
Rozdział 3

Podstawowe modele
kombinatoryczne

3.1 Permutacje, wariacje i kombinacje z powtórzeniami i bez powtórzeń

Rozważmy n-elementowy zbiór A = {a1, a2, . . . , an}. Jeżeli elementy zbioru A usta-

wimy w określonej kolejności, np. a7, a5, . . . , an, a1, to otrzymamy ciąg n-elementowy

oznaczany jako (a7, a5, . . . , an, a1). Widzimy, że dla określenia zbioru wystarczy podać

jego elementy. Jeżeli istotna jest także kolejność ich występowania, to każde uporząd-

kowanie wyznacza inny ciąg.

1. Zbiór A można uporządkować na

n · (n− 1) · (n− 2) · . . . · 2 · 1 = n! (3.1)

sposobów. Innymi słowy, ze zbioru A można utworzyć n! ciągów n-elementowych zwa-

nych permutacjami elementów zbioru A.

Rozważymy teraz dwa sposoby losowania elementów zbioru A: losowanie bez zwra-

cania wylosowanego elementu oraz losowanie ze zwracaniem wylosowanego elementu.

Przy obu regułach losowania w pierwszym przypadku uwzględniamy kolejność loso-

wanych elementów, w drugim natomiast jest ona dla nas nieistotna.

2. Losując k razy (k ≤ n) elementy ze zbioru A bez zwracania, otrzymujemy

n · (n− 1) · . . . · (n− (k − 1)) (3.2)

różnych ciągów zwanych k-elementowymi wariacjami bez powtórzeń

oraz
n · (n− 1) · . . . · (n− (k − 1))

k!
=

n!

k!(n− k)!
=

(
n

k

)
(3.3)

różnych zbiorów zwanych k-elementowymi kombinacjami (bez powtórzeń).
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3. Losując k razy (k dowolne) elementy ze zbioru A ze zwracaniem, otrzymujemy

n · n · . . . · n︸ ︷︷ ︸
k razy

= nk (3.4)

różnych ciągów zwanych k-elementowymi wariacjami z powtórzeniami

oraz (
n+ k − 1

k

)
(3.5)

różnych źbiorówźwanych k-elementowymi kombinacjami z powtórzeniami .

Zauważmy, że, jak wskazuje nazwa otrzymanych zgodnie z tą regułą losowania ciągów

i źbiorów”, mogą one zawierać powtarzające się wielokrotnie elementy zbioru A.

Rozważmy jeszcze uogólnienie modelu z punktu 1.

4. Zbiór A, który dzieli się na k podzbiorów takich, że

1. składa się z m1 nierozróżnialnych elementów,

2. składa się z m2 nierozróżnialnych elementów,

. . .

k. składa się z mk nierozróżnialnych elementów,

przy czym

m1 +m2 + . . .+mk = n,

można uporządkować na(
n

m1

)
·
(
n−m1

m2

)
·
(
n−m1 −m2

m3

)
· . . . ·

(
n−m1 − . . .−mk−1

mk

)
=

n!

m1!m2! . . .mk!
(3.6)

sposobów. Wzór (3.6) przedstawia liczbę permutacji z powtórzeniami zbioru A.

Przykład 3.1.

Niech A = {a1, a2, a3, a4} i k = 2.

Sprawdźmy dla tych danych prawdziwość wzorów (3.1) – (3.6).

1. Zbiór A można uporządkować na

4 · 3 · 2 · 1 = 4!

sposobów, ponieważ jako pierwszy może wystąpić każdy z 4 elementów zbioru A, jako

drugi każdy z 3 pozostałych, jako trzeci każdy z 2 pozostałych, a czwarte miejsce musi

być zajęte przez jedyny niewystępujący dotychczas element. Fundamentalna zasada

mnożenia (2.5) daje więc powyższy wynik.



2. Losując ze zbioru A bez zwracania 2 elementy, otrzymamy

4 · 3 = 12

różnych ciągów 2-elementowych (uzasadnienie jak wyżej) oraz

4 · 3
2!

= 6

różnych zbiorów 2-elementowych, ponieważ na przykład, dwa ciągi (a1, a2) oraz (a2, a1)

”przechodzą” w jeden tylko zbiór {a1, a2}, gdy przestaje nas interesować kolejność

tworzących je elementów a1 oraz a2.

