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Abstract Let H(f)(x) = f (0.00)¢ fA)Ex(A)dv(A), be the multivariate Hankel trans-
form, where Ey (1) = [19_, Gxar) ~ 120y, 1 jp(uihe), with dv(h) = A2%da, a =
(a1, ..., aq). We give sufficient conditions on a bounded function m (1) which guar-

antee that the operator H(mH f) is bounded on L?(dv) and of weak-type (1,1), or
bounded on the Hardy space H 1((0, 00)?, dv) in the sense of Coifman-Weiss.

Keywords Spectral multiplier - Bessel operator - Hankel transform - Hardy space

Mathematics Subject Classification Primary 42B15 - Secondary 42B20 - 42B30

1 Introduction and Preliminaries

For a multiindex o = («y,...,0q), ax > —1/2, we consider the measure space
X = ((0,00)?, dv(x)), where dv(x) = dvi(x1)---dvg(xq), dvi(xi) = x,fakdxk,
k=1,...,d. The space X equipped with the Euclidean distance is a space of ho-
mogeneous type in the sense of Coifman-Weiss.
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For a function f € L!(X) the (modified) Hankel transform H f is defined by

H ) = / FOVEx(Mdv(n),
(0,00)4
where
d d
Ex() = [ [Gar) ™2 Jo 1 jpahi) = [ | B i)
k=1 k=1

Here J, is the Bessel function of the first kind of order v, see [16, Chap. 5]. The
system {Ex}, ¢ (0,00)¢ consists of the eigenvectors of the Bessel operator

d 20 0
SRV v Py
=1 k k

thatis, L(E,) = |x|2Ex. Also, the functions E,,, k=1, ...,d, are eigenfunctions of
the one-dimensional Bessel operators

% 20 9

I Ak Ok
namely, Ly (Ey, ) = x,%Exk.

It is known that H is an isometry on L2(X) that satisfies H~! = H (see, e.g., [23,
Chap. 8]). Moreover, for f € L%(X), we have

_ 2
Li(f) =H(AHS). (1.1
For y € X let t¥ be the d-dimensional generalized Hankel translation given by
H(t f)(x) = Ey(x)H f (x).

Clearly, 77 f(x) =t ... 7Y f(x), where for each k =1, ..., d, the operator t’* is
the one-dimensional Hankel translation acting on a function f as a function of the xj

variable with the other variables fixed. It is also known that, if ¢} > Ofork=1,...,d,
then t7 is a contraction on all L?(X) spaces, 1 < p < oo, and that

)=t fO).
For two reasonable functions f and g define their Hankel convolution as
fag(x) = /X T f(MgMdv(y).
It is not hard to check that ftg = gt f and
H(foe)(x) =Hf(x)Hg(x). (1.2)

Birkhauser
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As a consequence of the contractivity of 77, for & € (0, 00)?, we also have

Ifaghoi < I floaolglng. feLl'(X), geL'(X). (1.3)

For details concerning translation, convolution, and transform in the Hankel set-
ting we refer the reader to, e.g., [13, 23], and [26].

For a function f € L'(X) and ¢ > 0 let f; denote the L!(X)-dilation of f given
by

(fx) =19 f(tx),
where Q = ZZ=1(20‘1< + 1). Then we have:

H(f)x) =Hf(t %), (1.4)
() = (" f), (). (1.5)

Notice that Q represents the dimension of X at infinity, that is, v(B(x, 7)) ~ r€ for
large r.

Let m : X — C be a bounded measurable function. Define the multiplier operator
Ty by

Tn(f) =HmH[). (1.6)

Clearly, 7, is bounded on L2(X). Also note that if m(Ay, ..., g) = n(kz, e klzi),
for some bounded, measurable function n on R?, then from (1.1) it can be deduced
that the Hankel multiplier operator defined by (1.6) coincides with the joint spectral
multiplier operator n(L1, ..., Lg). The smoothness requirements on m that guarantee
the boundedness of 7, on, e.g., L? (X) will be stated in terms of appropriate Sobolev
space norms.

Forz e C,Rez > 0, let

dt

o
Gz(x)=F(z/2)“/ (4r1) V2= ¥P /4t p=142)2 t
0

be the kernels of the Bessel potentials. Then

—1 —z/2
Il ey < TRez/D)| (/D)™ and  FG.()=(1+1&2) 2, (.7)

where FG,(§) = fRd G.(x)e~<%%>dx is the Fourier transform.

By definition, a function f € Wﬁ" (Rd), s > 0, if and only if there exists a function
h € L*>(R?) such that f = h * Gy, and If ws ey = 11 L2 gy

Similarly, a function f belongs to the potential space L3° (RY), s > 0, if there is a
function & € L (R?) such that f =h %Gy (see [22, Chap. V]). Then ||f||LSO(Rd) =
171l 7o Ra).-

Denote A, g = {x € R? : r < |x| < R}. The main results of the paper are Theo-
rems 1.1, 1.2, and 1.3.

