
KOMBINATORYKA (A)
LISTA ZADA� (5) � ROZWI�ZANIA

Zadanie 1. Udowodnij, »e liczba n4

24 + n3

4 + 11n2

24 + n
4 jest caªkowita.

Rozwi¡zanie. Proste podstawienie n = 1 pokazuje, »e nie mamy co liczy¢
na to, »e liczba ta jest caªkowita dlatego, »e zawsze jest sum¡ caªkowitych.
Odpadaj¡ wi¦c wszelkie rozwa»ania o podzielno±ci poszczególnych skªadników
tej sumy. Trzeba zadane wyra»enie potraktowa¢ jako caªo±¢. Powinno by¢ jasne,
»e oznacza to sprowadzenie go do wspólnego mianownika:

n4

24
+

n3

4
+

11n2

24
+

n

4
=

n4 + 6n3 + 11n2 + 6n

24
.

Poniewa» chcemy uzasadni¢ podzielno±¢ licznika przez mianownik, to do tego
celu wygodniej b¦dzie dysponowa¢ licznikiem w postaci iloczynu. Potrzebujemy
wi¦c pierwiastków licznika. �atwo zauwa»y¢, »e w liczniku suma wspóªczyn-
ników przy parzystych pot¦gach zmiennej n (1 + 11 = 12) jest równa sumie
wspóªczynników przy jej pot¦gach nieparzystych (6 + 6 = 12). St¡d wynika,
»e −1 jest pierwiastkiem wielomianu n4 + 6n3 + 11n2 + 6n, oprócz oczywistego
0. Ta uwaga daje pierwszy rozkªad wielomianu n4 + 6n3 + 11n2 + 6n na trzy
czynniki: n4 + 6n3 + 11n2 + 6n = n(n + 1)(n2 + 5n + 6). Dalej, analizuj¡c
trójmian n2+5n+6, ªatwo ju» stwierdzi¢, »e równie» −2 i −3 s¡ pierwiastkami
licznika, co ostatecznie daje jego nast¦puj¡cy rozkªad:

n4 + 6n3 + 11n2 + 6n = n(n+ 1)(n+ 2)(n+ 3).

Zatem licznik jest iloczynem czterech kolejnych liczb naturalnych. W±ród nich
dwie na pewno s¡ parzyste, przy czym jedna z tych liczb parzystych jest podziel-
na przez 4, co daje podzielno±¢ tego iloczynu przez 8. A poniewa» co trzecia
liczba caªkowita jest podzielna przez 3, wi¦c w±ród powy»szych 4 kolejnych co
najmniej jedna jest na pewno podzielna przez 3. W rezultacie caªy iloczyn jest
podzielny przez 3 · 8 = 24, co nale»aªo udowodni¢.

Zadanie 2. a) Korzystaj¡c z wzoru dwumianowego Newtona poka», »e
p∑

k=0

(
n

k

)(
n− k

p− k

)
akbp−k =

(
n

p

)
(a+ b)p, n ≥ p ≥ 0.

Rozwi¡zanie. Naturalnym odruchem wielu z Pa«stwa jest liczenie takich
zale»no±ci w najbardziej narzucaj¡cy si¦ sposób, a wi¦c od lewej do prawej.
Natomiast podana tu wskazówka (skorzysta¢ z dwumianu Newtona) sugeruje,
»eby liczy¢ w kierunku odwrotnym, jako »e wzór dwumianowy dotyczy wyra»e«
postaci (a + b)p. Oprócz wzoru Newtona (patrz Skrypt, Rozdziaª 3, cz. 3.2,
wzór 3.8) w dalszym ci¡gu wykorzystamy równie» de�nicj¦ symbolu Newtona
�n po k�

(
n
k

)
(Skrypt, R. 3, cz. 3.1, wzór 3.3). Liczymy wi¦c:(

n

p

)
(a+ b)p =

(
n

p

) p∑
k=0

(
p

k

)
akbp−k = . . .
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Poniewa» czynnik
(
n
p

)
nie zale»y od k, wi¦c mo»emy skorzysta¢ z rozdzielno±ci

mno»enia wzgl¦dem dodawania i �wci¡gn¡¢� go �do ±rodka� sumy, co daje dalej

· · · =
p∑

k=0

(
n

p

)(
p

k

)
akbp−k = . . .

Teraz korzystamy z de�nicji symbolu (nie dwumianu!) Newtona i otrzymujemy

· · · =
p∑

k=0

n!

p!(n− p)!

p!

k!(p− k)!
akbp−k =

p∑
k=0

n!