3. Losując ze zbioru A ze zwracaniem 2 elementy, otrzymamy

4 · 4 = 16

różnych ciągów 2-elementowych, ponieważ na obu miejscach w ciągu może wystąpić

każdy z 4 elementów zbioru A oraz 10 następujących zbiorów 2-elementowych:

{a1, a1}, {a2, a2}, {a3, a3}, {a4, a4}, {a1, a2}, {a1, a3}, {a1, a4}, {a2, a3}, {a2, a4}, {a3, a4}.

Nie jest przypadkiem, że (
4 + 2− 1

2

)
=

(
5

2

)
= 10.

4. Podzielmy elementy zbioru A na 3 podzbiory A1, A2, A3 o liczebności 1, 1 oraz

2 odpowiednio, tak, by elementy w zbiorze A3 były nierozróżnialne. Uczynimy to,

wybierając 1 element spośród 4 tworząc podzbiór A1, następnie 1 element spośród 3

pozostałych tworząc A2 i traktując potem jako jednakowe pozostałe dwa elementy –

będą one tworzyć podzbiór A3. Na mocy (2.5’) powyższą procedurę można przepro-

wadzić na (
4

1

)
·
(
3

1

)
·
(
2

2

)
=

4!

1!1!2!
= 12

sposobów. Powyższe wyrażenie można także interpretować jako liczbę wszystkich upo-

rządkowań 4-elementowego zbioru A utworzonego z trzech podzbiorów zawierających

odpowiednio 1, 1 oraz 2 jednakowe, ale różne od pozostałych elementy.

Przykład pozwala widzieć prawdziwość wzorów (3.1) – (3.6) poza wyjątkiem relacji

(3.5). Uzupełnimy teraz tę lukę.

Dowód wzoru (3.5). Zauważmy, że otrzymanie zbioru o k elementach mogących wy-

stępować wielokrotnie, a pochodzących ze zbioru n-elementowego jest równoznaczne

z losowym rozmieszczeniem k nierozróżnialnych kul w n ponumerowanych komórkach



(umawiamy się, że wylosowanie elementu a1 ze zbioru A oznacza włożenie kuli do 1.

komórki, elementu a2 – do 2. komórki, . . . , elementu an – do n. komórki). Każde roz-

mieszczenie można z kolei przedstawić graficznie jako kombinację kresek i kropek np.

· · · | · | · · · || · · · oznaczających odpowiednio kule (kropki) i komórki (kreski na oznacze-

nie ściany komórki). W myśl tej konwencji, wynik losowania {a1, a1} w przykładzie

3.1 będzie zapisany jako · · |||, wynik {a2, a3} jako | · | · |, a wynik {a4, a4} jako ||| · ·.
Wracając do ogólnego przypadku, razem mamy więc k (liczba kropek) i n− 1 (liczba

kresek) znaków. Jedno rozmieszczenie jest jednoznacznie ustalone przez wybranie k

spośród wszystkich n− 1 + k znaków. Zgodnie ze wzorem (3.3) wszystkich wyborów

mamy (
n− 1 + k

k

)
=

(
n+ k − 1

k

)
.

Wzór (3.5) jest zatem udowodniony.

Przeanalizujemy teraz kilka zadań kombinatorycznych, do rozwiązania których

zastosujemy wzory (2.5) i (3.1) – (3.6).

Przykład 3.2.

a) N osób, wśród których są A i B, można ustawić w kolejce na N! sposobów (wzór

(3.1)). Ustawień, w których między A i B znajdują się dokładnie 2 osoby (zakładamy,

że N ≥ 4 oraz A występuje przed B) jest

(N−3)·
(
N − 2

2

)
·2!·(N−2−2)! = (N−3)· (N − 2)!

2!(N − 4)!
·2!·(N−4)! = (N−2)!·(N−3).

Rzeczywiście, w każdym takim ustawieniu musi wystąpić śegment” składający się z

osoby A, dwóch innych osób i osoby B. Zatem A może znajdować się w kolejce na

każdym miejscu o numerze od 1 do N − 3 włącznie. Gdy ustalimy już pozycję dla A,

wybieramy na
(
N−2
2

)
·2! sposobów 2 osoby mające stać między A i B. Ich kolejność jest

istotna, więc stosujemy wzór (3.2). Pozostałe N − 4 osoby ustawiamy na pozostałych

N − 4 miejscach na (N − 4)! sposobów (wzór (3.1)).

b) Tworzymy liczby z wszystkich cyfr liczby 1234. Zgodnie z (3.1) takich liczb jest

4! = 24. Obliczmy, ile wynosi suma tych liczb.

