
Rozdział 5

Elementy rachunku
prawdopodobieństwa

5.1 Definicje i podstawowe własności

Rozważmy doświadczenie losowe, czyli takie, którego poszczególne wyniki zależą od pew-

nego mechanizmu losowego. Za typowe doświadczenia losowe zwykło się uważać rzuty monety

lub kostki, rozdawanie kart z potasowanej talii, losowanie kul z urny, loterię, grę w ruletkę,

trafianie do celu na tarczy strzelniczej.

Oznaczmy przez Ω zbiór możliwych wyników w doświadczeniu losowym. Będziemy je nazy-

wać zdarzeniami elementarnymi, Ω – przestrzenią zdarzeń (elementarnych). Pod-

zbiór A przestrzeni zdarzeń Ω nazywamy zdarzeniem, a jego elementy – zdarzeniami

elementarnymi sprzyjającymi zdarzeniu A. Zbiór pusty ∅ nosi nazwę zdarzenia nie-

możliwego, dopełnienie A′ zbioru A zdarzeń elementarnych nazywamy zdarzeniem prze-

ciwnym do A. Iloczyn zdarzeń A ∩ B odpowiada jednoczesnemu zajściu zdarzeń A

i B, a suma zdarzeń A i B – zajściu co najmniej jednego z nich. Jeśli A ∩ B = ∅, to

mówimy, że zdarzenia A i B wykluczają się. Zauważmy, że działania dodawania, mnożenia

i brania dopełnień na zdarzeniach podlegają prawom (1.1) – (1.8).

Pojęcie prawdopodobieństwa wprowadzimy naprzód dla skończonej przestrzeni zdarzeń

elementarnych Ω = {ω1, . . . , ωn}.

Definicja 5. 1. (Prawdopodobieństwa) Funkcję P przyporządkowującą każdemu zda-

rzeniu elementarnemu ωi wartość P (ωi), i = 1, . . . , n, taką, że

P (ωi) ≥ 0, i = 1, . . . , n oraz
n∑

i=1

P (ωi) = 1 (5.1)

nazywamy prawdopodobieństwem dyskretnym skończonym.
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Dla dowolnego zdarzenia A ⊂ Ω prawdopodobieństwo określamy jako

P (A) =
∑

{i: ωi∈A}

P (ωi). (5.2)

W szczególności, jeśli przyjmiemy P (ωi) = 1
n
, i = 1, . . . , n, to powyższy wzór przyjmie

postać

P (A) =
|A|
|Ω|

, (5.3)

znaną jako klasyczna definicja prawdopodobieństwa.

Zauważmy, że prawdopodobieństwo dane wzorem (5.2) ma następujące własności:

W1. jest wielkością nieujemną,

W2. prawdopodobieństwo sumy skończonej liczby zdarzeń parami wykluczających się jest

równe sumie prawdopodobieństw tych zdarzeń,

W3. prawdopodobieństwo przestrzeni zdarzeń wynosi 1.

Rozważymy teraz dwa przykłady prawdopodobieństwa dyskretnego skończonego.

Przykład 5. 1.

1. Przy rzucie trzech kostek: białej, zielonej i brązowej zdarzeniem elementarnym jest 3-

elementowy ciąg, którego pierwszy wyraz oznacza wynik na kostce białej, drugi – na

zielonej, a trzeci – na brązowej. Przestrzeń zdarzeń możemy więc zapisać w postaci

Ω = {ω = (x1, x2, x3) : xi = 1, . . . , 6, i = 1, 2, 3}

Znajdźmy prawdopodobieństwo zdarzenia A polegającego na tym, że suma ”wyrzuco-

nych” oczek wynosi co najmniej 17.

Zdarzenie A opiszemy jako

A = {ω ∈ Ω : x1 + x2 + x3 ≥ 17}.

Jeśli wszystkie kostki są symetryczne, przypisanie każdemu wynikowi (zdarzeniu ele-

mentarnemu) jednakowego prawdopodobieństwa jest uzasadnione. Możemy więc za-

stosować wzór (5.3). Na mocy (1.13) widzimy, że |Ω| = 63. Dla obliczenia liczebności

zdarzenia A, zauważmy, że tworzą go następujące zdarzenia elementarne: (6,6,6) oraz

(5,6,6), (6,5,6), (6,6,5), a zatem |A| = 4. Zgodnie więc z podaną definicją

P (A) =
4

63
=

1

54
.

