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1 Introduction

This note reviews how the contemporary concept of the Poisson process
(sometimes called the Poisson random measure) evolved through out the
time up to recent times. That is from F. Lundberg and W. Feller up to
A. Renyi paper [30] from 1967 and �nally, a construction of Poisson processes
by binomial (or Bernoulli) processes, which can be found in J.E. Moyal [24],
J. Mecke [23] and J.F. Kingman [16] papers. Also in C. Ryll-Nardzewski [32]
this construction was used in a proof of Theorem for homogeneous Poisson
processes.

Let us begin with a quotation from Harald Cramér [2]. �It was not until
the 1930's that the foundation of a general and rigorous theory of stochastic
processes were laid by Kolmogorov, Khintchine, Lévy, Feller, and the other
authors. In this connections it became clear that the Brownian movement
process, and the Lundberg risk process, introduced many years earlier by
the pioneers, form the main building stones of an important general class of
stochastic process, known as processes with independent increments.� Notice
that a special case of the Lundberg risk process,with all the sums at risk equal
to 1, leads to what we now understand by a Poisson process. In general by
a Lundberg risk process Cramér understood what we recently mean by a
compound Poisson process.

One has to distinguish results obtained in a less mathematical formal
way from today standards, that is before a foundation of probability theory
and stochastic processes were laid. Because of this Filip Lundberg works for
many years were rather unnoticed by mathematicians, as well his papers were
published in Swedish. The main ideas, which later became a part of the so
called collective risk theory (which is a part of actuarial mathematics), where
included in his doctoral thesis [20]. He introduced therein the compound
Poisson process and involved work on the central limit theorem.
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From another side, this time applied to a telecommunication problem,
A.K. Erlang considered a Poisson process as an input to an automatic tele-
phone exchanges; [7], although the �rst ideas which lead to a prototype of the
Poisson processes appeared in [6]. Again the concepts were di�cult to un-
derstand for mathematicians, and besides, another obstacle for international
community was the papers in Danish.

A contemporary reader has available monographs on point processes,
and in particular on Poisson processes (Kallenberg [14], a two volume Daley
and Vere-Jones [4, 5]). A modern approach to point processes and Poisson
processes de�ned on abstract spaces can be found in a recent book by Last
and Penrose [19], wherein the reader can �nd a section on the history of
Poisson processes. One can also recommend as an introductory text the
book by Kingman [17].

1.1 The name.

We �rst recall the origin of names �point process� and �Poisson process�.
Thus in the dissertation of Conny Palm in 1943, there exists the �rst known
recorded use of the term point process as Punktprozesse in German; see [13].
It is believed, see Guttorp and Thorarinsdottir [12], that William Feller [9]
was the �rst in print to refer to it as the Poisson process in a 1940 paper.
Although the Swedish statistician Ove Lundberg [21] used the term Poisson
process in his 1940 PhD dissertation.

As Guttorp and Thorarinsdottir write, it is likely that the term was
adopted by most participants of the Berkeley Symposium on Probability
and Mathematical Statistics in 1945 and from now on was commonly used
in the literature.

1.2 Early works

Guttorp and Thorarinsdottir [12] mentioned about Filip Lundberg result
from 1903, where by a rather heuristic reasoning he derives for probability
function f(x) equation

∂f(x, P )

∂P
= f(x− 1, P )− f(x, P ),

which is the forward equation for the Poisson process and it was later derived
by Kolmogorov [18] for Markov processes. Clearly the solution of this equa-
tion is f(x, P ) = P xe−x/x!. In his memoirs [3], Cramér mentioned about
Lundberg risk process in the context of early work on Poisson process. He
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also mentioned the work by Erlang from 1909 in the context of telephone
tra�c problem and of Rutherford and Geiger from 1908 in the analysis of ra-
dioactive disintegration. Cramér also recall his early work (in Swedish) from
1919 on the Poisson process. Finally, let us point out a rather overlooked and
forgotten pioneering discovery by Norbert Wiener [34], that the assumption
of independence of the number of points in disjoint subsets of an Euclidean
space leads to Poisson distribution of a number of points in a subset. The
author of this note thanks to professor Guenter Last for pointing me out this
reference.

In the paper by Feller from 1949 [10], when surveying some processes he
writes: The Poisson process.� This is quite familiar to physicists, who often
refer to it as �random events� and occasionally call the Poisson distribution
after Bateman.