Każda z nich jest postaci ai · 1000 + bi · 100 + ci · 10 + di, i ∈ I = {1, 2, . . . , 24}.
Zauważmy, że ai = 1 dla 6 wskaźników ze zbioru I, bo liczb postaci 1bcd, gdzie

b, c, d ∈ {2, 3, 4} jest 3! = 6. Tak samo ai = 2 dla 6 innych wskaźników ze zbioru I,

ai = 3 dla 6 wskaźników ze zbioru I oraz ai = 4 dla 6 wskaźników ze zbioru I.



Analogicznie, bi = 1 dla 6 wskaźników ze zbioru I, bo liczb postaci a1cd, gdzie a, c, d ∈
{2, 3, 4} jest 3! = 6., itd. Stąd∑

i∈I

ai =
∑
i∈I

bi =
∑
i∈I

ci =
∑
i∈I

di = 6(1 + 2 + 3 + 4) = 60.

Zatem szukana suma wynosi∑
i∈I

(ai·1000+bi·100+ci·10+di) = 1000
∑
i∈I

ai+100
∑
i∈I

bi+10
∑
i∈I

ci+
∑
i∈I

di = 60·1111 = 66 660.

c) Różnowartościowych funkcji o dziedzinie D = {1, 2, . . . , k} oraz zbiorze wartości

V = {1, 2, . . . , n}, przy czym k ≤ n, jest na mocy (3.2)

n · (n− 1) · . . . · (n− (k − 1)),

ponieważ pierwszemu argumentowi z D możemy przyporządkować każdy z n elemen-

tów zbioru V , drugiemu – o 1 mniej, czyli n− 1, itd.

d) Przyjmując, że alfabet ma 26 liter, możemy zgodnie z (3.4) ułożyć

– 262 różnych inicjałów 2-literowych;

– 263 różnych inicjałów 3-literowych.

Aby przy użyciu 3-literowych inicjałów można było odróżnić 1 mln osób, alfabet mu-

siałby mieć n = 100 liter. Rzeczywiście, n3 = 1000 000 dla n = 100.

e) Należy umieścić n kul w n ponumerowanych komórkach tak, by dokładnie jedna

pozostała pusta.

Jeżli kul nie rozróżniamy, możliwości rozmieszczeń jest n(n − 1), ponieważ każdemu

wyborowi komórki, która ma pozostać pusta, a może nią być każda z n komórek,

odpowiada wybór jednej z pozostałych n− 1 komórek, która będzie zawierać 2 kule.

Jeśli natomiast kule rozróżniamy, takich rozmieszczeń będzie

n · (n− 1) ·
(
n

2

)
· (n− 2)! = n(n− 1)

n!

2
.

Każdemu bowiem opisanemu wyżej wyborowi komórek odpowiada jeszcze wybór 2

spośród n kul, które będą umieszczone razem (wzór (3.3)) oraz każde z (n − 2)!

ustawień pozostałych n− 2 kul w n− 2 komórkach (wzór (3.1)).

f) Jeżli z kolei rozmieszczamy k rozróżnialnych kul w n ponumerowanych komórkach

tak, by w pierwszej znalazło się dokładnie m (m ≤ k) kul, to mamy do wyboru(
k

m

)
· (n− 1)k−m

możliwości. Ustalamy bowiem naprzód na
(
k
m

)
sposobów m kul do pierwszej komórki,

a resztę tzn. k −m kul rozmieszczamy dowolnie w pozostałych n− 1 komórkach.



g) Dziesięciu pasażerów (zakładamy, że są nierozróżnialni) może opuścić windę jadącą

od pierwszego do siódmego piętra na(
7 + 10− 1

10

)
=

(
16

10

)
= 8008

sposobów. Rzeczywiście, jeżli posłużymy się modelem o k = 10 kulach, które należy

rozmieścić w n = 7 komórkach, to zastosowanie wzoru (3.5) daje powyższą odpowiedź.

Jeżeli dodatkowo wymagamy, aby na każdym piętrze wysiadł przynajmniej jeden

pasażer, to takich rozmieszczeń będzie(
10− 1

7− 1

)
=

(
9

6

)
= 84.

Stosując bowiem w dalszym ciągu model rozmieszczania k nierozróżnialnych kul w n

komórkach, widzimy, że w omawianym przypadku każde rozmieszczenie jest równo-

ważne z wyborem n − 1 miejsc (dla kresek – ścianek komórek) spośród k − 1 miejsc

(tyle jest miejsc między k kropkami – kulami).

h) Różnych rozwiązać równania

x1 + x2 + x3 + x4 = 15

w zbiorze liczb całkowitych nieujemnych jest na mocy wzoru (3.5)(
4 + 15− 1

15

)
=

(
18

15

)
= 816.