(n− p)!

1

k!(p− k)!
akbp−k =

=

p∑
k=0

n!

k!

1

(p− k)!(n− p)!
akbp−k =

p∑
k=0

n!

k!(n− k)!

(n− k)!

(p− k)!(n− p)!
akbp−k =

=

p∑
k=0

(
n

k

)(
n− k

p− k

)
akbp−k.

W ten sposób otrzymali±my lew¡ stron¦ równo±ci podanej w zadaniu, co ko«czy
dowód.

Zadanie 2. b)Korzystaj¡c z wzoru udowodnionego w punkcie a) przez odpowied-
nie podstawienie poka», »e

p∑
k=0

(
n

k

)(
n− k

p− k

)
= 2p

(
n

p

)
,

p∑
k=0

(−1)k
(
n

k

)(
n− k

p− k

)
= 0, n ≥ p ≥ 0.

Rozwi¡zanie. �eby uzyska¢ pierwszy z powy»szych wzorów podstawiamy do
wzoru z 2 a) a = b = 1, a »eby uzyska¢ drugi � a = −b = −1.

Zadanie 3. a) Udowodnij, »e dla n ≥ 1 i a ∈ R zachodzi:

n∑
k=1

(
n

k

)
ak+1

k(k + 1)
=

n∑
k=1

(a+ 1)k+1 − 1

k(k + 1)
− a

n∑
k=1

1

k
.

Rozwi¡zanie. Stosujemy indukcj¦ po liczbie skªadników sumy, tzn. po n.
Dla n = 1 lewa strona powy»szego wzoru redukuje si¦ do a2

2 , natomiast prawa �

do (a+1)2−1
2 − a. �atwy rachunek pokazuje, »e te wyra»enia s¡ równe.

Zaªó»my wi¦c, »e powy»szy wzór zachodzi dla pewnego n. Udowodnimy, »e
przy tym zaªo»eniu zachodzi on równie» dla n+ 1. Liczymy wi¦c korzystaj¡c z
rozlicznych wªasno±ci symbolu Newtona, np.

(
n+1
k

)
=
(

n
k−1

)
+
(
n
k

)
,
(
k
k

)
= 1 czy
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( n
k−1)
k =

(n+1
k )

n+1 :

n+1∑
k=1

(
n+ 1

k

)
ak+1

k(k + 1)
=

n∑
k=1

(
n+ 1

k

)
ak+1

k(k + 1)
+

(
n+ 1

n+ 1

)
an+2

(n+ 1)(n+ 2)
=

=

n∑
k=1

((
n

k − 1

)
+

(
n

k

))
ak+1

k(k + 1)
+

an+2

(n+ 1)(n+ 2)
=

=

n∑
k=1

(
n

k − 1

)
ak+1

k(k + 1)
+

n∑
k=1

(
n

k

)
ak+1

k(k + 1)
+

(
n

n

)
an+2

(n+ 1)(n+ 2)
=

=

(
n∑

k=1

(
n

k − 1

)
ak+1

k(k + 1)
+

(
n

n

)
an+2

(n+ 1)(n+ 2)

)
+

n∑
k=1

(
n

k

)
ak+1

k(k + 1)
=

=

n+1∑
k=1

(
n

k − 1

)
ak+1

k(k + 1)
+

n∑
k=1

(
n

k

)
ak+1

k(k + 1)
= . . .

Poniewa» w kolejnych kilku przeksztaªceniach ostatni skªadnik, do którego
dopiero wtedy zastosujemy zaªo»enie idukcyjne, pozostanie niezmieniony, dla
uproszczenia zapisu oznaczymy go jako A, tzn. A =

∑n
k=1

(
n
k

)
ak+1

k(k+1) .

· · · =
n+1∑
k=1

(
n

k−1

)
k

ak+1

(k + 1)
+A =

n+1∑
k=1

(
n+1
k

)
n+ 1

ak+1

(k + 1)
+A =

1

n+ 1

n+1∑
k=1

(
n+1
k

)
k + 1

ak+1 +A =

=
1

n+ 1

n+1∑
k=1

(
n+2
k+1

)
n+ 2

ak+1 +A =
1

(n+ 1)(n+ 2)

n+1∑
k=1

(
n+ 2

k + 1

)
ak+1 +A =

=
1

(n+ 1)(n+ 2)

n+2∑
l=2

(
n+ 2

l

)
al +A =

=
1

(n+ 1)(n+ 2)

(
n+2∑
l=0

(
n+ 2

l

)
al − (n+ 2)a− 1

)
+A =

=
1

(n+ 1)(n+ 2)

(
(a+ 1)n+2 − (n+ 2)a− 1

)
+A = (def. A)

=
(a+ 1)n+2 − 1

(n+ 1)(n+ 2)
− a

(n+ 1)
+

n∑
k=1

(
n

k

)
ak+1

k(k + 1)
= (zaª. ind.)

