
Rozdział 4

Podziały

4.1 Podziały zbiorów

Na początek rozważmy następujący

Przykład 4.1.

a) Zbiór n-elementowy można podzielić między trzy osoby A,B,C na 3n sposobów.

Każdy bowiem podział można przedstawić jako wektor (x1, ... xn), gdzie xi ∈ {A,B,C}.

b) Podziałów takich, że każda osoba coś dostanie jest

3n − 3(2n − 2)− 3 = 3(3n−1 − 2n + 1),

ponieważ musimy wykluczyć przypadek, gdy elementy zbioru podzielone zostaną między

dowolne dwie osoby (A i B, A i C, B i C) oraz, gdy wszystko dostanie jedna z trzech

osób A,B,C.

c) Natomiast liczba podziałów w przypadku dzielenia tego zbioru na trzy niepuste części

wynosi
1

3!
· 3(3n−1 − 2n + 1) =

1

2
(3n−1 − 2n + 1)

d) Jeżeli liczebność zbioru, który dzielimy jest liczbą podzielną przez trzy (n = 3k), to l

podziałów takich, że każdej osobie przypadnie dokładnie po k elementów jest(
3k
k

)(
2k
k

)(
k
k

)
=

(3k)!

k!k!k!
,

a podziałów na trzy równe części jest (3k)!
3!(k!)3

.

1



Ogólnie:

Niech Bn będzie liczbą wszystkich podziałów zbioru n-elementowego na rozłączne i nie-

puste podzbiory, których kolejność jest nieistotna. Dla ustalenia uwagi i prostszego zapisu

przyjmiemy, że rozważany n-elementowy zbiór to zbiór {1, 2, ... , n}.
Pokażemy, że ciąg {Bn, n = 0, 1, ...}, który nazywamy liczbami Bella, spełnia następujące
równanie rekurencyjne:

Bn+1 =
n∑

k=0

(
n
k

)
Bn−k =

n∑
l=0

(
n
l

)
Bl, B0 = 1. (4.1)

Dowód. W każdym podziale bierzemy pod uwagę zbiór, który zawiera element n+1. Może

on mieć jeszcze k innych elementów, gdzie 0 ≤ k ≤ n. Wybiera się je na
(
n
k

)
sposobów, a

pozostałe n− k elementy są dzielone na podzbiory na Bn−k sposobów.

Przykład 4.2.

Obliczmy według powyższego wzoru liczbę podziałów zbioru {1, 2, 3, 4}. Mamy

B1 = B0 = 1, B2 =
1∑

l=0

(
1
l

)
Bl = B0 +B1 = 2, B3 =

2∑
l=0

(
2
l

)
Bl = B0 + 2B1 +B2 = 5,

B4 =
3∑

l=0

(
3
l

)
Bl = B0 + 3B1 + 3B2 +B3 = 15.

Liczby Bella można też określić następująco:

Bn =
n∑

k=0

S(n, k), (4.2)

gdzie S(n, k) oznacza liczbę podziałów n-elementowego zbioru na k niepustych podzbiorów,

których kolejność jest nieistotna. Przyjmujemy, że

S(n, k) =


0, n < k

0, k = 0, n > 0

1, k = 0, n = 0

(4.3)

Liczby S(n, k) noszą nazwę liczb Stirlinga II rodzaju.

Przykład 4.3.

Wyliczmy jeszcze raz B4 korzystając tym razem z (4.2). Mamy kolejno:

S(4, 0) = 0, S(4, 1) = S(4, 4) = 1, S(4, 2) = 7, S(4, 3) = 6,



ponieważ można wyznaczyć 3 podziały na 2 dwuelementowe podzbiory i 4 podziały na

1 podzbiór trójelementowy i 1 jednoelementowy oraz 6 podziałów, w których wystąpi 1

podzbiór dwuelementowy i 2 jednoelementowe. Sumując otrzymujemy, jak poprzednio, że

B4 = 15.