Zmienne traktujemy jako n = 4 komórki, które należy zapełnić łącznie k = 15 jedna-

kowymi kulami – jedynkami.

Jeżeli chcemy, by rozwiązania były liczbami naturalnymi (bez zera), stosujemy drugi

model omówiony w podpunkcie (g) otrzymując(
15− 1

4− 1

)
=

(
14

3

)
= 364.

Warunek ten oznacza bowiem, że żadna komórka nie może pozostać pusta.

i) Ze słowa METODYKA można utworzyć 8! różnych śłów” (tzn. ciągów literowych)

8-literowych (wzór (3.1)).

Ze słowa REPRYWATYZACJA natomiast utworzymy zgodnie ze wzorem (3.6)

14!

3!2!2! 1! . . . 1!︸ ︷︷ ︸
7 razy

= 3632 428 800

śłów” 14-literowych, ponieważ litera A występuje 3 razy, R – 2 razy, Y – 2 razy,

a pozostałe litery tworzą już 1-elementowe ”podzbiory” zbioru liter rozpatrywanego



słowa.

j) Wracając do konfiguracji pasażerów, załóżmy, że siedem (rozróżnialnych tym razem)

osób jedzie windą w ośmiopiętrowym budynku, przy czym trzy z nich wysiadają na

pierwszym piętrze, dwie – na drugim oraz po jednej na trzecim i czwartym. Wszystkich

takich możliwości jest na mocy wzoru (3.6)(
7

3

)(
4

2

)(
2

1

)(
1

1

)
=

7!

3!2!1!1!
= 420,

ponieważ wybieramy naprzód 3 osoby do pierwszego piętra, potem z pozostałych

czterech 2 osoby mające wysiąść na drugim piętrze, itd.

Jeśli natomiast pytamy o liczbę możliwości wysiadania pasażerów tak, by na pewnym

piętrze wysiadły 3 osoby, na innym – 2 osoby i na dwóch z pozostałych po 1 osobie,

to odpowiedzią jest(
8

1

)(
7

1

)(
6

2

)
·
(
7

3

)(
4

2

)(
2

1

)(
1

1

)
=

8!

1!1!2!4!
· 7!

3!2!1!1!
= 840 · 420 = 352 800.

Każdemu bowiem rozdzieleniu osób omówionemu wyżej odpowiada jeden z możliwych

podziałów pięter na trzy podzbiory określone liczbą wysiadających pasażerów.

Uwaga. Do omawianych wyżej modeli kombinatorycznych: kombinacji oraz wariacji

z powtórzniami i bez powtórzeń można dojść również rozważając rozmieszczenia kul

w komórkach, jak to pokazuje poniższa tabela.

Liczba rozmieszczeń
k kul w n ponumerowanych komórkach

Zajętości
Kule

kule rozróżnialne kule jednakowe

ω = (x1, x2..., xk), xi ∈ {1, .., n} ω = (x1, ..., xn),
∑n

i=1 xi = k

0 lub 1
kul w
komórce

1 ≤ k ≤ n 1 ≤ k ≤ n
n(n− 1) · ... · (n− (k − 1))

(
n
k

)
xi - różne xi ∈ {0, 1}

k-elementowe wariacje k-elementowe kombinacje
bez powtórzeń bez powtórzeń

dowolna
liczba
kul w
komórce

k dowolne k dowolne
n · n · ... · n = nk

(
n+k−1

k

)
xi ∈ {1, ..., n} xi ∈ {0, 1, ..., k}

k-elementowe wariacje k-elementowe kombinacje
z powtórzeniami z powtórzeniami

xi - numer komórki z i. kulą xi - liczba kul w i. komórce



3.2 Współczynniki Newtona i związane z nimi tożsamości kombinato-

ryczne

Oto kilka najważniejszych wzorów związanych z symbolami Newtona:(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
(3.7)

n∑
k=0

(
n

k

)
akbn−k = (a+ b)n, a, b ∈ R (3.8)

Powyższy wzór jest znany jako wzór dwumianowy Newtona.