=
(a+ 1)n+2 − 1

(n+ 1)(n+ 2)
− a

(n+ 1)
+

n∑
k=1

(a+ 1)k+1 − 1

k(k + 1)
− a

n∑
k=1

1

k
.

=

(
n∑

k=1

(a+ 1)k+1 − 1

k(k + 1)
+

(a+ 1)n+2 − 1

(n+ 1)(n+ 2)

)
−

(
a

n∑
k=1

1

k
+

a

(n+ 1)

)

=

n+1∑
k=1

(a+ 1)k+1 − 1

k(k + 1)
− a

n+1∑
k=1

1

k
. (U�!)
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Zadanie3. b) Udowodnij, »e dla n ≥ 1 i a ∈ R zachodzi:

n∑
k=1

(
n

k

)
(−1)k+1

k(k + 1)
=

n∑
k=1

1

k + 1
.

Rozwi¡zanie. Podstawiamy do 3a a = −1 i liczymy. W istocie nale»y
sprawdzi¢, »e

n∑
k=1

−1
k(k + 1)

+

n∑
k=1

1

k
=

n∑
k=1

1

k + 1
.

Zadanie 4. a) Uzasadnij kombinatorycznie lub algebraicznie, »e

n∑
k=2

k(k − 1)

(
n

k

)
= n(n− 1)2n−2, n ≥ 2.

Rozwi¡zanie. (alg.) Dwukrotnie stosujemy ªatw¡ i znan¡ Pa«stwu zale»no±¢
dotycz¡c¡ symbolu Newtona (Skrypt, R. 3, cz. 3.2, nienumerowany wzór po
3.12):

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

W rezultacie otrzymujemy

n∑
k=2

k(k − 1)

(
n

k

)
=

n∑
k=2

(k − 1)k

(
n

k

)
=

n∑
k=2

(k − 1)n

(
n− 1

k − 1

)
=

= n

n∑
k=2

(k − 1)

(
n− 1

k − 1

)
= n

n∑
k=2

(n− 1)

(
n− 2

k − 2

)
= n(n− 1)

n∑
k=2

(
n− 2

k − 2

)
=

= n(n− 1)

n−2∑
l=0

(
n− 2

l

)
= n(n− 1)2n−2.

Oczywi±cie w ostatniej równo±ci wykorzystali±my wzór dwumienny Newtona dla
a = b = 1.

Zadanie 4. b) Uzasadnij kombinatorycznie lub algebraicznie, »e

m∑
k=0

(
k

n

)
=

(
m+ 1

n+ 1

)
, m ≥ n.

Rozwi¡zanie. (alg., indukcja po m) �atwo sprawdzi¢, »e wzór ten zachodzi
dla m = 0, jako »e wtedy równie» n = 0 i lewa strona wzoru skªada si¦ tylko z
jednego skªadnika dla k = 0, tzn. z

(
0
0

)
i jest równa 1. Natomiast prawa,

(
m+1
n+1

)
,

jest wtedy równie» równa 1, gdy»
(
0+1
0+1

)
=
(
1
1

)
= 1.
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Je±li teraz zaªo»ymy, »e dla pewnego m,

m∑
k=0

(
k

n

)
=

(
m+ 1

n+ 1

)
,

to wtedy korzystaj¡c z tej równo±ci mamy:

m+1∑
k=0

(
k

n

)
=

m∑
k=0

(
k

n

)
+

(
m+ 1

n

)
=

(
m+ 1

n+ 1

)
+

(
m+ 1

n

)
=

(
m+ 2

n+ 1

)
.

A wi¦c wzór ten zachodzi równie» dla m+ 1, o ile zachodziª dla m. To ko«czy
indukcj¦.

