Generalized Frobenius formula and asymptotics of characters of symmetric groups

Piotr Śniady

University of Wroclaw
Outline

1. Problem: asymptotics of characters of symmetric groups
2. Generalized Frobenius formula
3. Upper bounds for characters of symmetric groups
Outline

1. Problem: asymptotics of characters of symmetric groups
 - Murnaghan–Nakayama rule
 - Asymptotics of characters

2. Generalized Frobenius formula

3. Upper bounds for characters of symmetric groups
Russian convention for Young diagrams

- English convention
- French convention
- Russian convention
Irreducible representations ρ^λ of S_n are indexed by Young diagrams with n boxes. For a given Young diagram λ and permutation $\pi \in S_n$, what is the value of the unnormalized character $\text{Tr} \rho^\lambda(\pi)$?

Example:

$$\pi = (1, 2, 3, 4)(5, 6, 7, 8)\times(9, 10, 11, 12)(13, 14, 15, 16, 17) = 4^35^1$$
Let \(l_1, \ldots, l_k \) be the lengths of the cycles of \(\pi \). In order to compute the character \(\text{Tr} \rho^\lambda(\pi) \) we need to consider all decompositions of \(\lambda \) into strips of lengths \(l_1, \ldots, l_k \). For each strip we get a factor \((-1)^{\text{height}} \ldots \)

\[
\pi = 4^3 5^1
\]

contribution = \((-1)^2 \times (-1)^1 \times (-1)^1 \times (-1)^2 \)

The character is equal to the sum of the contributions over all decompositions.
Let \(l_1, \ldots, l_k \) be the lengths of the cycles of \(\pi \). In order to compute the character \(\text{Tr} \rho^\lambda(\pi) \) we need to consider all decompositions of \(\lambda \) into strips of lengths \(l_1, \ldots, l_k \).

For each strip we get a factor \((-1)^{\text{height}}\)...

\[
\pi = 4^35^1
\]

contribution =
\[
(-1)^2 \times (-1)^1 \times (-1)^1 \times (-1)^2
\]

The character is equal to the sum of the contributions over all decompositions.
Let l_1, \ldots, l_k be the lengths of the cycles of π. In order to compute the character $\text{Tr} \rho^\lambda(\pi)$ we need to consider all decompositions of λ into strips of lengths l_1, \ldots, l_k. For each strip we get a factor $(-1)^{\text{height}} \ldots$

\[
\pi = 4^3 5^1
\]

contribution $= (-1)^2 \times (-1)^1 \times (-1)^1 \times (-1)^2$

The character is equal to the sum of the contributions over all decompositions.
Let l_1, \ldots, l_k be the lengths of the cycles of π. In order to compute the character $\text{Tr} \rho^\lambda(\pi)$ we need to consider all decompositions of λ into strips of lengths l_1, \ldots, l_k. For each strip we get a factor $(-1)^{\text{height}} \ldots$

$\pi = 4^3 5^1$

contribution =

$(-1)^2 \times (-1)^1 \times (-1)^1 \times (-1)^2$

The character is equal to the sum of the contributions over all decompositions.
Let \(l_1, \ldots, l_k \) be the lengths of the cycles of \(\pi \). In order to compute the character \(\text{Tr} \rho^\lambda(\pi) \) we need to consider all decompositions of \(\lambda \) into strips of lengths \(l_1, \ldots, l_k \). For each strip we get a factor \((-1)^{\text{height}} \ldots \).

\[
\pi = 4^3 5^1 \\
\text{contribution} = (-1)^2 \times (-1)^1 \times (-1)^1 \times (-1)^2
\]

The character is equal to the sum of the contributions over all decompositions.
Let l_1, \ldots, l_k be the lengths of the cycles of π. In order to compute the character $\text{Tr} \, \rho^\lambda(\pi)$ we need to consider all decompositions of λ into strips of lengths l_1, \ldots, l_k. For each strip we get a factor $(-1)^{\text{height}} \ldots$

\[
\pi = 4^3 5^1
\]

contribution $= (-1)^2 \times (-1)^1 \times (-1)^1 \times (-1)^2$

The character is equal to the sum of the contributions over all decompositions.
Let l_1, \ldots, l_k be the lengths of the cycles of π. In order to compute the character $\text{Tr} \rho^\lambda(\pi)$ we need to consider all decompositions of λ into strips of lengths l_1, \ldots, l_k. For each strip we get a factor $(-1)^{\text{height}} \ldots$

\[\pi = 4^35^1 \]
\[\text{contribution} = (-1)^2 \times (-1)^1 \times (-1)^1 \times (-1)^2 \]