2. W totolotku wybieramy 6 liczb spośród {1, 2, . . . , 49}. Zyskujemy udział w pierwszej

nagrodzie (oznaczmy to zdarzenie przez A), jeśli wytypujemy wszystkie liczby (jest ich



także sześć) otrzymane w publicznym losowaniu. Obliczmy prawdopodobieństwo tego

zdarzenia.

Zgodnie z (3.3) mamy |Ω| =
(
49
6

)
= 13 983 816 oraz |A| = 1. Stąd na mocy (5.3)

P (A) =
1(
49
6

) = 0.0000000715.

3. Między troje dzieci dzielimy losowo dwanaście zabawek. Obliczmy prawdopodobieństwo

zdarzenia A, że każde z nich otrzyma cztery zabawki.

Przestrzeń zdarzeń związaną z tym doświadczeniem możemy zapisać w postaci

Ω = {ω = (x1, x2, . . . , x12) : xi = 1, 2, 3, i = 1, 2, . . . , 12}.

Jej liczność na mocy wzoru (3.4) wynosi |Ω| = 312 = 531 441, natomiast z (3.6) widzimy,

że |A| = 12!
4!4!4!

, skąd

P (A) =
12!

(4!)3312
= 0.065.

Przykład 5. 2. Przy rzucie dwóch nierozróżnialnych kostek zdarzeniem elementarnym

jest 2-elementowy zbiór. Przestrzeń zdarzeń tego doświadczenia losowego przedstawia się

następująco:

Ω = {ω = {x1, x2} : xi = 1, . . . , 6, i = 1, 2}

= {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6},

{2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}}.

Tak więc |Ω| = 21. Znajdźmy prawdopodobieństwo zdarzenia A polegającego na tym, że

mniejszy z wyników wynosi co najmniej 5, czyli zdarzenia postaci

A = {ω ∈ Ω : min{x1, x2} ≥ 5}.

Wydaje się, że w tym doświadczeniu losowym wyniki nie są jednakowo prawdopodobne

(możemy się spodziewać, że np. wynik {1,2} pojawi się częściej niż {1,1}) i posługiwanie się

wzorem (5.3) jest nieuzasadnione. W celu określenia prawdopodobieństwa na przestrzeni Ω

zdefiniujemy je naprzód dla poszczególnych zdarzeń elementarnych w następujący sposób:

Tab. 1.

ωi {1,1} . . . {6,6} {1,2} . . . {1,6} {2,3} . . . {2,6} . . . {5,6}

P (ωi)
1
36

. . . 1
36

2
36

. . . 2
36

2
36

. . . 2
36

. . . 2
36



Tak zadane prawdopodobieństwo spełnia warunki (5.1), ponieważ

P (ωi) ≥ 0, i = 1, 2, . . . , 21 oraz
21∑
i=1

P (ωi) = 6 · 1

36
+ 15 · 2

36
= 1.

Rozważane zdarzenie A tworzą następujące zdarzenia elementarne: {5, 5}, {6, 6} oraz

{5, 6}, a zatem zgodnie ze wzorem (5.2) jego prawdopodobieństwo wynosi

P (A) = 2 · 1

36
+

2

36
=

1

9
.

Nietrudno zauważyć, że odpowiednio zmodyfikowana definicja 1 może być również stosowana

w przypadku przeliczalnej przestrzeni zdarzeń.

Przykład 5. 3. Rozważmy doświadczenie losowe polegające na rzucaniu symetryczną

monetą do momentu pierwszego pojawienia się orła. Zdarzeniem elementarnym jest tu więc

numer rzutu, w którym po raz pierwszy wypadnie orzeł, a przestrzeń Ω możemy przedstawić

jako:

Ω = {ω1, ω2, . . .} = {1, 2, . . . , }.

Prawdopodobieństwo zdarzeń elementarnych określamy następująco:

P (ωi) = P (i) =
1

2i
, i = 1, 2, . . . ,

a dla dowolnego zdarzenia A ⊂ Ω zgodnie ze wzorem (5.2). Łatwo widać,że

P (ωi) ≥ 0, i = 1, 2, . . . , oraz
∞∑
i=1

P (ωi) =
∞∑
i=1

1

2i
=

1

2
· 1

1− 1
2

= 1.

