/2,2), we have

sup
j∈Z

∥
∥η(·)n(

2j ·)∥∥
W

β
2 (Rd )

≤ Cη. (1.9)

Then the multiplier operator Tm is a Calderón-Zygmund operator associated with
the kernel

K(x,y) =
∑

j∈Z

τy H
(
ψ

(
2−j

(
λ2

1, . . . , λ
2
d

))
m(λ)

)
(x),

where ψ is a C∞
c (A1/2,2) function such that

∑

j∈Z

ψ
(
2−j λ

) = 1, λ ∈ R
d\{0}. (1.10)

As a consequence Tm extends to the bounded operator from L1(X) to L1,∞(X) and
from Lp(X) to itself for 1 < p < ∞.

We denote by H 1(X) the atomic Hardy space associated with X in the sense of [7].
More precisely, we say that a measurable function a is an H 1(X)-atom, if there exists
a ball B , such that suppa ⊂ B , ‖a‖L∞(X) ≤ 1/ν(B), and

∫
(0,∞)d

a(x)dν(x) = 0.

The space H 1(X) is defined as the set of all f ∈ L1(X), which can be written as
f = ∑∞

j=1 cjaj , where aj are atoms and
∑∞

j=1 |cj | < ∞, cj ∈ C. We equip H 1(X)

with the norm

‖f ‖H 1(X) = inf
∞∑

j=1

|cj |, (1.11)

where the infimum is taken over all absolutely summable sequences {cj }j∈N, for
which f = ∑∞

j=1 cj aj , with aj being H 1(X)-atoms.

Theorem 1.2 Assume that αk ≥ 1/2 for k = 1, . . . , d . Let m(λ) = n(λ2
1, . . . , λ

2
d),

where n is a bounded function on R
d such that, for certain real number β > Q/2

and for some (equivalently, for every) non-zero radial function η ∈ C∞
c (A1/2,2),

Eq. (1.9) holds. Then the multiplier operator Tm extends to a bounded operator on
the Hardy space H 1(X).

Theorem 1.3 If we relax the conditions on αk assuming only that αk > 0, then the
conclusions of Theorems 1.1 and 1.2 hold provided there is β > Q/2 such that

sup
j∈Z

∥
∥η(·)n(

2j ·)∥∥L∞
β (Rd )

≤ Cη. (1.12)
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The weak type (1,1) estimate under assumption (1.12) could be proved by apply-
ing a general multiplier theorem of Sikora [20]. However, in the case of the Hankel
transform Theorem 1.3 has a simpler proof based on Lemmata 2.1 and 2.3.

Hankel multipliers, mostly in one variable, attracted attention of many authors.
Gosselin and Stempak in [10] proved a Hankel multiplier theorem assuming that

(∫ R

R/2

∣
∣m(s)(λ)

∣
∣2

dν(λ)

)1/2

≤ BR(2α+1)/2−s

for s = 0, . . . , k, where k is the least even integer > (2α + 1)/2 and m ∈ Ck(0,∞).
For other results see, e.g., [3, 5, 9, 11, 12], and references therein.

In [3] the authors considered multidimensional Hankel multipliers m of Laplace
transform type, that is,

m(y) = |y|2
∫ ∞

0
e−t |y|2φ(t)dt,

where φ ∈ L∞(0,∞) (see [21]). To see that m(λ) satisfies the assumptions of Theo-
rems 1.1, 1.2, 1.3 we set

n(λ) = Ξ(λ)(λ1 + · · · + λd)

∫ ∞

0
e−t (λ1+···+λd)φ(t)dt, (1.13)

where Ξ ∈ C∞(Rd \ {0}), Ξ(tλ) = Ξ(λ) for t > 0, Ξ(λ) = 1 for λ ∈ (0,∞)d ,
Ξ(λ) = 0 for λ1 + · · · + λd < |λ|/d . We easily check that n(λ) satisfies the Mih-
lin condition, that is, |λ||γ ||∂γ n(λ)| ≤ Cγ for all multiindeces γ . Hence, (1.9) and
(1.12) hold with every β > 0.

A typical example of multipliers of Laplace transform type are the imaginary pow-
ers mu(y) = |y|2iu, u ∈ R, which correspond to φu(t) = (Γ (1 − iu))−1t−iu. In this
case the resulting operators Tmu coincide with Liu. It is worth to remark that, for
α ∈ (0,∞)d , using Theorem 1.3 we can prove substantially better bounds on Lp(X),
1 < p < ∞, than

∥
∥Liu

∥
∥

Lp(X)→Lp(X)
≤ Cpe

π |u|| 1
2 − 1

p
|
, u ∈ R,

which were obtained in [3, Corollary 1.2]. Namely, for arbitrary small ε > 0, we have

∥
∥Liu

∥
∥

Lp(X)→Lp(X)
≤ Cp,ε

(
1 + |u|)(Q+2ε)| 1

2 − 1
p

|
, u ∈ R. (1.14)

In the Appendix we provide a sketch of the proof of (1.14) based on interpolation
arguments.

Let us mention that a different multiplier result considering mixed smoothness
Sobolev norms on m(λ1, . . . , λd) was obtained by one of the authors in [27, Ap-
pendix]. It is valid if all αk > 0, although in that case the resulting operators need not
be weak type (1,1). For other results and references concerning spectral multiplier
theorems on Lp spaces the reader is referred to [1, 6, 14, 17–20].

It is perhaps worth to point out that in d = 1 the assumptions (1.9) and (1.12)
could be given in terms of function m instead of n. However, in the multivariate
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case we assume in (1.9) a W
β

2 -Sobolev regularity of a function n(λ) which is related
with m(λ) by (1.8). In the Appendix, see Example 5.1, it is shown that even for the
classical Fourier multipliers supported in A1/2,2 the Sobolev norms of n(λ) and m(λ)

are not comparable when we apply the change of variables (1.8). Lastly, let us say
that at present we do not know whether the smoothness threshold β > Q/2 required
in (1.9) is optimal.