The character is equal to the sum of the contributions over all decompositions.
Let \(l_1, \ldots, l_k \) be the lengths of the cycles of \(\pi \). In order to compute the character \(\text{Tr} \, \rho^\lambda(\pi) \) we need to consider all decompositions of \(\lambda \) into strips of lengths \(l_1, \ldots, l_k \). For each strip we get a factor \((-1)^{\text{height}}\)...

\[
\pi = 4^35^1 \\
\text{contribution} = (-1)^2 \times (-1)^1 \times (-1)^1 \times (-1)^2
\]

The character is equal to the sum of the contributions over all decompositions.
Let l_1, \ldots, l_k be the lengths of the cycles of π. In order to compute the character $\text{Tr} \rho^\lambda(\pi)$ we need to consider all decompositions of λ into strips of lengths l_1, \ldots, l_k. For each strip we get a factor $(-1)^{\text{height}} \ldots$

$\pi = 4^35^1$

contribution $= (-1)^2 \times (-1)^1 \times (-1)^1 \times (-1)^2$

The character is equal to the sum of the contributions over all decompositions.
Asymptotic questions

We would like to study asymptotic questions: how big is the character

$$\chi^\lambda(\pi) = \frac{\text{Tr} \rho^\lambda(\pi)}{\text{Tr} \rho^\lambda(e)}$$

of the symmetric group S_n in the limit as $n \to \infty$. Alternatively, how big are normalized characters

$$\sum_{k_1, \ldots, k_l} \frac{\text{Tr} \rho^\lambda(k_1, \ldots, k_l, 1^{n-k_1-\cdots-k_l})}{\text{Tr} \rho^\lambda(e)} (n)_{k_1+\cdots+k_l},$$

where $(k_1, \ldots, k_l, 1^{n-k_1-\cdots-k_l})$ is a permutation with a given cycle structure and $(n)_k = \frac{n!}{(n-k)!} = n(n-1) \cdots (n-k+1)$ denotes the falling power.

Murnaghan–Nakayama rule does not tell us anything useful.
Asymptotic questions

We would like to study asymptotic questions: how big is the character

\[\chi^\lambda(\pi) = \frac{\text{Tr } \rho^\lambda(\pi)}{\text{Tr } \rho^\lambda(e)} \]

of the symmetric group \(S_n \) in the limit as \(n \to \infty \). Alternatively, how big are normalized characters

\[\sum_{k_1, \ldots, k_l} = \frac{\text{Tr } \rho^\lambda(k_1, \ldots, k_l, 1^{n-k_1-\cdots-k_l})}{\text{Tr } \rho^\lambda(e)} (n)_{k_1+\cdots+k_l}, \]

where \((k_1, \ldots, k_l, 1^{n-k_1-\cdots-k_l})\) is a permutation with a given cycle structure and \((n)_k = \frac{n!}{(n-k)!} = n(n-1)\cdots(n-k+1)\) denotes the falling power.

Murnaghan–Nakayama rule does not tell us anything useful.
Asymptotic questions

We would like to study asymptotic questions: how big is the character

\[\chi^\lambda(\pi) = \frac{\text{Tr} \rho^\lambda(\pi)}{\text{Tr} \rho^\lambda(e)} \]

of the symmetric group \(S_n \) in the limit as \(n \to \infty \). Alternatively, how big are normalized characters

\[\sum_{k_1, \ldots, k_l} = \frac{\text{Tr} \rho^\lambda(k_1, \ldots, k_l, 1^{n-k_1-\cdots-k_l})}{\text{Tr} \rho^\lambda(e)} (n)_{k_1+\cdots+k_l}, \]

where \((k_1, \ldots, k_l, 1^{n-k_1-\cdots-k_l})\) is a permutation with a given cycle structure and \((n)_k = \frac{n!}{(n-k)!} = n(n-1) \cdots (n-k+1)\) denotes the falling power.