W szczególności, biorąc w nim a = b = 1 otrzymujemy

n∑
k=0

(
n

k

)
= 2n, (3.9)

a przyjmując a = −b = −1 mamy

n∑
k=0

(
n

k

)
(−1)k = 0. (3.10)

Uwaga. Wzór (3.9) przedstawia liczbę wszystkich podzbiorów zbioru n− elemento-

wego (łącznie ze zbiorem pustym i całym tym zbiorem).

n∑
k=0

(
n

k

)
ak+1

k + 1
=

(a+ 1)n+1 − 1

n+ 1
, a ∈ R (3.11)

W szczególności, biorąc a = −1 otrzymujemy

n∑
k=1

(
n

k

)
(−1)k+1

k + 1
=

n

n+ 1
. (3.12)

Pierwszy z wymienionych wyżej wzorów udowodnimy za chwilę, drugi jest znany

z kursu analizy, a dwa kolejne wynikają z niego natychmiast. Pozostaje więc podać

dowód wzoru (3.11). Korzystając z wynikającej od razu z definicji symbolu Newtona

równości (
n

k

)
=

(
n+ 1

k + 1

)
· k + 1

n+ 1

oraz wzoru (3.8) mamy

n∑
k=0

(
n

k

)
ak+1

k + 1
=

n∑
k=0

(
n+ 1

k + 1

)
ak+1

n+ 1
=

1

n+ 1

n+1∑
l=1

(
n+ 1

l

)
al1n+1−l =

1

n+ 1
((a+1)n+1−1),

czyli wzór (3.11)



Wracając do wzoru (3.7) udowodnimy go, nadając każdej z jego stron odpowiednią

interpretację kombinatoryczną.

Rozważmy mianowicie zbiór (n + 1)-elementowy (np. n różnych liter i jedna cyfra)

oraz wszystkie (k + 1)-elementowe jego podzbiory. Na mocy (3.3) wiemy, że jest ich

tyle, ile wskazuje prawa strona (P) wzoru (3.7). Zauważmy jednak dodatkowo, że

możemy wśród nich wyróżnić dwa rodzaje: te, które zawierają wyróżniony element,

a jest ich
(
n
k

)
(do tego wyróżnionego dobieramy jeszcze k spośród n innych) oraz te,

w kórych ten wyróżniony element nie występuje. Tych z kolei jest
(

n
k+1

)
(wszystkie

k+ 1 elementy wybieramy spośród n – bez wyróżnionego). Z reguły dodawania (2.1)

mamy lewą stronę (L) wzoru (3.7), co kończy jego dowód.

Stosując tę samą metodę, udowodnimy jeszcze dwie następujące tożsamości:

n∑
k=1

k

(
n

k

)
= n2n−1, (3.13)

l∑
k=0

(
n

k

)(
m

l − k

)
=

(
m+ n

l

)
, l ≤ min(n,m). (3.14)

Co do (3.13), każda ze stron pokazuje inny sposób wykonania tego samego zada-

nia, a mianowicie wybrania spośród n osób wszystkich k-osobowych komitetów, k =

1, . . . , n, z wyróżnioną jedną osobą np. przewodniczącym. Według lewej strony (L)

ustalamy najpierw liczebność komitetu k, potem na
(
n
k

)
sposobów wybieramy jego

członków, na koniec spośród nich wybieramy przewodniczącego (na k sposobów).

Według strony prawej (P) wybieramy naprzód spośród wszystkich n osób przewodni-

czącego (na n sposobów), a potem spośród pozostałych n − 1 osób, z których każda

ma 2 możliwości: przyłączyć się, bądź nie, dobieramy mu członków komitetu. Postać

zarówno prawej, jak i lewej strony wynika z fundamentalnej reguły mnożenia (2.5).

Wzór (3.14) także da się uzasadnić rozpatrując tworzenie komitetów. Tym razem

jednak ich liczebność l będzie ustalona, a wyboru będziemy dokonywać spośród n pań

oraz m panów. Z jednej więc strony (P) wiadomo, że takich komitetów jest
(
m+n

l

)
.

Z drugiej, co pokazuje strona (L), możemy je wszystkie pogrupować ze względu na

liczbę k zasiadających w nich pań, k = 0, 1, . . . , l, l ≤ min(n,m). Przy ustalonym

k, komitetów l- osobowych możemy utworzyć
(
n
k

)(
m
l−k

)
. Rzeczywiście każdej grupie k

pań odpowiada dowolna dopełniająca do liczby l grupa l − k panów. Stosując znów

regułę mnożenia (2.5) mamy powyższy wynik.



Warto jeszcze zwrócić uwagę na następujący szczególny przypadek wzoru (3.14):

n∑
k=0

(
n

k

)2

=

(
2n

n

)
, (3.15)

który otrzymujemy od razu z (3.14) kładąc m = l = n. Rzeczywiście, ponieważ(
n

n− k

)
=

(
n

k

)
,

więc
n∑

k=0

(
n

k

)(
n

n− k

)
=

n∑
k=0

(
n

k

)2

=

(
n+ n

n

)
.