2 Auxiliary Estimates

In this section we prove some basic estimates needed in the sequel. Denote ws(x) =
(1 + |x|)s .

Lemma 2.1 For every s, ε > 0 there exists a constant Cs,ε such that if m(λ) =
n(λ2

1, . . . , λ
2
d), suppn ⊆ A1/4,4, then

∥
∥H(m)ws

∥
∥

L2(X)
≤ Cs,ε‖n‖

W
s+d/2+ε
2 (Rd )

. (2.1)

Proof Since m(λ) = g(λ2
1, . . . , λ

2
d)e−|λ|2 , with g(λ) = n(λ)eλ1+···+λd , using the

Fourier inversion formula for g, we get

(2π)dm(λ) = e−|λ|2
∫

Rd

F (g)(y)eiy1λ
2
1+···+iydλ2

d dy

=
∫

Rd

F (g)(y)e(−1+iy1)λ
2
1+···+(−1+iyd )λ2

d dy.

Applying the Hankel transform and changing the order of integration, we obtain

H(m)(x) = (2π)−d

∫

Rd

F (g)(y)H(e1−iy)(x)dy, (2.2)

where for z = (z1, . . . , zd) ∈ C
d , ez(λ) = ∏d

k=1 ezk
(λk) with ezk

(λk) = e−zkλ
2
k , while

1 = (1, . . . ,1). Clearly,

H(e1−iy)(x) =
d∏

k=1

Hk(e1−iyk
)(xk),

with Hk denoting the one-dimensional Hankel transform acting on the k-th variable.
It is well known that for t > 0, Hk(et )(xk) = Ct−(2αk+1)/2 exp (−x2

k /4t), see [16,
p. 132]. Moreover, for fixed xk , the functions

zk �→ Hk(ezk
)(xk) and zk �→ Cz

−(2αk+1)/2
k exp

(

− x2
k

4zk

)

are holomorphic on {zk ∈ C : Re zk > 0} (provided we choose an appropriate holo-
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morphic branch of the power function z
−(2αk+1)/2
k ). Hence, by the uniqueness of the

holomorphic extension, we obtain

Hk(e1−iyk
)(xk) = C(1 − iyk)

−(2αk+1)/2 exp

(

− x2
k

4(1 − iyk)

)

.

Since Rex2
k /4(1 − iyk) = x2

k /4(1 + y2
k ), the change of variable xk = (1 + y2

k )1/2uk

leads to
∫

(0,∞)

∣
∣xs

k H(e1−iyk
)(xk)

∣
∣2

dνk(xk) �
(
1 + y2

k

)s
, s ≥ 0. (2.3)

Now, observing that (1 + |x|)2s ∼ 1 + x2s
1 + · · · + x2s

d and using (2.3) we arrive at

∥
∥
(
1 + | · |)s H(e1−iy)(·)

∥
∥

L2(X)
�

d∑

k=1

(
1 + y2

k

)s/2 ∼ (
1 + |y|)s

.

The latter bound together with (2.2), Minkowski’s integral inequality, and the
Schwarz inequality give

∥
∥H(m)ws

∥
∥

L2(X)
�

∫

Rd

∣
∣F (g)(y)

∣
∣(1 + |y|)s

dy

�
(∫

Rd

∣
∣F (g)(y)

∣
∣2(1 + |y|)2s+d+2ε

dy

)1/2

×
(∫

Rd

(
1 + |y|)−d−2ε

dy

)1/2

� ‖g‖
W

s+d/2+ε
2 (Rd )

for any fixed ε > 0. Since g(λ) = n(λ)eλ1+···+λd = n(λ)(eλ1+···+λd η0(λ)), for some
η0 ∈ C∞

c (A1/8,8), we see that ‖g‖
W

s+d/2+ε
2 (Rd )

≤ C‖n‖
W

s+d/2+ε
2 (Rd )

, which implies

(2.1). �

Remark that a slight modification of the reasoning above shows that if m(λ) =
n(λ2

1, . . . , λ
2
d), n ∈ C∞

c (A1/2,2), then
∣
∣H(m)(x)

∣
∣ ≤ CN‖n‖CN+d (A1/2,2)

w−N(x), (2.4)

where CN denotes the supremum norm on the space of N -times continuously differ-
entiable functions.

Using ideas of Mauceri-Meda [18] combined with the fact that the Hankel trans-
form is an L2-isometry we can improve Lemma 2.1 in the following way.

Lemma 2.2 Assume that αk ≥ 1/2 for k = 1, . . . , d . Then for every s, ε > 0, there is
a constant Cs,ε such that if m(λ) = n(λ2

1, . . . , λ
2
d), suppn ⊆ A1/2,2, then

∥
∥H(m)ws

∥
∥

L2(X)
≤ Cs,ε‖n‖Ws+ε

2 (Rd ).
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Proof Let h ∈ L2(Rd) be such that n = h � Gs+ε . Set s′ = (s + ε)(d + 6)/2ε, θ =
2ε/(6 + d). Define nz by

F (nz)(ξ) = F h(ξ)
(
1 + |ξ |2)−s′z/2

, 0 ≤ Re z ≤ 1.

Clearly, nz = h � Gs′z, Re z > 0, and n = nθ . Let η0 be a C∞
c function supported in

A1/4,4, equal to 1 on A1/2,2, and let Nz(λ) = nz(λ)η0(λ). Then suppNz ⊆ A1/4,4 and
F (Nz) = F (nz) � F (η0). Define

mz(λ) = nz

(
λ2

1, . . . , λ
2
d

)
and Mz(λ) = Nz

(
λ2

1, . . . , λ
2
d

)
.