Murnaghan–Nakayama rule does not tell us anything useful.
Asymptotic questions

We would like to study asymptotic questions: how big is the character

$$\chi^\lambda(\pi) = \frac{\text{Tr} \rho^\lambda(\pi)}{\text{Tr} \rho^\lambda(e)}$$

of the symmetric group S_n in the limit as $n \to \infty$. Alternatively, how big are normalized characters

$$\sum_{k_1, \ldots, k_l} = \frac{\text{Tr} \rho^\lambda(k_1, \ldots, k_l, 1^{n-k_1-\cdots-k_l})}{\text{Tr} \rho^\lambda(e)} (n)_{k_1+\cdots+k_l},$$

where $(k_1, \ldots, k_l, 1^{n-k_1-\cdots-k_l})$ is a permutation with a given cycle structure and $(n)_k = \frac{n!}{(n-k)!} = n(n-1)\cdots(n-k+1)$ denotes the falling power.

Murnaghan–Nakayama rule does not tell us anything useful.
Balanced Young diagrams

We assume that λ is a balanced diagram, i.e. it has at most $c \sqrt{n}$ rows and columns, where n is the number of boxes.

Kerov, Biane, ... proved that for some constant d

$$|\chi^\lambda(\pi)| < \left(\frac{d}{\sqrt{n}} \right)^{|\pi|}$$

if $|\pi|$ is bounded. Is the above inequality true for general $|\pi|$?

Motivations:

- random walks on symmetric group S_n (Diaconis and Shahshahani),
- quantum computations (Moore and Russell).
We assume that λ is a balanced diagram, i.e. it has at most $c\sqrt{n}$ rows and columns, where n is the number of boxes.

Kerov, Biane, ... proved that for some constant d

$$|\chi^\lambda(\pi)| < \left(\frac{d}{\sqrt{n}}\right)^{|\pi|}$$

if $|\pi|$ is bounded. Is the above inequality true for general $|\pi|$?

Motivations:
- random walks on symmetric group S_n (Diaconis and Shahshahani),
- quantum computations (Moore and Russell).
Balanced Young diagrams

We assume that λ is a balanced diagram, i.e. it has at most $c\sqrt{n}$ rows and columns, where n is the number of boxes.

Kerov, Biane, . . . proved that for some constant d

$$|\chi^\lambda(\pi)| < \left(\frac{d}{\sqrt{n}}\right)^{|\pi|}$$

if $|\pi|$ is bounded. Is the above inequality true for general $|\pi|$?

Motivations:

- random walks on symmetric group S_n (Diaconis and Shahshahani),
- quantum computations (Moore and Russell).
We assume that λ is a balanced diagram, i.e. it has at most $c\sqrt{n}$ rows and columns, where n is the number of boxes.

Kerov, Biane, . . . proved that for some constant d

$$|\chi^\lambda(\pi)| < \left(\frac{d}{\sqrt{n}}\right)^{|\pi|}$$

if $|\pi|$ is bounded. Is the above inequality true for general $|\pi|$?

Motivations:
- random walks on symmetric group S_n (Diaconis and Shahshahani),
- quantum computations (Moore and Russell).
We assume that \(\lambda \) is a balanced diagram, i.e. it has at most \(c \sqrt{n} \) rows and columns, where \(n \) is the number of boxes.

Kerov, Biane, . . . proved that for some constant \(d \)

\[
|\chi^\lambda(\pi)| < \left(\frac{d}{\sqrt{n}} \right)^{|\pi|}
\]

if \(|\pi|\) is bounded. Is the above inequality true for general \(|\pi|\)?

Motivations:
- random walks on symmetric group \(S_n \) (Diaconis and Shahshahani),
- quantum computations (Moore and Russell).
Outline

1. Problem: asymptotics of characters of symmetric groups
2. Generalized Frobenius formula
 - How to encode a Young diagram?
 - Generalized Frobenius formula
3. Upper bounds for characters of symmetric groups
Young diagram can be encoded by the sequences of local minima \((x_1, \ldots, x_s)\) and maxima \((y_1, \ldots, y_{s-1})\). We define a function

\[
H(z) = \frac{(z - x_1) \cdots (z - x_s)}{(z - y_1) \cdots (z - y_{s-1})}.
\]
Why is $H(z)$ so nice?

- $H(z)$ is easily determined by the shape of Young diagram λ, good for asymptotic questions;
- $H(z)$ is related to the transition measure μ^λ of λ, namely $G(z) = \frac{1}{H(z)}$ is the Cauchy transform of μ^λ;
- the coefficients in the expansion

$$H(z) = z - B_2 z^{-1} - B_3 z^{-2} - \cdots$$

have a nice interpretation as Boolean cumulants of μ^λ. Boolean cumulants describe nicely the shape of λ.
Why is $H(z)$ so nice?