Jest to przykład prawdopodobieństwa dyskretnego nieskończonego.

Przedstawimy teraz najważniejsze własności prawdopodobieństwa wynikające z wła-

sności (W1) – (W3).

Jeśli A ⊂ B, to P (A) ≤ P (B), (monotoniczność) (5.4)

P (A′) = 1− P (A), (5.5)

P (A) ≤ 1, (5.6)

P (A ∪B) = P (A) + P (B)− P (A ∩B), (5.7)

P (
n⋃

i=1

Ai) ≤
n∑

i=1

P (Ai) (nierówność Boole’a). (5.8)



Dowody.

(i) Jeśli A ⊂ B, to B = A ∪ (B \ A), przy czym zdarzenia A oraz B \ A wykluczają się.

Stąd na mocy własności (W2) P (B) = P (A) +P (B \A). Biorąc z kolei pod uwagę własność

(W1), widzimy, że P (B \ A) ≥ 0, czyli

P (B)− P (A) = P (B \ A) ≥ 0, (5.9)

co jest równoważne nierówności (5.4).

(ii) Równość (5.5) wynika bezpośrednio z równości we wzorze (5.9), jeśli przyjmiemy B = Ω

oraz skorzystamy z własności (W3).

(iii) Nierówność (5.6) jest szczególnym przypadkiem (5.4), jeśli przyjmiemy B = Ω oraz sko-

rzystamy z tego, że P (Ω) = 1.

(iv) Zauważmy, że dla dowolnych zdarzeń A oraz B, ich sumę możemy przedstawić w nastę-

pujący sposób

A ∪B = A ∪ (B \ (A ∩B)),

przy czym zdarzenia A oraz B \ (A ∩B) wykluczają się. Na mocy (W2) i (5.9) zachodzi

P (A ∪B) = P (A) + P (B \ (A ∩B)) = P (A) + P (B)− P (A ∩B),

ponieważ A ∩B ⊂ B. Prawdziwa jest zatem równość (5.7).

(v) Nierówność (5.8) udowodnimy metodą indukcji zupełnej.

Dla n = 2 wynika ona bezpośrednio z (5.7) oraz tego, że P (A ∩B) ≥ 0.

Zakładając prawdziwość nierówności dla n, zauważmy, że na mocy prawa łączności dodawa-

nia zdarzeń (1.3) i ponownie wzoru (5.7) mamy

P (
n+1⋃
i=1

Ai) = P (
n⋃

i=1

Ai) + P (An+1)− P ((
n⋃

i=1

Ai) ∩ An+1).

Prawdziwość tezy dla n + 1 otrzymujemy z założenia indukcyjnego oraz tego, że wyrażenie

P ((
⋃n

i=1Ai) ∩ An+1) jest nieujemne. ♦

5.2 Niezależność zdarzeń

Niech A,B ⊂ Ω będą zdarzeniami takimi, że

P (A ∩B) = P (A) · P (B). (5.10)

Równość tę przyjmujemy za definicję niezależności dwóch zdarzeń A,B.

Uogólniając, definiujemy niezależność rodziny zdarzeń.



Definicja 5. 2. Niech C będzie dowolną rodziną zdarzeń. Jeśli dla każdej skończonej

podrodziny {A1, . . . , An} zdarzeń z C spełniony jest warunek

P (
n⋂

i=1

Ai) =
n∏

i=1

P (Ai), (5.11)

to rodzinę tę nazywamy rodziną zdarzeń niezależnych.

Należy tutaj podkreślić, że niezależność zdarzeń określona równością (5.11) jest własnością

silniejszą niż tzw. niezależność parami zdarzeń oznaczająca zachodzenie dla każdej pary

z rozpatrywanej rodziny zdarzeń równości (5.10). Pokazuje to także pierwszy z poniższych

przykładów.

Przykład 5. 4. Niech Ω = {ω1, ω2, ω3, ω4}, F oznacza rodzinę wszystkich podzbiorów

Ω oraz P ({ωi}) = 1
4
, i = 1, . . . , 4. Rozważmy zdarzenia

A = {ω1, ω2}, B = {ω2, ω3}, C = {ω3, ω1}.