Since αk ≥ 1/2 for every k = 1, . . . , d , we have that Mz ∈ L2(X) and ‖Mz‖L2(X) �
‖Nz‖L2(Rd ). Let g be an arbitrary C∞

c (X) function with ‖g‖L2(X) = 1. Set

F(z) =
∫

X

H(Mz)(x)
(
1 + |x|)(s′−3−d/2)z

g(x)dν(x). (2.5)

Then F is holomorphic in the strip S = {z : 0 < Re z < 1} and also continuous and
bounded on its closure S̄. Using Parseval’s equality and the facts that suppNz ⊆
A1/4,4 and F (η0) ∈ S(Rd), for Re z = 0, we get

∣
∣F(z)

∣
∣ ≤ ∥

∥H(Mz)
∥
∥

L2(X)
= ‖Mz‖L2(X) ≤ C‖Nz‖L2(Rd ) ∼ ‖F Nz‖L2(Rd )

≤ Cη0,s
′,θ‖n‖Ws+ε

2 (Rd ).

If Re z = 1, then applying in addition Lemma 2.1, we obtain

∣
∣F(z)

∣
∣ ≤ ∥

∥H(Mz)w
s′−3−d/2

∥
∥

L2(X)
≤ C‖Nz‖Ws′

2 (Rd )

≤ Cη0‖nz‖Ws′
2 (Rd )

= C‖h‖L2(Rd ) = C‖n‖Ws+ε
2 (Rd ).

From the Phragmén-Lindelöf principle we get |F(θ)| ≤ C‖n‖Ws+ε
2 (Rd ). Taking the

supremum over all such g we arrive at

∥
∥H(Mθ)w

(s′−3−d/2)θ
∥
∥

L2(X)
≤ C‖n‖Ws+ε

2 (Rd ).

Recall that n = nθ = Nθ , so that also m = mθ = Mθ , hence we get the desired con-
clusion. �

Notice, that the assumption αk ≥ 1/2 was crucial to get ‖Mz‖L2(X) ≤ C‖Nz‖L2(Rd )

in the proof of Lemma 2.2. This was due to the fact that, in the case d > 1, if
λ ∈ suppNz ⊆ A1/4,4, then it can happen that λi = 0 for some i = 1, . . . , d . In the full
range of α’s we can overcome this difficulty, but with different Sobolev condition.

Lemma 2.3 If we relax the conditions on αk in Lemma 2.2 by assuming that αk > − 1
2

for k = 1, . . . , d , then

∥
∥H(m)ws

∥
∥

L2(X)
≤ Cs,ε‖n‖L∞

s+ε(R
d ).
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Proof We argue similarly to the proof of Lemma 2.2. Indeed, write n = h � Gs+ε ,
where h ∈ L∞(Rd). Since suppn ⊂ A1/2,2, one can prove that h ∈ L2(Rd) and
‖h‖L2(Rd ) ≤ Cs,ε‖n‖L∞

s+ε
.

Set s′ = (2s + ε)(6 + d)/2ε, θ = ε/(6 + d) and define

Nz(λ) = η0(λ)h � Gs′z+ε/2(λ), λ ∈ R
d, 0 ≤ Re z ≤ 1.

Then for every z ∈ S̄ the function Nz(λ) is continuous and supported in A1/4,4. Let
Mz(λ) = Nz(λ

2
1, . . . , λ

2
d). Clearly, Mθ = m. Moreover, by (1.7),

‖Mz‖L2(X) ≤ C‖Mz‖L∞(X) ≤ C‖Nz‖L∞(Rd ) ≤ Cs,ε‖h‖L∞(Rd ) = Cs,ε‖n‖L∞
s+ε(R

d ).

We now use the new functions Mz to define a bounded holomorphic function F(z)

by the formula (2.5). Obviously |F(z)| ≤ Cs,ε‖n‖L∞
s+ε

for Re z = 0. To estimate F(z)

for Re z = 1 we utilize Lemma 2.1 and obtain
∣
∣F(z)

∣
∣ ≤ ∥

∥H(Mz)w
s′−3−d/2

∥
∥

L2(X)
≤ C‖Nz‖Ws′

2 (Rd )

≤ Cη0,s,ε‖h‖L2(Rd ) ≤ Cs,ε‖n‖L∞
s+ε(R

d ).

An application of the Phragmén-Lindelöf principle for z = θ finishes the proof. �

We will also need the following off-diagonal estimate (see [9, Lemma 2.7]).

Lemma 2.4 Assume that αk > 0 for k = 1, . . . , d . Let δ > 0. Then there is C > 0
such that for every y ∈ X and r, t > 0, we have

∫

|x−y|>r

∣
∣τy(ft )(x)

∣
∣dν(x) ≤ C(rt)−δ‖f ‖L1(X,wδ(x)dν(x)).

Proof By homogeneity it suffices to prove the lemma for t = 1. Let B be the left-
hand side of the inequality from the lemma. If |x − y| > r then there is k ∈ {1, . . . , d}
such that |xk − yk| > r/

√
d . Hence,

B ≤
d∑

k=1

∫

|xk−yk |>r/
√

d

∣
∣τy(f )(x)

∣
∣dν(x) =

d∑

k=1

Bk.

It is known that, for α ∈ (0,∞)d , the generalized translations can be also expressed
as

τyf (x) =
∫ x1+y1

|x1−y1|
· · ·

∫ xd+yd

|xd−yd |
f (z1, . . . , zd)dWx1,y1(z1) · · ·dWxd,yd

(zd), (2.6)

with Wxk,yk
being a probability measure supported in [|xk − yk|, xk + yk] (see [13]).