Uwaga dla `purystów'. Zauwa»my, »e zastosowanie indukcji zwalnia nas
z konieczno±ci udzielania odpowiedzi na pytanie: �Jak interpretowa¢ symbol
Newtona

(
k
n

)
, gdy k < n?� Powy»sze rozumowanie wykazuje, »e jakkolwiek jest

on interpretowany, to zale»no±¢ podana w zadaniu jest i tak prawdziwa. Dla
czysto±ci � na ogóª

(
k
n

)
, gdy k < n, jest przyjmowane jako 0 i tak nale»y ten

symbol interpretowa¢ w tym zadaniu. Ta uwaga pozwala zdj¡¢ ograniczaj¡ce
zaªo»enie m ≥ n. Rzeczywi±cie, je»eli m < n, to wtedy wzór ten mówi po prostu
o równo±ci zer.

Zadanie 4. c) Uzasadnij kombinatorycznie lub algebraicznie, »e

l∑
k=0

(
n

k

)(
m

l − k

)
=

(
m+ n

l

)
, l ≤ min(n,m).

Rozwi¡zanie. (komb.) Przypomnijmy, »e symbol Newtona
(
n
k

)
wyra»a liczb¦

k-elementowych podzbiorów zbioru n-elementowego, tzn.(
n

k

)
= |{X : X ⊆ A ∧ |X| = k}|, gdzie|A| = n.

�atwo wtedy zrozumie¢, »e prawa strona powy»szego wzoru wyra»a liczb¦ l-
elementowych podzbiorów zbioru (m+ n)-elemntowego. Dlaczego lewa wyra»a
to samo?

No có», »eby to zrozumie¢ we¹my dwa zbiory rozª¡czne, powiedzmy A i B,
A ∩B = ∅, przy czym zaªó»my ponadto, »e A ma m elementów, tzn. |A| = m,
natomiast B ma n elementów, |B| = n. Wtedy oczywi±cie |A ∪ B| = m + n.
Niech teraz C b¦dzie dowolnym l-elementowym podzbiorem A ∪ B. Wtedy
C = C ∩ (A ∪ B) = C ∩ A ∪ C ∩ B, tzn. C rozpada si¦ na dwie rozª¡czne
cz¦±ci CA = C ∩ A oraz CB = C ∩ B, przy czym CA ⊆ A, CB ⊆ B. �atwo
sprawdzi¢ (zrob¢ to!), »e odpowiednio±¢ C ↔ (CA, CB) jest odpowiednio±ci¡
wzajemnie jednoznaczn¡. Chodzi o to, »e ilekro¢ mamy l-elementowy zbiór C,
to mamy(jednoznacznie) wyznaczone jego tzw. `±lady' na A (to jest CA) i na
B (tj. CB), przy czym CA jest co najwy»ej l-elementowym podziorem A, za±
CB � l− |CA|-elementowym podzbiorem B. Jest równie» odwrotnie � ilekro¢
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mamy X, k-elementowy podzbiór zbioru A, k ≤ l, oraz Y , (l − k)-elementowy
podzbiór B, to mo»emy je zsumowa¢ i otrzymamy l-elementowy podzbiór A∪B.
Dlatego l-elementowych podzbiorów A∪B jest tyle samo co takich par (X,Y ). Z
kolei zbiór tych par mo»emy przedstawi¢ jako sum¦ parami rozª¡cznych zbiorów
takich par (X,Y ), »e X ma ustalon¡ liczb¦ elementów k, k = 0, 1, . . . , l.

St¡d mamy(
m+ n

l

)
= |{C ⊆ A ∪B : |C| = l}| =

= |{(X,Y ) : X ⊆ A ∧ Y ⊆ B ∧ |X ∪ Y |(= |X|+ |Y |) = l}| =

= |
l⋃

k=0

{(X,Y ) : X ⊆ A ∧ |X| = k ∧ Y ⊆ B ∧ |Y | = l − k}| =

=

l∑
k=0

|{(X,Y ) : X ⊆ A ∧ |X| = k ∧ Y ⊆ B ∧ |Y | = l − k}| =

=
l∑

k=0

|{X : X ⊆ A ∧ |X| = k} × {Y : Y ⊆ B ∧ |Y | = l − k}| =

=

l∑
k=0

|{X : X ⊆ A ∧ |X| = k}| · |{Y : Y ⊆ B ∧ |Y | = l − k}| =

=

l∑
k=0

(
m

k

)
·
(

n

l − k

)
.

Zadanie 4. d) Uzasadnij kombinatorycznie lub algebraicznie, »e

n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1).