Birkhauser
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Theorem 1.1 Assume that o > 1/2 fork=1,...,d. Let
m() =n(A3,...,13), (1.8)

where n is a bounded function on RY such that, for certain real number B > Q /2 and
for some (equivalently, for every) non-zero radial function n € C°(A1,2,2), we have

?22 InGn(27-)] wh @ty < Cn- (1.9)

Then the multiplier operator Ty, is a Calderdn-Zygmund operator associated with
the kernel

K.y =Y TH(y @27 (A1.....27))m()(x).
JEZ

where Y is a C2°(A1)2,2) function such that

dov(a) =1, reRN\{0). (1.10)

JEL

As a consequence T,, extends to the bounded operator from L' (X) to L'*°(X) and
from LP(X) to itselffor 1 < p < o0.

We denote by H 1(X) the atomic Hardy space associated with X in the sense of [7].
More precisely, we say that a measurable function a is an H'!(X)-atom, if there exists
a ball B, such that suppa C B, |lall ~x) < 1/v(B), and f(()‘oo)d a(x)dv(x) = 0.
The space H 1(X) is defined as the set of all f € L'(X), which can be written as
f =52, ¢ja;, where a; are atoms and }_32, |c;| < 00, ¢; € C. We equip H'(X)
with the norm

o0
1f ez ey =inf ) e, (1.11)
j=1

where the infimum is taken over all absolutely summable sequences {c;};cn, for
which f = 2?0:1 cjaj, with a; being H(X)-atoms.

Theorem 1.2 Assume that a > 1/2 for k =1,...,d. Let m(x) = n(A3, ..., 13),
where n is a bounded function on R¢ such that, for certain real number B > Q]2
and for some (equivalently, for every) non-zero radial function n € CX°(A1/2.2),

Eq. (1.9) holds. Then the multiplier operator T, extends to a bounded operator on
the Hardy space H' (X).

Theorem 1.3 If we relax the conditions on ay assuming only that oy > 0, then the
conclusions of Theorems 1.1 and 1.2 hold provided there is § > Q /2 such that

sup [[()n(27-) | poe ey < Coy- (1.12)
JEZ B
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The weak type (1, 1) estimate under assumption (1.12) could be proved by apply-
ing a general multiplier theorem of Sikora [20]. However, in the case of the Hankel
transform Theorem 1.3 has a simpler proof based on Lemmata 2.1 and 2.3.

Hankel multipliers, mostly in one variable, attracted attention of many authors.
Gosselin and Stempak in [10] proved a Hankel multiplier theorem assuming that

R 1/2
( f | (x)lzdvm) < BRG«TD/2s
R/2

for s =0, ..., k, where k is the least even integer > 2« + 1)/2 and m € Ck(O, 00).
For other results see, e.g., [3, 5, 9, 11, 12], and references therein.

In [3] the authors considered multidimensional Hankel multipliers m of Laplace
transform type, that is,

m(y) = |yl [ we—">"2¢(r>dt,
0

where ¢ € L°°(0, 00) (see [21]). To see that m (1) satisfies the assumptions of Theo-
rems 1.1, 1.2, 1.3 we set

nA)=EM) + -+ Arg) /Oo et g (1) dy, (1.13)
0

where & € C®(R? \ {0}), E(tr) = EA) for t > 0, E(1) =1 for A € (0, 0)4,
E(A) =0 for A; + --- + Ag < |A|/d. We easily check that n(A) satisfies the Mih-
lin condition, that is, [A|V![a¥n(1)| < C,, for all multiindeces y. Hence, (1.9) and
(1.12) hold with every 8 > 0.

A typical example of multipliers of Laplace transform type are the imaginary pow-
ers m, (y) = |y|**, u € R, which correspond to ¢, (t) = (I'(1 — iu))~ '+~ . In this
case the resulting operators 7,,, coincide with L. It is worth to remark that, for
a € (0, 00)¢, using Theorem 1.3 we can prove substantially better bounds on L” (X),
1 < p < 00, than

L

” L ”L!’(X)%LI’(X) = Cpeﬂlu”%; , uceR,

which were obtained in [3, Corollary 1.2]. Namely, for arbitrary small ¢ > 0, we have

. 1_1
2 ir = Cre () @RI w1y

In the Appendix we provide a sketch of the proof of (1.14) based on interpolation
arguments.

Let us mention that a different multiplier result considering mixed smoothness
Sobolev norms on m(Ay,...,Agy) was obtained by one of the authors in [27, Ap-
pendix]. It is valid if all a; > 0, although in that case the resulting operators need not
be weak type (1, 1). For other results and references concerning spectral multiplier
theorems on L” spaces the reader is referred to [1, 6, 14, 17-20].

It is perhaps worth to point out that in d = 1 the assumptions (1.9) and (1.12)
could be given in terms of function m instead of n. However, in the multivariate

Birkhauser
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case we assume in (1.9) a Wzﬂ -Sobolev regularity of a function n(A) which is related
with m(A) by (1.8). In the Appendix, see Example 5.1, it is shown that even for the
classical Fourier multipliers supported in A1/2 > the Sobolev norms of n(1) and m(X)
are not comparable when we apply the change of variables (1.8). Lastly, let us say
that at present we do not know whether the smoothness threshold 8 > Q/2 required
in (1.9) is optimal.