1.3 Poisson process as a counting process

By a counting process we mean a stochastic process (X(t))t≥0 with non-
decreasing right continuous and ZZ+-valued. Following Palm one can inter-
pret the increment X(t+s)−X(t) as a number of points in interval (t, t+s].
By a Poisson process with parameter λ it was meant (see e.g. Feller [10]):
�events occurring in time, such as telephone calls, radioactive disintegrations,
impact of particles (cosmic rays), and the like. Let it be assumed that (i) the
probability of an event in any time interval of length dt, is asymptotically,
λ dt, where λ is positive constant; (ii) the probability of more than one event
in a time interval dt is of smaller order of magnitude than dt, in symbols o(dt);
(iii) the number of events in non-overlapping intervals represent independent
random variables.� If Pn(t) was denoting the probability of having exactly n
events in a time interval of length t, than Feller showed Pn(t) = (λt)ne−λt/n!.
In modern language, Poisson process N(t)t≥0 is a stochastic process, with
(iii) independent increments, (ii) with stationary increments and (i) orderly.
The name of orderly comes from Russian ordinarnii (see e.g. Khintchin
[?]). In Daley and Vere-Jones [4] in Theorem 2.2.III it was recalled, that
N(t) with stationary and independent increments, which is also orderly is a
Poisson process, that is IP(N(b)−N(a) = n) = (λ(b− a))ne−λ(b−a)/n!.

1.4 Poisson processes

In this section we recall what today is understood by a Poisson process
(or Poisson point process or Poisson random measure). We follow Daley
and Vere-Jones [4], section 2.4, who consider E a complete separable metric
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space, E the Borel σ-�eld generated by open spheres of E and (Ω,F , IP) be
a probability space. Remark that in the book of Last and Penrose [] there is
presented a de�nition of Poisson process on a general state space E, however
then one must overcome di�culties of the lack of local �nitness.

A contemporary approach to point process is to de�ne N as a measurable
mapping (Ω,F) to (N ,B(N )), whereN is a space of discrete measures locally
�nite on (E, E), and N is endowed with the vague topology. If N assumes
values in N0 of measure with unit atoms, then N is said to be a simple point
process (or without multiple points). In other words we have a family of
ZZ+-valued random variables N(E))EE , such that for each ω ∈ Ω, N(·) is a
discrete measure.

We now state what one recently means by a Poisson process on (E, E).
Suppose Λ, sometimes called a parameter measure, is a boundedly �nite
measure on E. One says that a point process N is a Poisson process with
parameter measure Λ if

(PP1) for every �nite family of disjoint bounded Borel sets {Bi, i = 1, . . . , k}
N(B1), . . . , N(Bk) are independent,

(PP2) for bounded Borel set B

P (N(B) = n) =
[Λ(B)]n

n!
e−Λ(B).

Sometimes N is said to be a Poisson random measure. In other words we
have a family of discrete random variables (N(B))B ∈ B, such that for each
IP-each ω, IP(·) is a discrete measure. Remark that there are theories that no
topological assumptions are required; see eg. the book of Last and Penrose
[19].

One of problems is to demonstrate the existence of the Poisson measure.
In the literature it is considered that the positive answer is due to Kingman
[16] or Mecke[23], where the construction was via the so called binomial
process; i.e. in set B there is N(B) points, which are thrown independently
in B according to m(dx)/m(B) distribution; see Subsection 1.7. Similar
construction can be found in Moyal [24], however the for stationary Poisson
process on real line it is given in the Lemma by Ryll-Nardzewski [32]. We
will come back to the problem of existence later.

1.5 Marczewski and Ryll-Nardzewski works in Wrocªaw

It was Edward Marczewski (see [8]), with collaborators Kazimierz Florek and
Ryll-Nardzewski, who initiated in early 50-ties a thorough study of Poisson
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processes. At this time still E = [0,∞) and a Poisson process was an inte-
ger valued, right-continuous and non-decreasing stochastic process having a
property of independent stationary increments. In this paper it was proposed
to consider Ω as a functional space of integral valued function on [0,∞), non-
decreasing and right-continuous, F the σ-�eld generated by {ω(t) < y}. A
probability measure P on (Ω,F) establishes a counting process. By Ω1 ⊂ Ω
one denotes functions with unit jumps only. A stochastic process ω(t) ∈ Ω
is Poisson if µ(Ω1) = 1, it has independent increments and the distribution
of ω((t, t+ y]) does not depend on t.