Uwaga. Ciąg {S(n, k), n = 1, 2, ...; k = 1, 2, ..., n } spełnia równanie rekurencyjne
postaci:

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k). (4.4)

Dowód. We wszystkich podziałach wyróżniamy te, które zawierają jednoelementowy pod-

zbiór {1} oraz te, które go nie zawierają. Tych pierwszych jest S(n − 1, k), bo mamy do

podziału na k − 1 podzbiorów zbiór (n− 1)-elementowy. Podziały w drugiej grupie są two-

rzone w następująco: zbiór {2, 3, ..., n} dzielimy na k niepustych podzbiorów, co można zrobić
na S(n− 1, k) sposobów i do jednego z nich, a więc na k sposobów, dołączamy {1}.

Zauważmy, że w Przykładzie 4.1 c) wyliczyliśmy jawną postać S(n, 3) dla n = 1, 2, ... Poniżej

pokażemy, że otrzymane wyrażenie spełnia wzór rekurencyjny (4.4) dla k = 3 :

S(n, 3) = S(n− 1, 2) + 3S(n− 1, 3) =
1

2!
(2n−1 − 2) + 3(

1

3!
(3n−1 − 3 · 2n−1 + 3))

=
1

3!
(3n − 3 · 2 · 2n−1 + 3) =

1

3!
(3n − 3 · 2n + 3).

Innym przypadkiem, w którym łatwo wyznacza się jawny wzór na S(n, k) jest k = n− 2.

Otrzmujemy wtedy mianowicie

S(n, k) = S(n, n− 2) = 3

(
n
4

)
+

(
n
3

)
.

Dowód.Wszystkie podziały zbioru {1, 2, ..., n} na n−2 niepuste podzbiory dzielimy na dwie
grupy: te, w których występują n−3 podzbiory jednoelementowe i jeden podzbiór trójelemen-
towy oraz te, w których występują n− 4 podzbiory jednoelementowe i dwa dwuelementowe.

Każdy podział z pierwszej grupy jest jednoznacznie określony przez wybór trzech elementów

tworzących jeden podzbiór, a więc w tej grupie jest
(
n
3

)
podziałów. Aby wyznaczyć podział

z drugiej grupy należy ustalić cztery elementy tworzące dwa dwulementowe podzbiory. Taki

podział można wyznaczyć na
(
n
4

)
sposobów. Następnie te podzbiory należy podzielić na

dwuelementowe podzbiory. To można zrobić na trzy sposoby: np. dla zbioru 1, 2, 3, 4 mamy

następujące podziały:

{1, 2, 3, 4} =


{1, 2} ∪ {3, 4}
{1, 3} ∪ {2, 4}
{1, 4} ∪ {2, 3}

.



Uwaga. Ogólnie, dla n = 1, 2, ...; k = 1, 2, ..., n zachodzi wzór

S(n, k) =
1

k!

k∑
i=1

(−1)k−l
(
k
l

)
ln.

Dowód indukcyjny ze względu na n. Stosując wzór rekurencyjny (4.4) mamy następujący

ciąg równości:

S(n+ 1, k) = S(n, k − 1) + kS(n, k)

=
1

(k − 1)!

k−1∑
l=1

(−1)k−1−l
(
k − 1
l

)
ln +

k

k!

k∑
l=1

(−1)k−l
(
k
l

)
ln

=
1

(k − 1)!

k−1∑
l=1

(−1)k−l(−1)
(
k − 1
l

)
ln +

1

(k − 1)!

k−1∑
l=1

(−1)k−l
(
k
l

)
ln

+
1

(k − 1)!
kn (1)

=
1

(k − 1)!

k−1∑
l=1

(−1)k−l ln
((

k
l

)
−
(
k − 1
l

))

+
kn

(k − 1)!
=

1

(k − 1)!

k−1∑
l=1

(−1)k−lln
(
k − 1
l − 1

)
+

kn

(k − 1)!

=
1

(k − 1)!

k∑
l=1

(−1)k−l
(
k − 1
l − 1

)
ln

(2)
=

1

(k − 1)!k

k∑
l=1

(−1)k−l
(
k
l

)
ln+1

=
1

k!

k∑
l=1

(−1)k−l
(
k
l

)
ln+1,

gdzie równości oznaczone przez (1) i (2) wynikają z następujących zależności:

(1)

(
k
l

)
=

(
k − 1
l

)
+

(
k − 1
l − 1

)
,

(2)

(
k − 1
l − 1

)
=

l

k

(
k
l

)
.