2 Auxiliary Estimates

In this section we prove some basic estimates needed in the sequel. Denote w*(x) =
I+ [xD?*.

Lemma 2.1 For every s,& > 0 there exists a constant Cg ¢ such that if m(A) =
n(kz, e, )%), suppn C Ayy4,4, then

[Homyw* | 2, = Coelinllygrarse @1

(RY)"

Proof Since m(L) = g(xz,...,xg)e—lx‘z, with g(1) = n(1)er1t T4 using the
Fourier inversion formula for g, we get

@m)'m() =e M /d F(g)(y)e M+ gy
R
2/‘f@xwé”“mﬁ*+kwmnmy
R
Applying the Hankel transform and changing the order of integration, we obtain
H(m)(x) = (2m) ¢ /Rd F(@)(y)H(e1—iy)(x)dy, (2.2)

where for 7= (z1. ..., 24) € C%, e.(\) = [{_, ez, (Ax) with ez, (Ag) = e~ while
1=(1,...,1). Clearly,

d
H(er—iy)(x) = 1_[ Hi(e1—iy) (x),

k=1

with Hj denoting the one-dimensional Hankel transform acting on the k-th variable.
It is well known that for t > 0, Hy(e;)(xg) = Ct~ %+ D/2exp (—x7/4t), see [16,
p- 132]. Moreover, for fixed xi, the functions

2
_ x
zk > Hilez)(xk) and  zx > Czg QGex+1)/2 exp (——4; )
X

are holomorphic on {z; € C: Rezx > 0} (provided we choose an appropriate holo-

Birkhauser
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morphic branch of the power function z;, ~atD/2

holomorphic extension, we obtain

). Hence, by the uniqueness of the

X2
Hi(e1ive) (i) = C(1 — iyg)~CarD/2 e (__k, )
k\€1—iyy Yk p 20— )

Since Rex?/4(1 — iyx) = x7/4(1 + y?), the change of variable x; = (1 + y?)!/?uy
leads to

/0 )!x;iH(elfiyk)(xk)lzdwc(x;c)S(1+y;f)s, 5 > 0. (2.3)
,00

Now, observing that (1 + |x[)? ~ 14 x%‘ + -+ xﬁx and using (2.3) we arrive at

d
(U411 Her-i) O oy S D1 +37)" ~ (1+1y1)"
k=1

The latter bound together with (2.2), Minkowski’s integral inequality, and the
Schwarz inequality give

[ myw* | 2y S /R F@MI(T+1y1)dy

1/2
& (/Rd |f(g)(y)|2(1 + |y|)zs+d+2gdy>

x (fRd(l + Iyl)_d_zgdy>l/2

< ”g” rJrd/eré(]Rd)

for any fixed & > 0. Since g(A) = n(A)er+ T2 = p(L) (M1 T ipg(1)), for some
no € C°(A1/s.8), we see that 81l ys+arse gay < Cllnllyssarse gay, which implies

(2.1). U

Remark that a slight modification of the reasoning above shows that if m(L) =
n(A3,...,A2),n € C>°(A1)2,), then

[Hom) ()] < Cvlinllensaay ™ (0), 2.4)

where CV denotes the supremum norm on the space of N-times continuously differ-
entiable functions.

Using ideas of Mauceri-Meda [18] combined with the fact that the Hankel trans-
form is an L’-isometry we can improve Lemma 2.1 in the following way.

Lemma 2.2 Assume that oy > 1/2 fork =1, ...,d. Then for every s, ¢ > 0, there is
a constant Cs ¢ such that if m(A) = n(A2, ..., )»5), suppn € Aq2,2, then

”H(m)wY ” LZ(X) < Cx,s ||I’l|| W£'+€(Rd)'

Birkhauser
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Proof Let h € L>(R?) be such that n = h x Gyy. Set s’ = (s + &)(d + 6)/2¢, 0 =
2¢/(6 + d). Define n; by

—s'z/2

Fn)E) = Fh@&)(1 + %)

0<Rez<l1.

Clearly, n; =h x Gy, Rez > 0, and n = ng. Let np be a C2° function supported in
Al)a4,equalto 1 on Ay, and let N (L) =n;(A)no(r). Then supp N; € Aj/4 4 and
F(N;) = F(n;) = F(no). Define

m.(0) =n.(Af,....,A3) and M.(\)=N.(A],...,23).