Thus,

Bk =
∫

|xk−yk |>r/
√

d

∣
∣
∣
∣

∫ x1+y1

|x1−y1|
· · ·

∫ xd+yd

|xd−yd |
f (z1, . . . , zd )dWx1,y1 (z1) · · ·dWxd,yd (zd)

∣
∣
∣
∣dν(x).
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Introducing the factor zδ
kz

−δ
k to the inner integral in the above formula and denoting

g(x) = |f (x)|xδ
k , we see that

Bk ≤ Cr−δ

∫

X

∫ x1+y1

|x1−y1|
· · ·

∫ xd+yd

|xd−yd |
g(z)dWx1,y1(z1) · · ·dWxd,yd

(zd)dν(x)

≤ Cr−δ
∥
∥τyg

∥
∥

L1(X)
≤ Cr−δ‖f ‖L1(X,wδdν),

where in the last inequality we have used the fact that τy is a contraction on L1(X). �

Let Tt (x, y) = τy H(e−t |λ|2)(x) be the integral kernels of the heat semigroup cor-
responding to L. Clearly,

Tt (x, y) = T
(1)
t (x1, y1) · · ·T (d)

t (xd, yd),

where T
(k)
t (xk, yk) is the one-dimensional heat kernel associated with the opera-

tor Lk .

Lemma 2.5 Assume that αk > 0 for k = 1, . . . , d . Then there is a constant C > 0
such that

∫

X

∣
∣T1(x, y) − T1

(
x, y′)∣∣dν(x) ≤ C|y − y′|, y, y′ ∈ X.

Proof The proof is a direct consequence of the one-dimensional result, see [10, The-
orem 2.1], together with the equality

∫ ∞

0
T

(k)
1 (xk, yk)dνk(xk) = 1, k = 1,2, . . . , d. �

In the proof of Theorem 1.2 the following version of [9, Lemma 2.5] will be used.

Lemma 2.6 Assume that αk > 0 for k = 1, . . . , d . Let f,g ∈ L1((0,∞)d ,wδdν),
with certain δ > 0. Then:

‖f �g‖L1((0,∞)d ,wδdν) ≤ ‖f ‖L1((0,∞)d ,wδdν)‖g‖L1((0,∞)d ,wδdν).

Proof After recalling the representation (2.6) the proof is analogous to the proof of
[9, Lemma 2.5]. �

3 Proof of Theorem 1.1

The scheme of the proof takes ideas from [15]. Assume that (1.9) holds for some
β > Q/2. Fix ψ ∈ C∞

c (A1/2,2) satisfying (1.10). Let

K(x,y) =
∑

j∈Z

Kj(x, y) =
∑

j∈Z

τy H(mj )(x),
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where mj(λ) = ψ(2−j (λ2
1, . . . , λ

2
d))m(λ) = (ψ(2−j ·)n(·))(λ2

1, . . . , λ
2
d). To prove

that Tm is indeed a Calderón-Zygmund operator associated with the kernel K(x,y)

we need to verify that it satisfies the Hörmander integral condition, i.e.,
∫

|x−y|>2|y−y′|
∣
∣K(x,y) − K

(
x, y′)∣∣dν(x) ≤ C (3.1)

for y, y′ ∈ X, and the association condition

Tmf (x) =
∫

X

K(x, y)f (y)dν(y) (3.2)

for compactly supported f ∈ L∞(X) such that x /∈ suppf . We start by proving (3.1).
It suffices to show that

Dj

(
y, y′) =

∫

|x−y|>2|y−y′|
∣
∣Kj(x, y) − Kj

(
x, y′)∣∣dν(x) ≤ Cj , with

∑

j∈Z

Cj < ∞.

Let r = 2|y − y′| and assume first j > −2 log2 r . Let

m̃j (λ) = mj

(
2j/2λ

) = (
ψ(·)n(

2j ·))(λ2
1, . . . , λ

2
d

)
.

Note that supp(ψ(·)n(2j ·)) ⊆ A1/2,2. From (1.4) we see that

H(mj )(x) = 2jQ/2 H(m̃j )
(
2j/2x

) = (
H(m̃j )

)
2j/2(x).

From the Schwarz inequality, Lemma 2.2, and the assumption (1.9) we get

∫

X

∣
∣H(m̃j )

∣
∣wδdν ≤

(∫

X

∣
∣H(m̃j )

∣
∣2

wQ+4δdν

)1/2(∫

X

w−Q−2δdν

)1/2

≤ Cδ

∥
∥ψ(·)n(

2j ·)∥∥
W

β
2 (Rd )

≤ Cδ, (3.3)

for sufficiently small δ > 0. Consequently, from Lemma 2.4 it follows that

Dj

(
y, y′) �

∫

|x−y|>r

∣
∣τy

(
H(m̃j )

)
2j/2(x)

∣
∣dν(x)

+
∫

|x−y′|>r/2

∣
∣τy′(H(m̃j )

)
2j/2(x)

∣
∣dν(x)

�
(
2j/2r

)−δ
∫

X

∣
∣H(m̃j )

∣
∣wδdν ≤ Cδ

(
2j/2r

)−δ
,

so that
∑

j>−2 log2 r Dj (y, y′) ≤ C.