Rozwi¡zanie. (alg.; indukcja po n) Zadanie jest szkolne i wszyscy powinni
poradzi¢ sobie z nim bez wi¦kszych problemów. Ale na wszelki wypadek. . .

Najpierw sprawdzamy prawdziwo±¢ powy»szego wzoru dla n = 1. �atwo si¦
zorientowa¢, »e w tym przypadku dostaniemy to»samo±¢ 1 = 1.

Je±li natomiast wzór ten zachodzi dla pewnego n, to wtedy dla n+ 1 mamy
(z wykorzystaniem zaªo»enia indukcyjnego)

n+1∑
k=1

k2 =

n∑
k=1

k2 + (n+ 1)2 =
1

6
n(n+ 1)(2n+ 1) + (n+ 1)2 =

=
1

6
(n+ 1)(n(2n+ 1) + 6(n+ 1)) =

1

6
(n+ 1)(2n2 + 7n+ 6) =

=
1

6
(n+ 1)(n+ 2)(2n+ 3).
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Sk¡d wiemy, »e 2n2 + 7n + 6 rozkªada si¦ na (n + 2)(2n + 3)? Nie wiemy,
ale wiemy, jakiego wyniku oczekujemy, wi¦c sprawdzamy rzecz ªatwiejsz¡ ni»
rozkªad trójmianu, a mianowicie sprawdzamy, »e (n+2)(2n+3) = 2n2+7n+6.
A to wystarczy.

Zadanie 4. e) Uzasadnij kombinatorycznie lub algebraicznie, »e

n∑
k=1

k2
(
n

k

)2

= n2

(
2n− 2

n− 1

)
.

Rozwi¡zanie. (alg.) Ponownie wykorzystamy zale»no±¢ k
(
n
k

)
= n

(
n−1
k−1

)
, a

ponadto to»samo±¢
(
n
k

)
=
(

n
n−k

)
oraz Zadanie 4.c.

n∑
k=1

k2
(
n

k

)2

=

n∑
k=1

(
k

(
n

k

))2

=

n∑
k=1

(
n

(
n− 1

k − 1

))2

= n2
n∑

k=1

(
n− 1

k − 1

)2

=

= n2
n∑

k=1

(
n− 1

k − 1

)(
n− 1

k − 1

)
= n2

n∑
k=1

(
n− 1

k − 1

)(
n− 1

n− 1− (k − 1)

)
=

= n2

(
2n− 2

n− 1

)
.

Zadanie 4. f) Uzasadnij kombinatorycznie lub algebraicznie, »e

m∑
k=1

k3 =

(
m+ 1

2

)2

.

Rozwi¡zanie. (alg.; indukcja po m) Pocz¡tek indukcji dla m = 1 wszyscy
powinni umie¢ zrobi¢ sami. Krok indukcyjny ma polega¢ na udowodnieniu
wzoru dla m+ 1, a wi¦c wzoru

m+1∑
k=1

k3 =

(
m+ 2

2

)2

,

z zastosowaniem podanego w zadaniu wzoru dla m. Liczymy wi¦c

m+1∑
k=1

k3 =

m∑
k=1

k3 + (m+ 1)3 =

(
m+ 1

2

)2

+ (m+ 1)3 =

=

(
m(m+ 1)

2

)2

+ (m+ 1)3 = (m+ 1)2
(
m2

4
+m+ 1

)
=

= (m+ 1)2
(m+ 2)2

4
=

(
m+ 2

2

)2
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Zadanie 4. g) Uzasadnij kombinatorycznie lub algebraicznie, »e

l∑
i=0

(
n− i

l − i

)(
n

i

)
= 2l

(
n

l

)
, n ≥ l.

Rozwi¡zanie. (komb.) Prawa strona `liczy' ilo±¢ l-elementowych podzbiorów
zbioru n-elementowego, przy czym tym razem ka»dy z tych podzbiorów jest
liczony 2l razy. Uzasadnimy, »e lewa strona `liczy' (wyra»a) to samo.

W tym celu ustalmy A, zbiór n-elementowy. Jak mo»emy w nim zde�nowa¢
dowolny jego podzbiór l-elementowy? Na przykªad tak: Na pocz¡tek wybieramy
X, jego dowolny podzbiór i-elementowy, gdzie i = 0, 1, . . . , l. Przy ka»dym z
tych i takich podzbiorówX jest

(
n
i

)
. Nast¦pnie uzupeªniamy tego i-elementowca

X do l-elementowca dobieraj¡c l − i elementów z dopeªnienia X w A, tzn. z
A \ X. Poniewa» |A \ X| = n − i, wi¦c takich uzupeªnie« jestz kolei

(
n−i
l−i

)
.