Cramér [1] and Marczewski in [22] on the base of counting process (Ω,F , P )
extended the concept of number of points in intervals to number of points
N(B) in Borel set B via #{t ∈ B : ω(t) − ω(t−) > 0}. Then in [22] it was
noticed that for the Poisson process, N(B) is a random variable.

In what follows, Ryll-Nardzewski [31] approached to the notion of point
processes in a fashion similar to what we understand now, however he, sim-
ilarly as others, overlooked the paper by Wiener [34]. In this paper Wiener
introduced the name Poisson chaos or discrete chaos. He considered a �xed
Borel subset E of �nite dimensional Euclidean space and E0 a denumerable
�eld of Borel subsets generating the σ-�eld E of Borel subsets of E. Then
Ω it was the space of �nite real valued set functions on E0 which are σ-
additive, and IP is a probability measure de�ned on a σ-�eld of subsets of Ω.
He supposed that

(1o) E0 3 B → ω(B) is IP-measurable and

(2o) ω(B1), . . . , ω(Bk) are independent, whenever Bj are disjoint sets be-
longing to E0.

Then he proved that the above conditions are ful�lled for a σ-additive set
functions on E . A point x0 ∈ E is called singular if

IP(ω({x0}) 6= 0) > 0.

The number of singular points can be at most denumerable. De�ne m(B) =∫
ω(B) dIP, which today is said to be an intensity (or mean) measure. It

was assumed that the point process is simple, that is IP(Ω1) = 1, where
Ω1 ⊂ Ω consisting ω having unit atoms only. The following theorem was
stated. Suppose that m is a �nite measure on E. If x0 ∈ E is an atom of

m (or, in other words, if x0 is singular), then ω({x0}) assumes the value 1

or 0 with probability m({x0}) or 1−m({x0}) respectively. If B contains no
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singular points, then ω(B) has the Poisson distribution

IP(ω(B) = k) =
m(B)k

k!
e−m(B).

In the remaining part of the paper the theory was extended for the case
when m is σ��nite.

Although in the paper Ryll-Nardzewski writes �process� but the term
non-homogeneous Poisson process appears in the title.

In the paper Ryll-Nardzewski [32] by a process (i.e. point process) it was
meant a random denumerable set X of real numbers, de�ned by a sequence
{Xj} of random variables. Introduce random variable

N(I) = the number of indices j such that Xj ∈ I

for all intervals I ⊂ IR. Furthermore, it was assumed

(i) IP(Xj 6= Xk) = 1 for j 6= k,

(ii) IP(limj |Xj | =∞) = 1,

(iii) IP(Xj = a) = 0 for every j and real a.

It was said that X is a Poisson process when random variables N(I)
have the Poisson distribution, and if for any disjoint intervals I1, . . . , Ik,
random variables N(I1), . . . , N(Ik) were stochastically independent. It was
mentioned that in [31] it was shown that

IP(N(I) = k) =
m(B)k

k!
e−m(I),

for some σ-�nite measure m on the line. Now it was assumed that m(I) =
λ|I|, that is in modern language that the Poisson process is homogeneous.
It is interesting to note that Ryll-Nardzewski discovered, what Kingman [17]
called later, a characterization of Poisson processes by binomial (or Bernoulli)
processes. Let us �x an interval I and denote by Qk the event n(I) = k.

Then under the assumption Qk, the conditional distribution of the set of

k points of X belonging to I is the same as the uniform distribution of k
independent point belonging to I.

Next Ryll-Nardzewski introduced the following transform, which one
could call by a characteristic functional: for a complex valued function of real
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variable f such that
∫∞
−∞ |f(t)| dt <∞ he de�ned φ(f) = IE

∏
j(1 + f(Xj))

and then under the assumption that X is a homogeneous Poisson process,
with the use of Lemma above he computed characteristic functional

φ(f) = exp(λ

∫ ∞
−∞

f(t) dt).

Compare with a probability generating functional de�ned as IE
∏
j h(xj)

for some suitable test functions h (see [4], p. 15). With this tool Ryll-
Nardzewski was ready to prove an invariance theorem of the homogeneous
Poisson process.