Since oy > 1/2 forevery k =1, ...,d, we have that M, € L?(X) and ||MZ||L2(X) <
Nzl L2(ra)- Let g be an arbitrary C2°(X) function with |||l .2(x) = 1. Set

)(s’—3—d/2)z

F(z) = /XH(Mz)(X)(l + |x] gx)dv(x). (2.5)

Then F is holomorphic in the strip § = {z: 0 < Rez < 1} and also continuous and
bounded on its closure S. Using Parseval’s equality and the facts that supp N, C
A1/a.4 and F(n9) € S(RY), for Rez =0, we get

|F(2)] < ||H(Mz)||L2(X) =Ml 12(x) < CIN: | 2ay ~ IF Nl L2 (ray
< C')O‘S/yg Il W25+6(Rd).
If Rez =1, then applying in addition Lemma 2.1, we obtain

|F@)| < |[HM)w 3742| , , < CIN|

(X) ws' (R)

=Cy ||n1”W§'/(Rd) = C||h||L2(Rd) = C”””wé'ﬂ(Rdy

From the Phragmén-Lindelof principle we get |F(6)| < C ||n||W.2r+s (RA)- Taking the
supremum over all such g we arrive at

||H(M9)w(S/_3_d/2)9 ||L2(X) = Clinllys+e gay-

Recall that n = ng = Ny, so that also m = my = My, hence we get the desired con-
clusion. (1

Notice, that the assumption ax > 1/2 was crucial to get [| M || 2(x) < ClIN; || L2 (way
in the proof of Lemma 2.2. This was due to the fact that, in the case d > 1, if
A € supp N; C Ay/4 4, thenit can happen that A; =0 forsomei =1, ..., d. In the full
range of a’s we can overcome this difficulty, but with different Sobolev condition.

Lemma 2.3 Ifwe relax the conditions on o in Lemma 2.2 by assuming that oy > —%
fork=1,...,d,then

[ | 3z, = Coe il

Birkhauser
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Proof We argue similarly to the proof of Lemma 2.2. Indeed, write n = h x G,
where 1 € L®(R?). Since suppn C A1z, one can prove that h € L*(R%) and
Il 2ray < Cselinllgs, -

Sets’ = (2s +¢)(6+d)/2¢e,0 =¢/(6+d) and define
N\ =no0Wh*Gyoiep(), reR!, 0<Rez<l.

Then for every z € S the function N, (A) is continuous and supported in Ay/44. Let
M.(\) = N,(A},...,23). Clearly, My = m. Moreover, by (1.7),

Ml L2x) < ClIM Lo x) < ClIN Ml pooway < Crs.ellhll oo ey = Csellnll o, wa)-

We now use the new functions M, to define a bounded holomorphic function F(z)
by the formula (2.5). Obviously |F (z)| < Cs ¢||n ”[«?ig for Re z = 0. To estimate F(z)
for Rez =1 we utilize Lemma 2.1 and obtain

[F@| < [HMw" 2 ) < CIN: Dy

0 = ®9)

= CV}(),S,&‘”h”LZ(Rd) = Cs,s”””ﬁgj_g(Rdy

An application of the Phragmén-Lindelof principle for z = 6 finishes the proof. [J
We will also need the following off-diagonal estimate (see [9, Lemma 2.7]).

Lemma 2.4 Assume that o > 0 for k=1,...,d. Let § > 0. Then there is C > 0
such that for every y € X and r,t > 0, we have

/ \ [ (@) |dv(x) < CED N LI L1 (xw (dve))-
x—y|>r

Proof By homogeneity it suffices to prove the lemma for t = 1. Let B be the left-
hand side of the inequality from the lemma. If |x — y| > r then there is k € {1, ..., d}
such that |x; — yx| > r/+/d. Hence,

d
B <

k=1

d
™ (f)(x)|dv(x) = ) By.
/xk—yk|>r/dd‘| | z; ‘

It is known that, for & € (0, 00)?, the generalized translations can be also expressed
as

X1+y1 Xd+Yd
tyf(X)Zfl /l S z)dWyy oy (21) - dWyy oy, (2a),  (2.6)

x1=y1l Xd—Yd|

with W, being a probability measure supported in [|xx — yx|, xx + yi] (see [13]).
Thus,

x14y1 Xa+yd
Bk=/ ‘[ f S zg)d Wy y (1) -+ d Wiy v, (2g) |[dVv(x).
[xk—yil>r/v/d | J]x1—y1] |

X Xd—Yd|

Birkhauser
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Introducing the factor zizk_‘S to the inner integral in the above formula and denoting
g(x) = | f(x)|x!, we see that

s X1+y1 Xd+yd
Bk SCI"_ / / / g(Z)dle,yl(Zl)"'dde,yd(Zd)dv(x)
X J| |

x1=y1l Xd—Yd|

<Cr® ||fyg||L1(X> = Cr—5||f||L1(X7w5dV>’

where in the last inequality we have used the fact that t¥ is a contraction on L' (X). [

Let T;(x,y) =tV H(e™! |Mz)(x) be the integral kernels of the heat semigroup cor-
responding to L. Clearly,

1 d
T, y) =TV (1, y1) - T (xas ya),

where T,(k) (xk, yr) is the one-dimensional heat kernel associated with the opera-
tor Ly.

Lemma 2.5 Assume that oy > 0 for k =1,...,d. Then there is a constant C > 0
such that

/X 17100 y) = Ty (v y/)[dv(x) < Cly — ¥/l v,y € X.

Proof The proof is a direct consequence of the one-dimensional result, see [10, The-
orem 2.1], together with the equality

o0
/0 T G, yodue ) =1, k=1,2,....d. -

In the proof of Theorem 1.2 the following version of [9, Lemma 2.5] will be used.