Rodzina C = {A,B,C} nie jest rodziną zdarzeń niezależnych, ponieważ

P (A ∩B ∩ C) = P (∅) = 0 6= P (A) · P (B) · P (C) = 1
8
,

jakkolwiek każda para zdarzeń jest parą zdarzeń niezależnych, na przykład

P (A ∩B) = P ({ω2}) = 1
4

= P (A) · P (B) = 1
2
· 1
2
.

Przykład 5. 5. Jeśli {A1, . . . , Ak} stanowi rodziną zdarzeń niezależnych, to rodzina

zdarzeń przeciwnych {A′1, . . . , A′k} także stanowi rodzinę zdarzeń niezależnych.

Dowód pozostawiamy jako ćwiczenie.

Przykład 5. 6. Dwa miejsca A i B połączone są trzema ścieżkami, na których jest pięć

mostów zwodzonych usytuowanych według następującego planu (patrz rys. 3.):


...........A 0.4 B.................

.................
.................
.................
.............................................................................................

.........................
..

.................................................................................................................................................................................
...........

.................
.................
.................
.................
....................................................................................

........................................................................................................................................................

......................................................................................................................................................................................................................................................................................................................
...........

......................................................................................................................................................................................................................................................................................................................
...........

0.2

0.1

0.2

0.5

rr rr rr rr rr rrrrrr

rr

rr

rr

rr

rr
rrrr

rrrr

rr rr rr

rr rr rr



Rys. 3.

Mosty podnoszone są niezależnie z prawdopodobieństwami zaznaczonymi na planie.

Obliczmy prawdopodobieństwo zdarzenia D, że chociaż jedna scieżka jest przejezdna.

Oznaczmy przez Di zdarzenie, że i. ścieżka jest przejezdna. Wtedy na mocy prawa de Mor-

gana

P (D) = P (D1 ∪D2 ∪D3) = 1− P (D′1 ∩D′2 ∩D′3).

Z danych na planie i założonej niezależności mamy

P (D′1) = 1− P (D1) = 1− (1− 0.2)2 = 0.36,

P (D′2) = 0.4,

P (D′3) = 1− P (D3) = 1− (1− 0.1) · (1− 0.5) = 0.55

i ostatecznie P (D) = 1− 0.36 · 0.4 · 0.55 = 0.921.

Przykład 5. 7. Dwaj gracze rzucają na zmianę dwie kostki. Jeśli gracz A, który roz-

poczyna grę, otrzyma sumę oczek równą 6 przed uzyskaniem przez gracza B sumy oczek

równej 7, to wygrywa. Obliczmy prawdopodobieństwo zdarzenia A oznaczającego wygraną

gracza A.

Wprowadźmy zdarzenia Bi polegające na tym, że gra zakończy się w i. rzucie, i = 1, 3, 5, . . . .

Ponieważ zdarzenia te wykluczają się, a ich suma jest całą przestrzenią Ω, więc zachodzi rów-

ność

P (A) =
∑
i

P (A ∩Bi).

Ponadto, zdarzenie A ∩ Bi oznacza, że we wszystkich próbach o numerach mniejszych niż

i zarówno gracz A, jak i B nie uzyskał wymaganej sumy oczek i dopiero w i. rzucie suma

oczek otrzymana przez gracza A wynosi 6. Pamiętając, że wyniki poszczególnych prób są

niezależne, mamy zatem

P (A ∩Bi) =
31

36
· 30

36
· 31

36
· 30

36
· . . . · 31

36
· 30

36
· 5

36
=

5

36
·
(

31 · 30

36 · 36

) i−1
2

.

Stąd

P (A) =
5

36

∞∑
k=0

(
31 · 30

36 · 36

)k

=
30

61
.



5.3 Ciągi binarne i schemat Bernoullego

5.3.1 Serie w ciągu binarnym

Ciąg binarny złożony z n jedynek i m zer nazywamy (n,m)−ciągiem. Takich ciągów jest(
n + m

n

)
=

(
n + m

m

)
. (5.12)

Na przykład (0, 0, 1, 1, 0, 1, 1, 1) jest (5, 3)−ciągiem.