- $H(z)$ is easily determined by the shape of Young diagram λ, good for asymptotic questions;
- $H(z)$ is related to the *transition measure* μ^λ of λ, namely $G(z) = \frac{1}{H(z)}$ is the Cauchy transform of μ^λ;
- the coefficients in the expansion

$$H(z) = z - B_2 z^{-1} - B_3 z^{-2} - \cdots$$

have a nice interpretation as *Boolean cumulants* of μ^λ. Boolean cumulants describe nicely the shape of λ.
Why is $H(z)$ so nice?

- $H(z)$ is easily determined by the shape of Young diagram λ, good for asymptotic questions;
- $H(z)$ is related to the *transition measure* μ^λ of λ, namely $G(z) = \frac{1}{H(z)}$ is the Cauchy transform of μ^λ;
- the coefficients in the expansion

 $$H(z) = z - B_2 z^{-1} - B_3 z^{-2} - \cdots$$

 have a nice interpretation as *Boolean cumulants* of μ^λ. Boolean cumulants describe nicely the shape of λ.

Piotr Śniady
Generalized Frobenius formula and asymptotics of characters
The usual Frobenius formula

\[-k \sum_k = [z^{-1}] \left[H(z)H(z-1) \cdots H(z-k+1) \right]. \]
Theorem (Generalized Frobenius formula, simplest case)

\[k_1 k_2 \sum_{k_1, k_2} = \left[\frac{1}{z_1} \right] \left[\frac{1}{z_2} \right] \left(H(z_1) H(z_1 - 1) \cdots H(z_1 - k_1 + 1) \times \right. \]

\[H(z_2) H(z_2 - 1) \cdots H(z_2 - k_2 + 1) \times \]

\[\frac{(z_1 - z_2)(z_1 - z_2 + k_2 - k_1)}{(z_1 - z_2 - k_1)(z_1 - z_2 + k_2)} \right] . \]
Theorem (Generalized Frobenius formula)

\[
(-1)^l k_1 \cdots k_l \sum_{k_1, \ldots, k_l} = \\
[z_1^{-1}] \cdots [z_l^{-1}] \left[\prod_{1 \leq r \leq l} H(z_r) H(z_r - 1) \cdots H(z_r - k_r + 1) \right] \\
\prod_{1 \leq s < t \leq l} \frac{(z_s - z_t)(z_s - z_t + k_t - k_s)}{(z_s - z_t - k_s)(z_s - z_t + k_t)}.
\]

Main advantage: direct expression for characters in terms of Boolean cumulants.

Idea of the proof: encrypted Murnaghan–Nakayama rule.
Theorem (Generalized Frobenius formula)

\[\sum_{k_1,\ldots,k_l = 1} (-1)^l k_1 \cdots k_l \sum_{k_1,\ldots,k_l} = \prod_{1 \leq r \leq l} [z_r]^{-1} \cdots [z_l]^{-1} \left[\prod_{1 \leq r \leq l} H(z_r) H(z_r - 1) \cdots H(z_r - k_r + 1) \right] \prod_{1 \leq s < t \leq l} \left(\frac{(z_s - z_t)(z_s - z_t + k_t - k_s)}{(z_s - z_t - k_s)(z_s - z_t + k_t)} \right).\]

Main advantage: direct expression for characters in terms of Boolean cumulants.

Idea of the proof: encrypted Murnaghan–Nakayama rule.
Theorem (Generalized Frobenius formula)

\[
(-1)^l k_1 \cdots k_l \sum_{k_1, \ldots, k_l} = \\
[z_1^{-1}] \cdots [z_l^{-1}] \left[\prod_{1 \leq r \leq l} H(z_r) H(z_r - 1) \cdots H(z_r - k_r + 1) \right] \\
\prod_{1 \leq s < t \leq l} \frac{(z_s - z_t)(z_s - z_t + k_t - k_s)}{(z_s - z_t - k_s)(z_s - z_t + k_t)}.
\]

Main advantage: direct expression for characters in terms of Boolean cumulants.