4.2 Podziały liczb

Nieuporządkowanym podziałem liczby naturalnej n na k dodatnich składników nazywamy

każde przedstawienie liczby n w postaci sumy:

n = a1 + a2 + ...+ ak, a1 ≥ a2 ≥ ... ≥ ak ≥ 1 (4.5)

Warunek monotoniczności uniezależnia podział od kolejności składników.

Liczbę wszystkich nieuporządkowanych podziałów liczby n na k dodatnich składników ozna-

czamy przez P (n, k).



Przykład 4.4.

Dla n = 7 i k = 4 mamy P (7, 4) = 3, ponieważ

7 = 4 + 1 + 1 + 1, 7 = 3 + 2 + 1 + 1, 7 = 2 + 2 + 2 + 1

oraz dla n = 9 i k = 4 mamy P (9, 4) = 6, ponieważ

9 = 6+1+1+1 = 5+2+1+1 = 4+3+2+1 = 4+2+2+1 = 3+3+2+1 = 3+2+2+2.

W ogólnym przypadku nie ma jawnego wzoru na P (n, k). Zachodzi natomiast następujący

wzór rekurencyjny:

P (n, k) = P (n− 1, k − 1) + P (n− k, k).

Dowód. Wszystkie nieuporządkowane podziały liczby n postaci (4.5) dzielimy na te, dla

których ak = 1 oraz te, w których ak ≥ 2. Tych pierwszych jest P (n − 1, k − 1), ponieważ

mamy podzielić na k − 1 składników liczbę n − 1. Dla tych drugich zauważmy, że warunek

(4.5) jest równoważny następującemu:

n− k · 1 = (a1 − 1) + (a2 − 1) + ...+ (ak − 1), a1 ≥ a2 ≥ ... ≥ ak ≥ 2,

czyli

n− k = a′1 + a′2 + ...+ a′k, a′1 ≥ a′2 ≥ ... ≥ a′k ≥ 1.

Oznacza to, że nieuporządkowanych podziałów liczby n na k składników z ak ≥ 2 jest tyle,

ile nieuporządkowanych podziałów liczby n− k na k składników, czyli P (n− k, k).

Łatwo także zauważyć, że

• P (n, k) = 0 dla k > n;

• P (n, k) = 1 dla k = n;

• P (n, 1) = 1;

• P (n, n− 2) = 2, ponieważ n = 3 + 1× (n− 3) oraz n = 2 + 2 + 1× (n− 4);

• P (n, 2) = [n
2
], gdzie [x] oznacza część całkowitą liczby x, ponieważ

jeśli n = 2k, to n = (2k − 1) + 1 = (2k − 2) + 2 = . . . = k + k,

jeśli n = 2k + 1, to n = (2k) + 1 = (2k − 1) + 2 = . . . = (k + 1) + k.

W obu zatem przypadkach P (n, 2) = k = [2k
2
] = [2k+1

2
].

Ponadto prawdziwe są następujące oszacowania P (n, k):



• P (n, k) ≤
(
n−1
k−1

)
, ponieważ

(
n−1
k−1

)
jest liczbą wszystkich, a nie tylko spełniających wa-

runek (4.5), rozmieszczeń n ≥ k kul w k różnych komórkach tak, by żadna nie była

pusta;

• P (n, k) ≥ 1
k!

(
n−1
k−1

)
, ponieważ każdemu nieuporządkowanemu podziałowi liczby n odpo-

wiada co najwyżej k! rozmieszczeń n kul w k komórkach, takich, by żadna nie pozostała

pusta.

Łącząc powyższe nierówności mamy zatem

1

k!

(
n− 1

k − 1

)
≤ P (n, k) ≤

(
n− 1

k − 1

)
.

Niestety, otrzymane tak oszacowania wielkości P (n, k) nie są zbyt dokładne. Aby się

o tym przekonać, przyjmijmy np. n = 8 oraz k = 5 i wyliczmy dolne i górne ogranicze-

nie:
1

5!

(
7

4

)
=

7

24
,

(
7

4

)
= 35.

Dają nam one oszacowanie P (8, 5) postaci

7

24
≤ P (8, 5) ≤ 35.

Trudno je jednak uznać za zadawalające wiedząc, że P (8, 5) = 3.