Lemma 2.6 Assume that ax > 0 for k=1,...,d. Let f,g € L'((0,00)?, w®dv),
with certain § > 0. Then:

||fug||L1((o,oo)d,w5du) = ||f||L1((0,oo)d,w8du)||g||L1((o,oo)d,w5du)~
Proof After recalling the representation (2.6) the proof is analogous to the proof of
[9, Lemma 2.5]. O
3 Proof of Theorem 1.1

The scheme of the proof takes ideas from [15]. Assume that (1.9) holds for some
B> 0/2.Fix y € C(Ay2,2) satisfying (1.10). Let

Ky =Y Kj(x,y)=) t"Hm)x),

JEZ JEZ

Birkhauser



J Fourier Anal Appl (2013) 19:417—437 427

where m;(A) = Y2703, ..., A2))m() = Q7 In()GI, ..., A3). To prove
that 7,, is indeed a Calder6n-Zygmund operator associated with the kernel K (x, y)
we need to verify that it satisfies the Hormander integral condition, i.e.,

f |K(x,y) = K(x,y)|dvx) <C (3.1
[x=y[>2]y—y'|
for y, y’ € X, and the association condition

Tn f (%) =/XK(x,y)f(y)dV(y) (3.2

for compactly supported f € L°°(X) such that x ¢ supp f. We start by proving (3.1).
It suffices to show that

Dj(y, y/) =[ |K,'(x,y) — K,'(x, y/)|dv(x) <Cj, with ZCj < 00.
x—yl>2ly—y'| ' jez

Let r = 2|y — y’| and assume first j > —2log, r. Let
() =mj(224) = (Y On2) (3. .. 23).
Note that supp( (-)n(2/-)) € Ay2,2. From (1.4) we see that
H(m ) (x) = 27220 ) (272x) = (H( })) ;0 ().

From the Schwarz inequality, Lemma 2.2, and the assumption (1.9) we get

172 172
/ |H(ﬁ1j)|w5dv < (/ |H(r71.,-)|2wQ+45dv> (f w_Q_%dv)
X X X

< Cs [ On(2 )|yt oy = Cs, (3.3)

for sufficiently small § > 0. Consequently, from Lemma 2.4 it follows that

D;(y.,y) 5/ [T (H(7 ) ;2 (X)|dv(x)

lx—=y|>r

F [ ) v

[x=y'|>r/2

§(2j/2r)_5/ |H(ﬂz/‘)|w5dv§C3(2j/2r)_5,
X

so that ) Dj(y,y)<C.

Assume now j < —2log, r. Decompose m1;(A) = é, Ae , so that we have
0;00) = WO exp(-1 + -+ + )2/, ..., 22). Clearly, ¥ (M)t "+ is a
CZ° function supported in Aq,2>. Denote ©;(x) = H(0;)(x). Since H(m;) =

j>—2log,r
— 1A
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(H@m))pjs2 and H(m j) = @j EH(e_p"z) (which is a consequence of (1.2)), by using
(1.5), we get
Kj(x,y)—Kj(x,)) = (rﬂ/zyH(’ﬁj))zj/z(x) - (TZ'//zy/H(’hj))zj/z (x)

= (6,5(T1 (- 2772y) = T (. 272Y))) 5y ().

Proving (3.3) with m; replaced by 5j and 6 = 0 poses no difficulty. Hence, from
Lemma 2.5 and (1.3) we obtain

Dj(yv y/) = ”éj”Ll(X) || Tl('s 2]/2)]) - Tl('s 2]/2)7/) HLI(X) = C2]/2|y - y/|

Consequently, Y j=—2l0g, r D(y,y") < C and the proof of (3.1) is finished.
Now we turn to the proof of (3.2). Let f € L°°(X) be a compactly supported
function and x ¢ supp f. Then, there are R > r > 0 such that

/ K; G y) f 0)dv(y) = / K (e ) f0dv(y).
X R>|x—y|>r

Since ¥ (H(m;))(x) = t°(H(m;))(y), proceeding as in the first part of the proof
of (3.1) we can easily check that Zj>_210g2r |K(x,y)| is integrable over {y € X :
|x — y| > r}. Hence, using the dominated convergence theorem (recall that f € L*°),

> / Kj(x, ) f(y)dv(y) = / YK fMdvy). (4
Jj>—2logyr X Xj>*2]0g2r

From (1.2) it follows that
Tm_,f(X)=H(m]')ﬂf(X)=/XKj(x,y)f(y)dV(y), (3.5)

with ij defined as in (1.6). Since the Hankel transform is an L%(X )-isometry, from
the dominated convergence theorem we conclude that 3. 550, Zim; f = T f

where the sum converges in L?(X) and m[®! = »
(3.4) and (3.5), we obtain

j>—2log, r M j- Hence, combining

T,i00 f (x) = / > K fmdv(y),

X j>—2log,r

for a.e.x outside supp f. The function m[® = m — m[* is bounded and compactly
supported. Consequently, from (1.2) we get 7,101 f (x) = H(mg £ (x). Moreover,

we see that ijleogzr |m;(A)] < Clm(1)| < C. Hence, from (2.6) we conclude

ty(Hm[O])(x): Z 7 (Hm ) (x),

j<—2logyr
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so that
o f () = / S K (v,
Jj<—2logyr
Then 7,, f (x) = T, f (x) + T,pi001 f (x) = fx K(x,y)f(y)dv(y), as desired. O

Let us finally comment that the proof of Theorem 1.3 goes in the same way as that
of Theorem 1.1. The only difference is that we use Lemma 2.3 instead of Lemma 2.2.

