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Zadanie 1
Niech p, c, t, w oznaczają liczby odpowiednio pomarańczowych, cytrynowych, truskawkowych
i wiśniowych żujków. Pierwsze założenie mówi nam, że
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Drugie założenie mówi nam, że
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Mamy ustalić, które z prawdopodobieństw jest większe:(
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Ale na mocy założeń mamy(
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więc rozważane prawdopodobieństwa są równe.

Zadanie 2
Zdarzenie polega na rozmieszczaniu siedmiu osób w siedmiu rozróżnialnych komórkach (dni
tygodnia). Wszystkich takich rozmieszczeń jest 77. Skorzystamy ze zdarzenia przeciwnego
sprawdzając, w ilu przypadkach każda osoba urodziła się w innym dniu tygodnia. Takich
przypadków jest 7!, zatem szukane prawdopodobieństwo wynosi 1− 7!

77
. Korzystając ze wzo-

ru Stirlinga otrzymujemy, że prawdopodobieństwo to w przybliżeniu wynosi 1 −
√
14π·77
77·e7 =

1−
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14π
e7
≈ 1− 0, 006 = 0, 994.

Zadanie 3
Ponieważ w urnie mamy 18 rozróżnialnych kul, więc wszystkich zdarzeń elementarnych jest(
18
m

)
. Korzystając ze zdarzenia przeciwnego wystarczy znaleźć najmniejszą wartość liczby m,

dla której prawdopodobieństwo otrzymania samych kul czarnych jest < 1
2
. Zdarzeń elemen-

tarnych sprzyjających zdarzeniu przeciwnemu jest
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)
, musimy zatem znaleźć najmniejsze
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Ponieważ (
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16!
m!·(16−m)

18!
m!·(18−m)

=
(18−m)(17−m)

18 · 17
,

więc dostajemy nierówność (18−m)(17−m) < 9 ·17, czyli równoważnie m2−35m+153 < 0.
Najmniejsze naturalne rozwiązanie tej nierówności to m = 6.



Zadanie 4
Wszystkich możliwych rozmieszczeń 10 ponumerowanych kul w trzech rozróżnialnych ko-
mórkach jest 310 = 59049.
(a) Skorzystamy ze zdarzenia przeciwnego, czyli policzymy liczbę zdarzeń sprzyjających zda-
rzeniu „co najmniej jedna komórka jest pusta”. Są dwie możliwości. (1) Dwie komórki są
puste – wtedy wszystkie kule trafiają do jednej komórki, którą możemy wybrać na 3 sposoby.
(2) Jedna komórka jest pusta (wybieramy ją na 3 sposoby), a pozostałe kule dzielą się na
dwie pozostałe komórki. Wobec tego do jednej z nich trafia k kul, gdzie 1 6 k 6 9, które
możemy wybrać na
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)
sposobów, a pozostałe do drugiej – w sumie daje to
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możliwości. Ostatecznie zdarzeniu przeciwnemu sprzyja 3 + 3 · (210 − 2) = 3069 zdarzeń ele-
mentarnych (rozmieszczeń), więc szukane prawdopodobieństwo to 1− 3069

59049
= 6220

6561
≈ 0, 948.

(b) Skoro w każdej komórce są przynajmniej trzy kule, to w dwóch komórkach są dokładnie
trzy kule, a w jednej cztery kule. Komórkę z czterema kulami wybieramy na 3 sposoby, a
kule do niej na

(
10
4

)
sposobów. Z pozostałych sześciu kul wybieramy trzy na

(
6
3

)
sposoby i

wsadzamy do jednej z pozostałych komórek, a reszta kul trafia do ostatniej komórki. Zatem

szukane prawdopodobieństwo to
3·(10

4 )·(6
3)

310
= 3·210·20

59049
= 1400

6561
≈ 0, 213.

Zadanie 5
Oczywiście dla k > n prawdopodobieństwo wynosi zero. Załóżmy zatem, że k 6 n. Wszyst-
kich zdarzeń elementarnych jest mn. Zliczamy zdarzenia sprzyjające: najpierw wybieramy k
kul (spośród n kul), które znajdą się w urnie nr 2, na

(
n
k

)
sposobów, a potem pozostałe n−k

kul rozmieszczamy w pozostałych m− 1 urnach na (m− 1)n−k sposobów.

Wynik: (n
k)·(m−1)n−k

mn .

Zadanie 6
Trzynaście kart z 52 można wybrać na

(
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)
sposobów.

(a) Pięć pików można wybrać na
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)
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(
13
4

)
sposobów, trzy trefle
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(
13
3

)
sposobów, a jedno karo na
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)
sposobów. Zatem odpowiedź to (13
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(b) Otrzymanie układu 5-4-3-1 oznacza, że dostało nam się 5 kart jednego koloru, 4 innego,
3 różnego od występujących wcześniej i 1 karta pozostałego koloru. Takich układów jest
4
(
13
5

)
3
(
13
4

)
2
(
13
3

)(
13
1

)
.

(c) Takich układów mamy 4
(
13
5

)(
3
2

)(
13
3

)2(13
2

)
.

(d) Taki układ można otrzymać na
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)
sposobów.

Zadanie 7
Rozdzielanie 10 (nierozróżnialnych) ciastek między trzy osoby odpowiada malowaniu 10 nie-
rozróżnialnych kul trzema kolorami. Można to zrobić na

(
10+3−1

2

)
=
(
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)
= 66 sposobów

(kombinacje z powtórzeniami). Chcąc policzyć liczbę zdarzeń sprzyjających zakładamy, że
najpierw każdej z osób dajemy po jednym wymaganym ciastku, a potem pozostałe siedem
ciastek rozdzielamy według tego samego schematu, co możemy zrobić na

(
7+3−1
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)
=
(
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)
= 36

sposobów. Postępując analogicznie w drugim przypadku dostajemy odpowiedzi :



(a) 36
66

= 6
11

(b) 15
66

= 5
22

.

Zadanie 8
Dowód nierówności Bonferroniego: Z własności P(A∪B) = P(A)+P(B)−P(A∩B) otrzymu-
jemy P(A∩B) = P(A)+P(B)−P(A∪B). Ale P(A∪B) 6 1, zatem P(A)+P(B)−P(A∪B) >
P(A) + P(B)− 1, co kończy dowód.
Zastosowanie: Skoro P(A) = 0, 5 i P(B) = 0, 9, to z nierówności Bonferroniego otrzymujemy
P(A∩B) > 0, 5 + 0, 9− 1 = 0, 4. Z drugiej strony A∩B ⊆ A, więc P(A∩B) 6 P(A) = 0, 5.
Jeśli A ⊆ B, to A ∩ B = A – wtedy P(A ∩ B) = 0, 5 i to jest wartość największa. Jeśli
A ∪B = Ω, to P(A ∩B) = 0, 4 (dlaczego?) i to jest wartość najmniejsza.
Wynik: Pmax(A ∩B) = 0, 5; Pmin(A ∩B) = 0, 4.

Zadanie 9
Skoro zdarzenia A i B wykluczają się, to znaczy, że A ∩ B = ∅, zatem P(A ∩ B) = 0.
Skoro przynajmniej jedno z nich musi zajść, to znaczy, że A ∪B = Ω, zatem P(A ∪B) = 1.
Korzystając z własności P(A ∪ B) = P(A) + P(B) − P(A ∩ B) otrzymujemy równanie
1 = x + x2 − 0, czyli x2 + x − 1 = 0, skąd x =

√
5−1
2

(bo z warunku P(A) = x wynika, że
x > 0).