Assume now j ≤ −2 log2 r . Decompose m̃j (λ) = θ̃j (λ)e−|λ|2 , so that we have
θ̃j (λ) = (ψ(·) exp(·1 + · · · + ·d)n(2j ·))(λ2

1, . . . , λ
2
d). Clearly, ψ(λ)eλ1+···+λd is a

C∞
c function supported in A1/2,2. Denote Θ̃j (x) = H(θ̃j )(x). Since H(mj ) =
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(H(m̃j ))2j/2 and H(m̃j ) = Θ̃j �H(e−|λ|2) (which is a consequence of (1.2)), by using
(1.5), we get

Kj(x, y) − Kj

(
x, y′) = (

τ 2j/2y H(m̃j )
)

2j/2(x) − (
τ 2j/2y′ H(m̃j )

)
2j/2(x)

= (
Θ̃j �

(
T1

(·,2j/2y
) − T1

(·,2j/2y′)))
2j/2(x).

Proving (3.3) with m̃j replaced by θ̃j and δ = 0 poses no difficulty. Hence, from
Lemma 2.5 and (1.3) we obtain

Dj

(
y, y′) ≤ ‖Θ̃j‖L1(X)

∥
∥T1

(·,2j/2y
) − T1

(·,2j/2y′)∥∥
L1(X)

≤ C2j/2|y − y′|.

Consequently,
∑

j≤−2 log2 r Dj (y, y′) ≤ C and the proof of (3.1) is finished.
Now we turn to the proof of (3.2). Let f ∈ L∞(X) be a compactly supported

function and x /∈ suppf . Then, there are R > r > 0 such that

∫

X

Kj (x, y)f (y)dν(y) =
∫

R>|x−y|>r

Kj (x, y)f (y)dν(y).

Since τy(H(mj ))(x) = τx(H(mj ))(y), proceeding as in the first part of the proof
of (3.1) we can easily check that

∑
j>−2 log2 r |Kj(x, y)| is integrable over {y ∈ X :

|x − y| > r}. Hence, using the dominated convergence theorem (recall that f ∈ L∞),

∑

j>−2 log2 r

∫

X

Kj (x, y)f (y)dν(y) =
∫

X

∑

j>−2 log2 r

Kj (x, y)f (y)dν(y). (3.4)

From (1.2) it follows that

Tmj
f (x) = H(mj )�f (x) =

∫

X

Kj (x, y)f (y)dν(y), (3.5)

with Tmj
defined as in (1.6). Since the Hankel transform is an L2(X)-isometry, from

the dominated convergence theorem we conclude that
∑

j>−2 log2 r Tmj
f = Tm[∞]f ,

where the sum converges in L2(X) and m[∞] = ∑
j>−2 log2 r mj . Hence, combining

(3.4) and (3.5), we obtain

Tm[∞]f (x) =
∫

X

∑

j>−2 log2 r

Kj (x, y)f (y)dν(y),

for a.e.x outside suppf . The function m[0] = m − m[∞] is bounded and compactly
supported. Consequently, from (1.2) we get Tm[0]f (x) = H(m[0])�f (x). Moreover,
we see that

∑
j≤−2 log2 r |mj(λ)| ≤ C|m(λ)| ≤ C. Hence, from (2.6) we conclude

τy
(

Hm[0])(x) =
∑

j≤−2 log2 r

τ y(Hmj)(x),

Author's personal copy



J Fourier Anal Appl (2013) 19:417–437 429

so that

Tm[0]f (x) =
∫

X

∑

j≤−2 log2 r

Kj (x, y)f (y)dν(y).

Then Tmf (x) = Tm[0]f (x) + Tm[∞]f (x) = ∫
X

K(x, y)f (y)dν(y), as desired. �

Let us finally comment that the proof of Theorem 1.3 goes in the same way as that
of Theorem 1.1. The only difference is that we use Lemma 2.3 instead of Lemma 2.2.

4 Proof of Theorem 1.2

We shall need the maximal-function characterization of H 1(X). Define the opera-
tor Mf (x) = supt>0 |Ttf (x)|, where Ttf (x) = ∫

(0,∞)d
Tt (x, y)f (y)dν(y). Then we

have the following proposition.

Proposition 4.1 There exists C > 0 such that

C−1‖f ‖H 1(X) ≤ ‖Mf ‖L1(X) ≤ C‖f ‖H 1(X). (4.1)

The reader who is convinced that Proposition 4.1 is true may skip Lemmata 4.2
and 4.3 and continue with the proof of Theorem 1.2 on page 13. To prove the propo-
sition we need two lemmata.

Lemma 4.2 The heat kernel Tt (x, y) satisfies the Gaussian bounds:

0 ≤ Tt (x, y) ≤ C

ν(B(x,
√

t))
exp

(−c|x − y|2/t
)
, (4.2)

and the following Lipschitz-type estimates:

∣
∣Tt (x, y) − Tt

(
x, y′)∣∣ ≤ C|y − y′|√

tν(B(x,
√

t))
exp

(−c|x − y|2/t
)
, 2|y − y′| ≤ |x − y|,

(4.3)

∣
∣Tt (x, y) − Tt

(
x, y′)∣∣ ≤ C|y − y′|√

tν(B(x,
√

t))
. (4.4)

Proof Clearly, since the product of Gaussian kernels is Gaussian and ν is a product
of doubling measures, it suffices to focus on d = 1. It is known that for α > −1/2

Tt (x, y) = ct−1 exp
(−(

x2 + y2)/4t
)
(xy)−(2α−1)/2I(2α−1)/2(xy/2t)

= ct−1 exp
(−|x − y|2/4t

)
exp(−xy/2t)(xy)−(2α−1)/2I(2α−1)/2(xy/2t),

where Iμ is the modified Bessel function of order μ. Recall that

Iμ(x) ∼
⎧
⎨

⎩

ex√
2πx

for x ≥ 1,

1
Γ (μ+1)

( x
2 )μ for 0 < x < 1,
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(see, e.g., [16]). Hence, it is easy to obtain

Tt (x, y) ∼
{

t−(2α+1)/2 exp(−(x2 + y2)/4t) if xy < t,

t−1/2(xy)−α exp(−|x − y|2/4t) if xy ≥ t.
(4.5)

Moreover,

ν
(
B(x,

√
t)

) ∼ √
t(x + √

t)2α.