4 Proof of Theorem 1.2

We shall need the maximal-function characterization of H!(X). Define the opera-

tor M f(x) = sup,_.o | T; f (x)|, where T; f (x) = [ oya Tt (x, ¥) f (¥)dv(y). Then we
have the following proposition.

Proposition 4.1 There exists C > 0 such that
CU ey < IM Ll < CUF - (@.1)

The reader who is convinced that Proposition 4.1 is true may skip Lemmata 4.2
and 4.3 and continue with the proof of Theorem 1.2 on page 13. To prove the propo-
sition we need two lemmata.

Lemma 4.2 The heat kernel T;(x, y) satisfies the Gaussian bounds:

0<Ti(x,y) < B f)) ——————exp(—clx — yI*/1), 4.2)

and the following Lipschitz-type estimates:

Cly—yI
Vv(B(x, /1))

| Ti(x, y) = Ti(x,y)| < exp(—clx — y[*/1), 2y =Y <Ix—yl,
(4.3)

Cly =yl
Viv(B(x, /1)

Proof Clearly, since the product of Gaussian kernels is Gaussian and v is a product
of doubling measures, it suffices to focus on d = 1. It is known that for o > —1/2

T(x,y)=ct™ eXP(—(JC2 + yz)/4f)(xy)7(2a71)/21(2a—1)/2(xy/2f)

= ctVexp(—|x — y|*/4t) exp(—xy/2t) (xy) PV 2 [ 5q 1y 2 (xy/21),

T, y) = Ty (v, y')| < 4.4)

where [, is the modified Bessel function of order . Recall that

eX

Tu(x) ~ { ¥2rx

1 X
F(u—&-l)(f)ﬂ

forx > 1,

forO0<x <1,
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(see, e.g., [16]). Hence, it is easy to obtain

1=t D2 exp(—(x2 + y2)/4t)  ifxy <t,

4.5
t’l/z(xy)"" exp(—|x — y|2/4t) if xy >1t. (4.5)

Tz(x,y)’v{

Moreover,
v(B(x, VD) ~ Vi(x + /1)
Now, (4.2) is a consequence of (4.5). To prove (4.3) and (4.4), using the identity

(x7"*1,(x)) = x7"*1,41(x) and the asymptotics for I, we check that

9,76 < 7GR (x4 y)exp(—(x* + y) /41) ifxy <t,
Ti(x, | S

’ (7320x =yl 41712y ) (xy) " exp(—Ix — y[2/41) ifxy = 1.
From the above it is not hard to conclude that

Vi Ty (x. y)| = . ;exp(
Vi v(B(x, V1)

The latter inequality easily implies (4.3) and (4.4). 0

—clx = yI*/1).

Let p(x, y) = inf{v(B)}, where the infimum is taken over all balls B such that
x,y € B.Denote B,(x,r) ={y € X|p(x,y) <r}. We have:

e o(x,y) ~v(B(x,rg)), where ro = |x — y|,
o p(x,y) <A(p(x,2)+p(z,¥)
o V(B,(x,r)) ~r,

i.e., the triple ((0, 00)?, dv, p) is a space of homogenous type.

Lemmad4.3 Let K, (x,y) = Ty(x,r)(x,y), wheret =t(x,r) is defined by v(B(x, V1)
=r. Then the kernel r K, satisfies the assumption of Uchiyama’s Theorem, see [25,
Corollary 1], i.e., there are constants A,y > 0 such that

K (x,x)> A1 >0, (4.6)

—1-y
0§K,(x,y)§Cr‘1<1+p(%’y)> , 4.7

and

r

C , —1-2y ’ ’ y
’Kr(x,)’)_Kr(X,y/ﬂ§7<1+p(); y)> (p(y y)> ,

<r+p(x,y)‘

p(vy)=—014 (4.8)

Proof (sketch) The inequality (4.6) is obvious, once we recall (4.5). To prove (4.7)
and (4.8) we use Lemma 4.2. From (4.2) we have

K (x,y)<Cr~! exp(—clx — y|2/t).
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Now, since
(1+P(X,Y)> SC<1+V(B()C,PC—)’D))
r V(B(x, /1))
§C<1+|x_y|) < Ceexpl(elx — y[2/1), (4.9)

we get (4.7). Observe that there is ¢ > 0, such that
R7v(B(x,1)) <Cv(B(x,R1)), t>0, R>1. (4.10)