Serią nazywamy podciąg kolejnych jednakowych elementów. W powyższym przykładzie

mamy cztery serie. Zauważmy, że serie zer i jedynek przeplatają się i dlatego ich liczby

są jednakowe albo różnią się o jeden.

Przyjmując np. 1 ≤ n ≤ m mamy, że liczba R serii dowolnego (n,m)−ciągu ma następujące

oszacowanie:

2 ≤ R ≤

{
2n, n = m

2n + 1, n ≤ n
(5.13)

Uwaga. Obliczmy, ile jest (n,m)−ciągów o ustalonej liczbie R serii.

• Niech R = 2k. Jest zatem k serii jedynek oraz k serii zer. Jeżeli potraktujemy serie jako

niepuste komórki, to mamy do rozmieszczenia n jedynek w k komórkach oraz m zer

także w k innych komórkach tak, by żadna komórka nie pozostała pusta. Jak wiemy,

takich rozmieszczeń jest 2
(
n−1
k−1

)
·
(
m−1
k−1

)
. Czynnik 2 występuje stąd, że zarówno zera jak

i jedynki mogą tworzyć pierwszą serię.

• Niech R = 2k+1. Wtedy może być (k+1) serii jedynek oraz k serii zer, bądź odwrotnie.

Zatem w tym przypadku (n,m)−ciągów mamy
(
n−1
k

)
·
(
m−1
k−1

)
+
(
n−1
k−1

)(
m−1
k

)
.

Przykład 5. 8. Obliczmy prawdopodobieństwo p tego, że losowy (n,m)−ciąg ma pa-

rzystą liczbę serii.

I. sposób.

p =
2
∑n

k=1

(
n−1
k−1

)(
m−1
k−1

)(
n+m
n

) =
2
∑n−1

k=0

(
n−1
k

)(
m−1
k

)(
n+m
n

) =
2
∑n−1

k=0

(
n−1

n−1−k

)(
m−1
k

)(
n+m
n

)
=

2
(
n−1+m−1

n−1

)(
n+m
n

) =
2
(
n+m−2
n−1

)(
n+m
n

) =
2mn

(n + m)(n + m− 1)
.

II. sposób.

Zauważmy, że w (n,m)−ciągu binarnym o parzystej liczbie serii pierwszy i ostatni



element muszą się różnić. Ponieważ możemy je ustalić na dwa sposoby, a pozostałe

elementy na
(
n+m−2
n−1

)
sposobów, więc

p =
2
(
n+m−2
n−1

)(
n+m
n

) =
2mn

(n + m)(n + m− 1)
.

Ponadto, gdy n = m, to p = n
2n−1

n→∞→ 1
2
.

5.3.2 Ciągi binarne zdominowane

Binarny (n,m)−ciąg nazywamy ciągiem zdominowanym przez zera, jeśli dla każdego

i = 1, . . . , n + m na pierwszych i miejscach tego ciągu znajduje się co najmniej tyle zer, co

jedynek.

Niech d(n,m) oznacza liczbę takich (n,m)−ciągów. Można pokazać, że dla m ≤ n

d(n,m) =
m + 1− n

m + 1

(
n + m

n

)
. (5.14)

Liczby

d(n, n) =
1

n + 1

(
2n

n

)
, n = 1, 2, ... to liczby Catalana.

Przykład 5. 9. W 20-osobowej kolejce do kina 10 osób ma monetę 5-złotową, a pozo-

stałe osoby banknot 10-złotowy. Zakładając, że w chwili rozpoczęcia sprzedaży w kasie nie

ma żadnych pieniędzy, a bilet kosztuje 5 zł, obliczmy prawdopodobieństwo zdarzenia A, że

nikt nie będzie czekał na wydanie reszty.

Kolejkę można uważać za ciąg binarny typu (10, 10), gdzie jedynka oznacza osobę z bank-

notem, a zero osobę z monetą. Wtedy |A| = d(10, 10), a |Ω| =
(
10+10
10

)
. Stąd na mocy (5.14)

mamy

P (A) =
d(10, 10)(

20
10

) =
10 + 1− 10

10 + 1
=

1

11
.