Poniewa» ponadto wybór tego uzupeªnienia jest niezale»ny od wyboru samego
X, wi¦c przy ka»dym i = 0, 1, . . . , l ta metoda daje

(
n
i

)(
n−l
l−i

)
l-elementowych

podzbiorów zbioru A, a wi¦c ogóªem
∑n

i=0

(
n
i

)(
n−l
l−i

)
takich podzbiorów.

Powinno by¢ jednak jasne, »e liczymy te l-elementowe podzbioryA z powtórzeni-
ami. Ile razy powtarzamy? Có», policzmy. Niech wi¦c Y b¦dzie dowolnym
l-elementowym podzbiorem A. Punktem wyj±cia do uzyskania tego zadanego Y
� a wi¦c zbiorem X � mo»e by¢ jego dowolny podzbiór. (l − |X|)-elementowe
uzupeªnienie X-a b¦dzie ju» wyznaczone jednoznacznie. Zatem l-elementowy
zbiór Y jest liczony tyle razy, ile sam ma podzbiorów, tzn. 2l razy. To ko«czy
dowód.

Zadanie 4. h) Uzasadnij kombinatorycznie lub algebraicznie, »e(
2n

2

)
= 2

(
n

2

)
+ n2.

Rozwi¡zanie. (komb.) Lewa strona `liczy' ilo±¢ dwuelementowych podzbiorów,
czyli par nieuporz¡dkowanych, zbioru 2n-elementowego. Dzielimy ten zbiór na
dwie poªowy, tzn. na dwa zbiory rozª¡czne po n elementów ka»dy. Powinno
by¢ wtedy jasne, »e wspomniane wy»ej pary nieuporz¡dkowane dziel¡ si¦ teraz
na trzy rozª¡czne kategorie: (a) te, które s¡ zawarte w jednej poªowie; (b)
te, które s¡ zawarte w drugiej poªowie; (c) te, których jeden element jest w
jednej, a drugi � w drugiej poªowie. Je±li teraz policzymy, ile jest par ka»dej
z tych kategorii, to suma tych liczb da liczb¦ par pocz¡tkowego zbioru 2n-
elementowego, a wi¦c

(
2n
2

)
.

Oczywi±cie, par kategorii (a) oraz (b) jest tyle samo, mianowicie
(
n
2

)
, bo to

s¡ dwuelementowe podzbiory zbiorów n-elementowych. Natomiast par kategorii
(c) jest n2 � ka»dy z elementów takiej pary mo»emy wybra¢ niezale»nie od tego
drugiego na n sposobów. St¡d »¡dana zalezno±¢

(
2n
2

)
= 2
(
n
2

)
+ n2.

Zadanie 5. Oblicz warto±ci nast¦puj¡cych sum
n−1∑
k=0

(a+ bk) =

n−1∑
k=0

a+

n−1∑
k=0

bk = na+ b

n−1∑
k=0

k = na+ b
(n− 1)n

2
.
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n∑
k=1

k(k + 1) =

n∑
k=1

(k2 + k) =

n∑
k=1

k2 +

n∑
k=1

k =

=
1

6
n(n+ 1)(2n+ 1) +

1

2
n(n+ 1) =

1

3
n(n+ 1)(n+ 2).

n∑
k=1

k(k + 1)2 =

n∑
k=1

(k3 + 2k2 + k) =

n∑
k=1

k3 + 2

n∑
k=1

k2 +

n∑
k=1

k =

= . . . nale»y zastosowa¢ wzory na sumy 3., 2. i 1. poteg

pierwszych n liczb naturalnych i otrzyma¢

1

12
n(n+ 1)(n+ 2)(3n+ 5)

k∑
n=1

n(k − n) =

k∑
n=1

(nk − n2) =

k∑
n=1

nk −
k∑

n=1

n2 = k

k∑
n=1

n−
k∑

n=1

n2 =

= . . . zastosowa¢ potrzebne wzory, ale ostro»nie teraz n jest

indeksem sumowania, a granic¡ sumowania � k. Dlatego w

ko«cowym wzorze nie mo»e by¢ n, a musi by¢ k =

=
1

6
(k − 1)k(k + 1).

m∑
n=1

(3n− 1)(3n+ 2) = m(3m2 + 6m+ 1) (powinno by¢ jasne).
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