Note that we cantake g = 1, ifax >0,k =1, ..., d. The estimate (4.8) for p(y, y’) >
r/(2A) is a simple consequence of (4.7). In the opposite case, i.e., p(y, y") < r/(2A),
we first note that (4.10) implies

p(.Y) vBO.ly =YD _ v(BG.Iy=y'D) v(B(G.VD)
r v(B(x, V1)) v(B(y. v v(B(x, 1)

< <|y—y/|>K. V(B(y. V1)
RNV V(B(y, 1+ |x = yD)

ly =y 1\" Vi o+d
> o —
() () e

where k = ¢, if |y — y'| > J/t, and k = Q + d, in the other case. Then (4.8) can be
deduced from (4.3), (4.4), and (4.11). O

Proof of Proposition 4.1 Since v(B(x, +/t)) is an increasing continuous function of
t taking values in (0, co), the maximal function

K* f(x) =sup

r>0

/ K, (x, y) f ()dv(y)
(0,00)4

coincides with M f. Now, using Lemma 4.3 together with Uchiyama’s theorem, [25,
Corollary 1°], we obtain a variant of the equivalence (4.1), with respect to atoms
corresponding to the metric p. A simple observation that

B(x, \/t(x,r)) C By(x,r)C B(x, C\/t(x,r)),

for some C > 0, finishes the proof. O

The reader interested in more detailed proof of Proposition 4.1 is referred to [4].
Having Proposition 4.1 we turn to prove Theorem 1.2.

Proof of Theorem 1.2 The proof follows closely the one-dimensional case, see [9].
Since the operator 7,,, maps continuously H L(X) into D'((0, 00)9), it suffices to
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prove that there exists a constant C > 0, such that for every atom a € H'(X), we
have

[MTwa)| 1, < C- (4.12)

X)

If a is an atom associated with a ball B(yy, r), then clearly,

|MTna)|,, v(B(yo, 2r) " | M(T,,

(B(yo,2r),dv) = a)||L2(B(y0,2r),du)
172
<v(B(yo,2r) Pllall 25 < C. (4.13)

Fix a CZ°(A1/2,2) function  satistying

dowr(2ia) =1, reRN\{o}. (4.14)

JEZL
Analogously as in Sect. 3 we define
m;() =y (27 (M. A7) m) = (Y277 )n) (A, ..., AF).

In view of (4.13) it is enough to show that

Z HM(,];nja) “Ll((B()’ngr))C,dU) E C- (4'15)
J€EZ
Let
—In? ~ .
m(n ) =m;Gye” gy () =men (2771),

M n(x) =Hmn)(x), M j1y(x) = H{j ) (x).

Clearly, M (x,y) = t¥M(j(x) are the integral kernels of the operators
T (A).Also,

e"‘“zmj
M) = M)y (), Mn(x,y) =292M (222, 27%y). (4.16)
The following are the key estimates in the proof of (4.15).

Lemma 4.4 There exist 5 > 0 and C > 0 such that for all j € Z and all r > 0 we
have

/ sup | M(j . (x, y)|dv(x) < C(277%r) ", (4.17)
!

x—=y|>r t>0

/ sup | M. (x, ) — M(j.n(x, y)[dv(x) < C2972 |y —y'|.  (4.18)
(

0,00)4 t>0

Proof Denote
V@) =y (27 (33 a)e L G000 = v (277%),
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G =y (277 (A, .. A3))m) = (Y (27 )n() (A, ..., A2),
G =¢;2722) = (wOn(2) (3} ..., 22).
Let Z;(x) = H(Z;)(x), ¥(j.n(x) = H((j.)(x). Arguing as in (3.3), we see that

sup | Zjw® ”Ll(X) =C, (4.19)
JEZ

for sufficiently small § > 0. Observe that 1/}( j.1) =N, for some CZ° function n(; ;)
with suppnj 1) C A12,2. Moreover, we can check that sup; ;) ln¢,nlley < Cw, for

every N € N. Hence, using (2.4) we see that for every N > 0, there exists C ;v such
that

sup [ @, (0)| < Cyw™ (x).

(.0

From the above we see that
|M(j,t)(x)| = |lp(j,z)u2j(x)| < Cyw Ny Zj|(x).

Hence, using (4.19) and Lemma 2.6 we arrive at

/ sup |1\~4(j,,)(x, y)|w5dv(x) <C.
(

0,00) t>0

Combining the above, together with (4.16) and Lemma 2.4, we get (4.17).
We now turn to the proof of (4.18). Let f(j,,)(k) = e—t2-/|k|2¢(k%, el )\(%l)eu|2 and
define li(j’[) (x) = H(i(j,,))(x). Clearly,

- ~ ~ 2
mj.r) ) = l(j,l) (K){j (Ae Al . (4.20)
An argument analogous to the one presented in the previous paragraph shows that

sup |L(jn()] < Cyw™ ).
JEZ,t>0

As a consequence, there is C > 0, such that for every j
| supIZijniZil] 1 (x) < C- 4.21)
t>0
Recalling (4.20), we obtain

sup [ M(j.iy (x, y) — M. (x, )]
t>0

= sup
t>0

[( o ™ (L8 Z) @) (Ti(z, y) — Ti(z.Y))dv(z)
< / v (sup L0821 |Ti )~ Ta(e ) dv). 422)
(0,00)‘1 >0
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From (1.3) together with (4.21), (4.22) and Lemma 2.5, we obtain