Idea of the proof: encrypted Murnaghan–Nakayama rule.
Let us fix some constant ζ. The coefficients of the expansion

$$H(z + \zeta) = z + \zeta + \tilde{B}_1 + \tilde{B}_2 z^{-1} + \tilde{B}_3 z^{-2} + \cdots$$

are called *shifted Boolean cumulants*. For $\zeta = 0$ they coincide (up to the sign change) with the usual Boolean cumulants.
Shifted Boolean cumulants

Let us fix some constant ζ. The coefficients of the expansion

$$H(z + \zeta) = z + \zeta + \tilde{B}_1 + \tilde{B}_2 z^{-1} + \tilde{B}_3 z^{-2} + \cdots$$

are called *shifted Boolean cumulants*. For $\zeta = 0$ they coincide (up to the sign change) with the usual Boolean cumulants.
Positivity of character polynomials

Theorem

Let integers $1 \leq k_1, \ldots, k_l \leq \zeta$ be given. Then the normalized character $(-1)^l \sum_{k_1, \ldots, k_l}$ is a polynomial in shifted Boolean cumulants $\tilde{B}_2, \tilde{B}_3, \ldots$ with non-negative coefficients.

Looks like Kerov conjecture for free cumulants.
Theorem

Let integers $1 \leq k_1, \ldots, k_l \leq \zeta$ be given. Then the normalized character $(-1)^l \sum_{k_1, \ldots, k_l}$ is a polynomial in shifted Boolean cumulants $\tilde{B}_2, \tilde{B}_3, \ldots$ with non-negative coefficients.

Looks like Kerov conjecture for free cumulants.
Corollary

If λ and ν are Young diagrams such that $|\tilde{B}_i^\lambda| < \tilde{B}_i^\nu$ then

$$|\Sigma_{k_1,\ldots,k_l}^\lambda| < |\Sigma_{k_1,\ldots,k_l}^\nu|.$$

Now if we want to prove upper bounds for characters it is enough to prove them for some nice Young diagram ν. For example, for ν we may take rectangular Young diagrams for which characters were calculated by Stanley.
Corollary

If λ and ν are Young diagrams such that $|\tilde{B}_i^\lambda| < \tilde{B}_i^\nu$ then

$$|\sum_{k_1,\ldots,k_l}^\lambda| < |\sum_{k_1,\ldots,k_l}^\nu|.$$

Now if we want to prove upper bounds for characters it is enough to prove them for some nice Young diagram ν. For example, for ν we may take rectangular Young diagrams for which characters were calculated by Stanley.
Corollary

If λ and ν are Young diagrams such that $|\tilde{B}_i^\lambda| < \tilde{B}_i^\nu$ then

$$|\Sigma_{k_1,\ldots,k_l}^\lambda| < |\Sigma_{k_1,\ldots,k_l}^\nu|.$$

Now if we want to prove upper bounds for characters it is enough to prove them for some nice Young diagram ν. For example, for ν we may take rectangular Young diagrams for which characters were calculated by Stanley.
The main inequality

Theorem

For every c there exists a constant d such that if a Young diagram with n boxes has at most $c\sqrt{n}$ rows and columns then

\[|\chi^\lambda(\pi)| < \left(\frac{d}{\sqrt{n}}\right)^{|\pi|}. \]

This talk was about an application of power series to representation theory. More such applications are around!

Amarpreet Rattan, Piotr Śniady.

Generalized Frobenius formula and asymptotics of characters of symmetric groups.

In preparation
The main inequality

Theorem

For every c there exists a constant d such that if a Young diagram with n boxes has at most $c \sqrt{n}$ rows and columns then

$$|\chi^\lambda(\pi)| < \left(\frac{d}{\sqrt{n}} \right)^{|\pi|}.$$

This talk was about an application of power series to representation theory. More such applications are around!

Amarpreet Rattan, Piotr Śniady.
Generalized Frobenius formula and asymptotics of characters of symmetric groups.
In preparation
The main inequality

Theorem

For every c there exists a constant d such that if a Young diagram with n boxes has at most $c\sqrt{n}$ rows and columns then

$$|\chi^\lambda(\pi)| < \left(\frac{d}{\sqrt{n}} \right)^{|\pi|}.$$

This talk was about an application of power series to representation theory. More such applications are around!

Amarpreet Rattan, Piotr Śniady.

Generalized Frobenius formula and asymptotics of characters of symmetric groups.

In preparation
The main inequality

Theorem

For every c there exists a constant d such that if a Young diagram with n boxes has at most $c\sqrt{n}$ rows and columns then

$$|\chi^\lambda(\pi)| < \left(\frac{d}{\sqrt{n}}\right)^{|\pi|}.$$

This talk was about an application of power series to representation theory. More such applications are around!

Amarpreet Rattan, Piotr Śniady.
Generalized Frobenius formula and asymptotics of characters of symmetric groups.
In preparation