Now, (4.2) is a consequence of (4.5). To prove (4.3) and (4.4), using the identity
(x−μIμ(x))′ = x−μIμ+1(x) and the asymptotics for Iμ we check that

∣
∣∂yTt (x, y)

∣
∣ �

{
t−(2α+3)/2(x + y) exp(−(x2 + y2)/4t) if xy < t,

{t−3/2|x − y| + t−1/2y−1}(xy)−α exp(−|x − y|2/4t) if xy ≥ t.

From the above it is not hard to conclude that

∣
∣∇yTt (x, y)

∣
∣ ≤ C√

t
· 1

ν(B(x,
√

t))
exp

(−c|x − y|2/t
)
.

The latter inequality easily implies (4.3) and (4.4). �

Let ρ(x, y) = inf{ν(B)}, where the infimum is taken over all balls B such that
x, y ∈ B . Denote Bρ(x, r) = {y ∈ X|ρ(x, y) < r}. We have:

• ρ(x, y) ∼ ν(B(x, r0)), where r0 = |x − y|,
• ρ(x, y) ≤ A(ρ(x, z) + ρ(z, y))

• ν(Bρ(x, r)) ∼ r ,

i.e., the triple ((0,∞)d , dν,ρ) is a space of homogenous type.

Lemma 4.3 Let Kr(x, y) = Tt(x,r)(x, y), where t = t (x, r) is defined by ν(B(x,
√

t))

= r . Then the kernel rKr satisfies the assumption of Uchiyama’s Theorem, see [25,
Corollary 1’], i.e., there are constants A,γ > 0 such that

Kr(x, x) ≥ A−1r−1 > 0, (4.6)

0 ≤ Kr(x, y) ≤ Cr−1
(

1 + ρ(x, y)

r

)−1−γ

, (4.7)

and

∣
∣Kr(x, y) − Kr

(
x, y′)∣∣ ≤ C

r

(

1 + ρ(x, y)

r

)−1−2γ (
ρ(y, y′)

r

)γ

,

ρ
(
y, y′) ≤ r + ρ(x, y)

4A
. (4.8)

Proof (sketch) The inequality (4.6) is obvious, once we recall (4.5). To prove (4.7)
and (4.8) we use Lemma 4.2. From (4.2) we have

Kr(x, y) ≤ Cr−1 exp
(−c|x − y|2/t

)
.
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Now, since

(

1 + ρ(x, y)

r

)

≤ C

(

1 + ν(B(x, |x − y|))
ν(B(x,

√
t))

)

≤ C

(

1 + |x − y|√
t

)n

≤ Cε exp
(
ε|x − y|2/t

)
, (4.9)

we get (4.7). Observe that there is q > 0, such that

Rqν
(
B(x, t)

) ≤ Cν
(
B(x,Rt)

)
, t > 0, R ≥ 1. (4.10)

Note that we can take q = 1, if αk ≥ 0, k = 1, . . . , d . The estimate (4.8) for ρ(y, y′) ≥
r/(2A) is a simple consequence of (4.7). In the opposite case, i.e., ρ(y, y′) < r/(2A),
we first note that (4.10) implies

ρ(y, y′)
r

∼ ν(B(y, |y − y′|)
ν(B(x,

√
t))

= ν(B(y, |y − y′|))
ν(B(y,

√
t)

· ν(B(y,
√

t))

ν(B(x,
√

t))

�
( |y − y′|√

t

)κ

· ν(B(y,
√

t))

ν(B(y,
√

t + |x − y|))

�
( |y − y′|√

t

)κ

·
( √

t√
t + |x − y|

)Q+d

, (4.11)

where κ = q , if |y − y′| ≥ √
t , and κ = Q + d , in the other case. Then (4.8) can be

deduced from (4.3), (4.4), and (4.11). �

Proof of Proposition 4.1 Since ν(B(x,
√

t)) is an increasing continuous function of
t taking values in (0,∞), the maximal function

K∗f (x) = sup
r>0

∣
∣
∣
∣

∫

(0,∞)d
Kr(x, y)f (y)dν(y)

∣
∣
∣
∣

coincides with Mf . Now, using Lemma 4.3 together with Uchiyama’s theorem, [25,
Corollary 1’], we obtain a variant of the equivalence (4.1), with respect to atoms
corresponding to the metric ρ. A simple observation that

B
(
x,

√
t (x, r)

) ⊂ Bρ(x, r) ⊂ B
(
x,C

√
t (x, r)

)
,

for some C > 0, finishes the proof. �

The reader interested in more detailed proof of Proposition 4.1 is referred to [4].
Having Proposition 4.1 we turn to prove Theorem 1.2.

Proof of Theorem 1.2 The proof follows closely the one-dimensional case, see [9].
Since the operator Tm maps continuously H 1(X) into D′((0,∞)d), it suffices to
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prove that there exists a constant C > 0, such that for every atom a ∈ H 1(X), we
have

∥
∥M(Tma)

∥
∥

L1(X)
≤ C. (4.12)

If a is an atom associated with a ball B(y0, r), then clearly,

∥
∥M(Tma)

∥
∥

L1(B(y0,2r),dν)
≤ ν

(
B(y0,2r)

)1/2∥∥M(Tma)
∥
∥

L2(B(y0,2r),dν)

≤ ν
(
B(y0,2r)

)1/2‖a‖L2(X) ≤ C. (4.13)

Fix a C∞
c (A1/2,2) function ψ satisfying

∑

j∈Z

ψ2(2−j λ
) = 1, λ ∈ R

d\{0}. (4.14)

Analogously as in Sect. 3 we define

mj(λ) = ψ2(2−j
(
λ2

1, . . . , λ
2
d

))
m(λ) = (

ψ2(2−j ·)n(·))(λ2
1, . . . , λ

2
d

)
.