/ sup | M(j.n(x, y) = Mg (x, y')[dv(x) <Cly =yl (4.23)
(0,00)4 t>0
Now, (4.18) is a consequence of (4.16) and (4.23). O

Using Lemma 4.4 and some standard arguments, as in the final stage of the proof
of [9, Eq. (3.3)], we easily justify (4.15). Hence the proof is complete. O

Acknowledgements The authors would like to thank Alessio Martini for discussions on spectral multi-
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Appendix

Proof of (1.14) The proof of Theorem 1.3 actually shows that

||Tmf||Ll(X)_>L1,O<>(X)

= Co(1+Imls + sup InOn @) gs . )Wl 6D

Now, using (1.13) we write n,(A) = E(A) (A1 4+ -+ A4)™", so that n, (A, ..., A2) =
my (A). We claim that

sug Hn(o)nu (21') ”ﬁg@(Rd) < Cs(l + |u|)s, s> 0. 5.2)
je ’

Using (5.2) and combining it with (5.1), we get ||Li“||L1(X)_)L1,OO(X) <C.(1+
lu|)@/2+¢ Since ||L* ll2(x)—12(x) = 1, using the Marcinkiewicz interpolation the-
orem, see, e.g. [8, (2.2) p. 30], together with a duality argument, we obtain (1.14) for
all 1 < p <oo0.

Now, we sketch the proof of (5.2). Let B;yq, 1<p,qg <o0,s >0, be the Besov

space, as defined in [2, p. 141]. It is known, see [2, Theorem 6.2.4 (10), p.142], that
B, , is the real interpolation space of the spaces L{° = L£3° (RY), precisely

(£3 %o.0°

Esolo)g’q:Bs s=(1—=0)sog+0s;, 0<O<1, 1<g=<oo. (53)
Moreover, from [2, Theorem 6.2.4 (9), p.142], we have

Ifllcee <Csll fllgs,,» fe€Bx, s>0. (5.4)
For general Banach spaces X and Y, one has

Ixlz < CoglxlCIvIG, Z=(X,Y)oy 0<6O<1, (5.5)

Birkhauser



J Fourier Anal Appl (2013) 19:417—437 435

see [24, Theorem (g), p. 25]. Now, it is straightforward to check that (5.2) is true for
s =2n, n € NU {0}. Using the latter observation, (5.4), (5.3) with ¢ = 1, and (5.5)

with X:L;Z, Y=£§2+2,fors =(1-6)2n+062n+2),0<06 <1, we obtain

InCna(27-) “[:go < Cs[nna(27-)] B,

< Cou|nOm 2] 5 InOma@) s,
< Cpg(1+Jul) 777D — 0o (14 Jul)’. 0

The following example shows that in the multivariable case for functions n(A)
supported in Aj/2 > the Sobolev norms ||| W5 (Rd) do not control the Sobolev norms

||| w3’ (Rd) (even for certain range s’ smaller than s) where n and m are related by
2
(1.8).

Example 5.1 Let F(x, y) be a function defined on R x R¢ and s > 0. Observe that

- - 2
1 Wygaree, ~ 1 Bagune + [ [ IFE PP +1nP)azan. 60

Moreover, it can be shown that for every r > 0 there is a constant C > 0 such that for
f supported in the interval (%, 2) one has

C M lwym < 1 F lwy@ < CllFllwg @y (5.7

where f(x) = f(xz).
Let 9 € C2(3,3) and ¥ € CP(RY), ¥(y) =0 for |y| > 5, ¢, ¥ #£0. Fix e €
(0, 1), R > 1 and define the functions ng(x, y) on R x R¢ by
n(x,y) =ng(x,y) =cos(R\)p(x)¥ (R ~Fy) = f(x)g(y).

The functions n(x, y) are supported in Ay,2 2, near the vector e;. Moreover,

fE=c(@E-R+¢E+R) and g =RCEDY(R"n).  (58)
From (5.6) and (5.8) we conclude that

”””W;(RIH) < CSRS—(l—S)E/Z'

Set m(x,y) = mp(x,y) = ngG3yi ) = fODGT YLy =
f(x)g(y). The functions my are supported near the vectors +e;. By (5.7) for s’ > 0
and R large we have

)~ s/ ~ s ~ IEX/- 59
” ”‘)V2 (R) ”f”‘)[zz (R) ( )
Clearly,

181 2@ty = 181l L2mey = cR™I—OHA, (5.10)
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Now, (5.6) combined with (5.9) and (5.10) imply that

el s givey = cR* (1794 for large R.
2

Summarizing,

Imll s gise
Wi RO cRY —sH=o)t/4.

||I’l || W;(Rlﬂf) -

which clearly tends to infinity as R — oo provided that s’ > s — (1 — )£/4.
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