For a sequence {Yi} of random variables are equivalent in the sense of de

Finetti (that is if the distribution of any �nite system Yi1 , Yi2 , . . . , Yik , where
the indices ij are di�erent, depends only on k. the process with point {Xj +
Yj} is again homogeneous Poisson with the same parameter λ.

1.6 Budapest probability school

Although neither mathematicians from Wrocªaw nor from Budapest could
contant at that time with colleagues from the West, they could meet them-
selfes and their research on Poisson process was surely in�uenced by among
them. For example Andraás Prekopa in [28], although did not quote Ryll-
Nardzewski paper [31], in the introduction he writes: �The idea of our general
method was suggested by a lecture of C. RYLL-NARDZEWSKI, who gave
an elegant solution of a telephone-problem�, with a footnote �This lecture
was held in Wroclaw at the Colloquium on Stochastic Processes in 1953.� In
Prekopa paper in 1957 [28] there appeared already a contemporary de�nition
of Poisson process on a general space E.

In Ryll-Nardzewski papers the matter of existence of a point process was
not explicitely considered. This problem was taken up later by Prekopa in
[26], where he considered the so called by him a stochastic set function ξ(B),
where B belongs to a family of subsets of space E. It is required that ξ(B)
has the following �nite additivity property: IP(ξ(A) =

⋃l
k=1 ξ(Ak)) = 1,

whenever A1, . . . , Al are disjoint subsets from B0. In this paper, Prekopa
was interested in extension of process (ξ(B))B∈B0 , where B0 is a �eld, to
(ξ(B))B∈B, where B is the σ-�eld generated by B0 and ξ(B) has the following
countable additivity property: IP(ξ(A) =

⋃∞
k=1 ξ(Ak)) = 1, whenever A1, . . .

are disjoint subsets from B.
It was a natural question about relations between conditions PP1 and
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PP2. For example suppose that

IP(N(B) = k) =
Λ(B)k

k!
e−Λ(B),

is ful�lled for a family E of subsets of E. Is it true that (N(B))B∈B is
a Poisson process with parameter measure Λ. Alfred Renyi [30] gave the
following answer to the problem for E = IR.

Suppose that Λ is a locally �nite non-atomic measure on IR and B0 be a �eld

generated by �nite intervals [s, t). Suppose that N is a random additive set

function on B0 such that N(B) has Poisson distribution with mean Λ(B) for
all B ∈ B0. Then N(B1), . . . , N(Bk) are independent for disjoint Bj ∈ B,
that is N is a Poisson process with parameter measure Λ.

The second important result from [30] deals with the question whether
the so called avoidance function B → IP(N(B) = 0) de�nes the process.

In the setting of the previous theorem, if

IP(N(B) = 0) = e−λ(B)

for all B ∈ B0 and if N is without multiple points, then N is a Poisson

process.

It was also a question, whether it su�ces to assume that E is a family
of intervals (s, t]. The counterexample was provided by L. Shepp, and is
enclosed in Goldman [11]. A recent version of this theorem in a more general
setting can be found in Theorem 3.3. from Kallenberg [14].

1.7 Construction via binomial process

The following construction proves in a simple and useful way the existence
of the Poisson random measure. Consider a measurable space (E, E) with a
σ-�nite measure λ. Consider �rst the case when λ(E) <∞.

Let Z,X1, X2 . . . be independent random variables on (Ω, calF, IP), Z with

Poisson distribution with mean Λ(E) and X1, X2, . . . i.i.d. with the common

distribution λ(·)/λ(E). Then a point process N de�ned by

N(B) =

Z∑
j=1

1(Xj ∈ B),

is a Poisson process on E with intensity measure Λ, that is ful�lling the

axioms (PP1) and (PP2) from Subsection 1.4 of the Poisson random measure

on E.
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In the case of not �nite measure λ on E, one constructs Poisson processes
N1, N2, . . . on E1, E2, . . . respectively, where λ(Ej) <∞. Then

N(B) =
∑
j

Nj(B ∩ Ej)

is a Poisson process on E. ful�ls the axioms (PP1) and (PP2) from Subsec-
tion 1.4

The above construction is due to Kingman [16]; see also Mecke [23],
although it appeared earlier in [24]. However for a special case of a homoge-
neous Poisson process on IR it is implicite in Ryll-Nardzewski [32].

Ackonwledgement The author bene�ted from the conversation with pro-
fessor Guenter Last from Karlsruhe Institute of Technology.
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