In view of (4.13) it is enough to show that

∑

j∈Z

∥
∥M(Tmj

a)
∥
∥

L1((B(y0,2r))c,dν)
≤ C. (4.15)

Let

m(j,t)(λ) = mj(λ)e−t |λ|2 , m̃(j,t)(λ) = m(j,t)

(
2j/2λ

)
,

M(j,t)(x) = H(m(j,t))(x), M̃(j,t)(x) = H(m̃(j,t))(x).

Clearly, M(j,t)(x, y) = τyM(j,t)(x) are the integral kernels of the operators
T

e−t |λ|2 mj (λ)
. Also,

M(j,t)(x) = (M̃(j,t))2j/2(x), M(j,t)(x, y) = 2jQ/2M̃(j,t)

(
2j/2x,2j/2y

)
. (4.16)

The following are the key estimates in the proof of (4.15).

Lemma 4.4 There exist δ > 0 and C > 0 such that for all j ∈ Z and all r > 0 we
have

∫

|x−y|>r

sup
t>0

∣
∣M(j,t)(x, y)

∣
∣dν(x) ≤ C

(
2j/2r

)−δ
, (4.17)

∫

(0,∞)d
sup
t>0

∣
∣M(j,t)(x, y) − M(j,t)

(
x, y′)∣∣dν(x) ≤ C2j/2|y − y′|. (4.18)

Proof Denote

ψ(j,t)(λ) = ψ
(
2−j

(
λ2

1, . . . , λ
2
d

))
e−t |λ|2 , ψ̃(j,t)(λ) = ψ(j,t)

(
2j/2λ

)
,

Author's personal copy



J Fourier Anal Appl (2013) 19:417–437 433

ζj (λ) = ψ
(
2−j

(
λ2

1, . . . , λ
2
d

))
m(λ) = (

ψ
(
2−j ·)n(·))(λ2

1, . . . , λ
2
d

)
,

ζ̃j (λ) = ζj

(
2j/2λ

) = (
ψ(·)n(

2j ·))(λ2
1, . . . , λ

2
d

)
.

Let Z̃j (x) = H(ζ̃j )(x), Ψ̃(j,t)(x) = H(ψ̃(j,t))(x). Arguing as in (3.3), we see that

sup
j∈Z

∥
∥Z̃jw

δ
∥
∥

L1(X)
≤ C, (4.19)

for sufficiently small δ > 0. Observe that ψ̃(j,t) = n(j,t), for some C∞
c function n(j,t)

with suppn(j,t) ⊂ A1/2,2. Moreover, we can check that sup(j,t) ‖n(j,t)‖CN ≤ CN , for

every N ∈ N. Hence, using (2.4) we see that for every N > 0, there exists C
′
N such

that

sup
(j,t)

∣
∣Ψ̃(j,t)(x)

∣
∣ ≤ C

′
Nw−N(x).

From the above we see that
∣
∣M̃(j,t)(x)

∣
∣ = ∣

∣Ψ̃(j,t)�Z̃j (x)
∣
∣ ≤ CNw−N�|Z̃j |(x).

Hence, using (4.19) and Lemma 2.6 we arrive at
∫

(0,∞)d
sup
t>0

∣
∣M̃(j,t)(x, y)

∣
∣wδdν(x) ≤ C.

Combining the above, together with (4.16) and Lemma 2.4, we get (4.17).
We now turn to the proof of (4.18). Let l̃(j,t)(λ) = e−t2j |λ|2ψ(λ2

1, . . . , λ
2
d)e|λ|2 and

define L̃(j,t)(x) = H(l̃(j,t))(x). Clearly,

m̃(j,t)(λ) = l̃(j,t)(λ)ζ̃j (λ)e−|λ|2 . (4.20)

An argument analogous to the one presented in the previous paragraph shows that

sup
j∈Z,t>0

∣
∣L̃(j,t)(x)

∣
∣ ≤ C

′
Nw−N(x).

As a consequence, there is C > 0, such that for every j

∥
∥ sup

t>0
|L̃(j,t)�Z̃j |

∥
∥

L1(X)
≤ C. (4.21)

Recalling (4.20), we obtain

sup
t>0

∣
∣M̃(j,t)(x, y) − M̃(j,t)

(
x, y′)∣∣

= sup
t>0

∣
∣
∣
∣

∫

(0,∞)d
τ x(L̃(j,t)�Z̃j )(z)

(
T1(z, y) − T1

(
z, y′))dν(z)

∣
∣
∣
∣

≤
∫

(0,∞)d
τ z

(
sup
t>0

|L̃(j,t)�Z̃j |
)
(x)

∣
∣T1(z, y) − T1

(
z, y′)∣∣dν(z). (4.22)
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From (1.3) together with (4.21), (4.22) and Lemma 2.5, we obtain

∫

(0,∞)d
sup
t>0

∣
∣M̃(j,t)(x, y) − M̃(j,t)

(
x, y′)∣∣dν(x) ≤ C|y − y′|. (4.23)

Now, (4.18) is a consequence of (4.16) and (4.23). �

Using Lemma 4.4 and some standard arguments, as in the final stage of the proof
of [9, Eq. (3.3)], we easily justify (4.15). Hence the proof is complete. �
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Appendix

Proof of (1.14) The proof of Theorem 1.3 actually shows that

‖Tmf ‖L1(X)→L1,∞(X)