5.3.3 Schemat Bernoullego i liczba sukcesów

Schematem Bernoullego nazywamy ciąg niezależnych prób, z których każda może za-

kończyć się albo sukcesem, albo porażką, a prawdopodobieństwo sukcesu w pojedynczej

próbie wynosi p.

Niech dla k = 0, . . . , n Ak,n oznacza, że w serii n prób wystąpiło k sukcesów. Na przykład

dla n rzutów kostki, gdy sukces to wypadnięcie trzech oczek, mamy:

P (A0,n) =

(
5

6

)n

oraz P (An,n) =

(
1

6

)n

.



Niech Bi,n oznacza zdarzenie, że i. próba zakończyła się sukcesem. Zatem

P (Bi,n) = p i = 1, . . . , n.

Wtedy

P (Ak,n) =
∑

{i1,...,ik}

P (Bi1 ∩Bi2 ∩ ... ∩Bik ∩B′ik+1
∩ ... ∩B′in)

=
∑

{i1,...,ik}

pk(1− p)n−k =

(
n

k

)
pk(1− p)n−k.

Tu sumowanie przebiega po wszystkich k−elementowych podzbiorach zbioru indeksów {1, . . . , n}.
Uwaga.

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p + (1− p))n = 1, pk(1− p)n−k ≥ 0,

dla k = 0, ..., n i 0 ≤ p ≤ 1.

Zatem

b(k, n) =

(
n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n, 0 ≤ p ≤ 1 (5.15)

tworzą rozkład prawdopodobieństwa skończony dyskretny, zwany rozkładem dwumiano-

wym.

Przykład 5. 10.

P (co najmniej trzy razy ’trzy oczka’ w n rzutach kostki)

=1− P (co najwyżej dwa razy ’trzy oczka’ w n rzutach kostki)

=1− [P (A2,n) + P (A1,n) + P (A0,n)]

=1−

((
n

2

)(
1

6

)2(
5

6

)n−2

+

(
n

1

)(
1

6

)(
5

6

)n−1

+

(
n

0

)(
5

6

)n
)
.

Przykład 5. 11. Przypuśćmy, że awarie poszczególnych silników samolotowych występu-

jące podczas lotu są niezależnymi zdarzeniami losowymi o jednakowym prawdopodobieństwie

1− p. Załóżmy ponadto, że samolot zdoła bezpiecznie zakończyć lot, gdy sprawnych jest co

najmniej połowa jego silników. Ustalmy, dla jakich p samolot czterosilnikowy jest bardziej

niezawodny od samolotu dwusilnikowego.

Oznaczmy przez:

IV - zdarzenie, że samolot czterosilnikowy jest niezawodny (przynajmniej połowa silników

będzie sprawna)



II - zdarzenie, że samolot dwusilnikowy jest niezawodny.

Naszym zadaniem jest wyznaczyć takie p, że P (IV ) > P (II). Mamy kolejno

P (IV ) =P (A2,4) + P (A3,4) + P (A4,4) = 6p2(1− p)2 + 4p3(1− p) + p4,

P (II) =P (A1,2) + P (A2,2) = 2p(1− p) + p2.

P (IV ) > P (II) wtedy i tylko wtedy, gdy (p−1)2(3p−2) > 0. Tak jest dla p > 2
3
. Zatem należy

latać samolotem czterosilnikowym, gdy p > 2
3
, a dwusilnikowym w przeciwnym przypadku.

Schemat Bernoullego i czas czekania na sukces.

Niech Tk oznacza, że w schemacie Bernoullego o prawdopodobieństwie sukcesu p pierwszy

sukces wystąpi w k. próbie, k = 1, 2, . . . , a Bi, że i. próba zakończyła się sukcesem, i =

1, 2, ... . Wtedy

P (Tk) = P (B′1 ∩B′2 ∩ ... ∩B′k−1 ∩Bk) = (1− p)k−1 · p.

Uwaga. Dla 0 < p ≤ 1 mamy

(1− p)k−1 · p ≥ 0, k = 1, 2, ..., oraz
∞∑
k=1

(1− p)k−1 · p = p
∞∑
l=0

(1− p)l = 1.

Zatem

pk = (1− p)k−1 · p, 0 < p ≤ 1, k = 1, 2, ... (5.16)

tworzą rozkład prawdopodobieństwa przeliczalny dyskretny zwany rozkładem geome-

trycznym.