≤ Cε

(
1 + ‖m‖2

L∞ + sup
j∈Z

∥
∥η(·)n(

2j ·)∥∥L∞
Q/2+ε(R

d )

)
‖f ‖L1(X). (5.1)

Now, using (1.13) we write nu(λ) = Ξ(λ)(λ1 +· · ·+λd)iu, so that nu(λ
2
1, . . . , λ

2
d) =

mu(λ). We claim that

sup
j∈Z

∥
∥η(·)nu

(
2j ·)∥∥L∞

s (Rd )
≤ Cs

(
1 + |u|)s

, s > 0. (5.2)

Using (5.2) and combining it with (5.1), we get ‖Liu‖L1(X)→L1,∞(X) ≤ Cε(1 +
|u|)Q/2+ε . Since ‖Liu‖L2(X)→L2(X) = 1, using the Marcinkiewicz interpolation the-

orem, see, e.g. [8, (2.2) p. 30], together with a duality argument, we obtain (1.14) for
all 1 < p < ∞.

Now, we sketch the proof of (5.2). Let Bs
p,q , 1 ≤ p,q ≤ ∞, s ≥ 0, be the Besov

space, as defined in [2, p. 141]. It is known, see [2, Theorem 6.2.4 (10), p.142], that
Bs∞,q is the real interpolation space of the spaces L∞

s = L∞
s (Rd), precisely

(
L∞

s0
, L∞

s1

)
θ,q

= Bs∞,q , s = (1 − θ)s0 + θs1, 0 < θ < 1, 1 ≤ q ≤ ∞. (5.3)

Moreover, from [2, Theorem 6.2.4 (9), p.142], we have

‖f ‖L∞
s

≤ Cs‖f ‖Bs
∞,1

, f ∈ Bs
∞,1, s > 0. (5.4)

For general Banach spaces X and Y , one has

‖x‖Z ≤ Cθ,q‖x‖1−θ
X ‖y‖θ

Y , Z = (X,Y )θ,q , 0 < θ < 1, (5.5)
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see [24, Theorem (g), p. 25]. Now, it is straightforward to check that (5.2) is true for
s = 2n, n ∈ N ∪ {0}. Using the latter observation, (5.4), (5.3) with q = 1, and (5.5)
with X = L∞

2n, Y = L∞
2n+2, for s = (1 − θ)2n + θ(2n + 2), 0 < θ < 1, we obtain

∥
∥η(·)nu

(
2j ·)∥∥L∞

s
≤ Cs

∥
∥η(·)nu

(
2j ·)∥∥

Bs∞,1

≤ Cθ,s

∥
∥η(·)nu

(
2j ·)∥∥1−θ

L∞
2n

∥
∥η(·)nu

(
2j ·)∥∥θ

L∞
2n+2

≤ Cn,θ

(
1 + |u|)(1−θ)2n+θ(2n+2) = Cn,θ

(
1 + |u|)s

. �

The following example shows that in the multivariable case for functions n(λ)

supported in A1/2,2 the Sobolev norms ‖n‖Ws
2 (Rd ) do not control the Sobolev norms

‖m‖
Ws′

2 (Rd )
(even for certain range s′ smaller than s) where n and m are related by

(1.8).

Example 5.1 Let F(x, y) be a function defined on R × R� and s > 0. Observe that

‖F‖2
Ws

2 (R1+�)
∼ ‖F̂‖2

L2(R1+�)
+

∫

R�

∫

R

∣
∣F̂ (ξ, η)

∣
∣2(|ξ |2s + |η|2s

)
dξdη, (5.6)

Moreover, it can be shown that for every r > 0 there is a constant C > 0 such that for
f supported in the interval ( 1

2 ,2) one has

C−1‖f̃ ‖Wr
2 (R) ≤ ‖f ‖Wr

2 (R) ≤ C‖f̃ ‖Wr
2 (R), (5.7)

where f̃ (x) = f (x2).
Let ϕ ∈ C∞

c ( 1
2 , 3

2 ) and ψ ∈ C∞
c (R�), ψ(y) = 0 for |y| > 1

2 , ϕ,ψ �≡ 0. Fix ε ∈
(0,1), R > 1 and define the functions nR(x, y) on R × R

� by

n(x, y) = nR(x, y) = cos(Rx)ϕ(x)ψ
(
R1−εy

) = f (x)g(y).

The functions n(x, y) are supported in A1/2,2, near the vector e1. Moreover,

f̂ (ξ) = c
(
ϕ̂(ξ − R) + ϕ̂(ξ + R)

)
and ĝ(η) = R�(ε−1)ψ̂

(
Rε−1η

)
. (5.8)

From (5.6) and (5.8) we conclude that

‖n‖Ws
2 (R1+�) ≤ CsR

s−(1−ε)�/2.

Set m(x,y) = mR(x, y) = nR(x2, y2
1 , . . . , y2

� ) = f (x2)g(y2
1 , y2

2 , . . . , y2
� ) =

f̃ (x)g̃(y). The functions mR are supported near the vectors ±e1. By (5.7) for s′ > 0
and R large we have

‖f̃ ‖
Ws′

2 (R)
∼ ‖f ‖

Ws′
2 (R)

∼ Rs′
. (5.9)

Clearly,

‖g̃‖L2(R�) = ‖ ˆ̃g‖L2(R�) = cR−(1−ε)�/4. (5.10)
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Now, (5.6) combined with (5.9) and (5.10) imply that

‖m‖
Ws′

2 (R1+�)
≥ cRs′−(1−ε)�/4 for large R.

Summarizing,

‖m‖
Ws′

2 (R1+�)

‖n‖Ws
2 (R1+�)

≥ cRs′−s+(1−ε)�/4,

which clearly tends to infinity as R → ∞ provided that s′ > s − (1 − ε)�/4.
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