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1. Introduction

In many recent papers the concept of order relation in the set of distribution
functions (d.f.’s) is applied in queueing theory (for example [3], [8], [91, [1O]). Two
order relations, namely < (stochastic ordering relation) and < (for the defini-
tion see Section 3) appear to be especially useful. Relation <. was investigated,
in particular in {4] and relation <. in [3], [11], [12] (in [11], [12] the symbol <

is denoted by (2 and <. by (2). The relations <. and <. both have the property
that the mean value of any d.f., provided its mean value exists, is an isotonic func-
lion with respect to these relations.

The following consideration shows how one can use relation <. to obtain bounds
in queueing theory. It is known (see [3], [10]) that a d.f. of the waiting time in
GI|/G][I system is an isotonic function of the d.f. of the service time. For a queueing
system X with the negative exponentially distributed service time with mean m it
is easy to compute the mean waiting time EW by the well-known Pollaczek formuia
(see for example [6}). If X' is a queueing system such that a d.f. of the inter-arrival
time is earlier with respect to relation <. (to be abbreviated hereafter as “earlier
(<)”) than the negative exponential d.f. with a mean m, then the stationary waiting
time W' in X’ is earlier (<) than the stationary waiting time W in Y. Hence we
obtain a bound for the waiting time in X' EW < EW.

The essential point here is that the distribution function of the service time Is
carlier (<) than a negative exponential d.f. For some other examples sce [8].

The aim of this paper is a characterization of the class of d.f’s that are carlier
(<.) than some negative exponential d.f. and a characterization of the class of
d.f’s that are earlier (<) than the negative exponential d.f. with the same mean.
A relationship between the former class of d.f.’s and the class NBUE of d.fi’s is
investigated. The case of discrete d.f.’s which are earlier (<) than a geometrical
d.f. with the same mean is also considered.
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2. Preliminaries

We restrict our attention to d.f.’s of nonnegative random variables which are
left continuous. For a d.f. F we denote the survival function by F=1-F We
say that the sequence F,, n = 1, ..., of d.I.’s converges weakly to the d.f. F, which
we indicate by writing F, = F, if F, - F for all continuity points of F.

We shall use the following symbols. Let

M (x) = l—exp[(—x)/m], x =0,

and let

xX

Gu(9) = > (1=p)p 8ux),  m = pl(1=p),
k=0

where

0. if x<a,
(5‘,(.\') = ll il

X >a
Moreover, let
o
Mg , = Sx"dF(x).
0

Instead of my , we write the symbol ni.

A d.f. Fis said to have an Increasing Failure Rate (IFR) if logF is concave
on the support of F (see [l]).

A d.f. Fis said to have Increasing Failure Rate Average (IFRA) if — [log F(1))/1
is increasing with respect to 7 (see [2]). Another class of d.f.’s known to be im-
portant in reliability consists of the d.f.’s which are New Better than Used (NBUE)
(see [7]). A d.f. Fis said to be NBUE if for every x >0

S f(r)(ll/F"(.\‘) < mp < .
We write {IFR} for the class of IFR d.f.’s, {IFRA} for the class of IFRA d.f.’s
and {NBUE} for the class of NBUE d.f.’s. We shall use the well-known fact that

{IFR} c {IFRA} = {NBUE}.

Throughout the paper we adopt the convention 1/(1/0) = 0.

3. Relations <., <.

DErINITION 1. For a pair of d.f.’s F, G we write
(i) F <, G if, for every nonnegative, increasing function ¢

n

\ gar < { pda.

0 0
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(i) F <. G if, for every increasing, convex and nonnegative function ¢ such
o

that S gdG < o0,

]
g

{ gar < {qdG.
0 0

The relations <. <. are natural generalizations of the linear ordering relation
in the set of all nonnegative real numbers #. This follows by noting that

(h a < b if and only if 04 <c Op,

(I F <.G, a > 0 implies F(a) <CG(‘;),

(1) Fi<eGii=1,...m implies | | £ <] 1 e
i-=1 i=1

(1v) F,<.G.i=1,...n implies Fy*Fy* ... *F, <. G, xGy* . %Gy,

(Vy F<.0, S xdF(x) < o0, SxdG(x) < oo, implies S xdF(x) < S.\'dG(.\').
0 0 0 V]

If (1) holds, then the set {Z, <) is isomorphically imbedded in the set <all
d.fs, <. ITtmay be worthwhile to mention that the relation < has also properties
(I)-(V). The proofs are given in [3], [8), [11]. One can also find there the following

theorem:
Tueorem 1. (1) F <. G if and only if for every x > 0:
F(x) < G(x).

s 8

(i) F <.G if and only if xdG(x) < oo and for every X > 0:

a0

F(t)dr < SC(!)dr.

X

H ety & 4

w0

One can see that if F <G and S xdG(x) < oo, then F<.G.
0
Other order relations in the set of d.f’s which are weaker than <. but have
properties (1)-(V), are investigated in [8], [9].

4. Mean residual life function

In various problems of the reliability theory the following function appears:

\ Fy(0)dt]Fx(x) for x such that F(x) # 1,
o st | O
0

for x such that F(x) = 1.
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This function is called the mean residual life of a component of age x. In the
sequel the following lemma will be useful:

LEMMA . We have, for every x > 0,

. \ F(t)dt

1 { f = —tog ™
M ) e &

Proof. For x = 0 the left side is equal to the right side. Since both sides arc
absolutely continuous and their derivatives are equal a.e., we have (D).

THEOREM 2. There is one-to-one correspondence between a d.f. F and the function
€ér.

Proof. Let us assume that there exists a d.f. G such that for every x > 0

2e]

er() = eo(¥) = § F(0)di]F().

Hence by Lemma 1 we obtain

o« oD
.

d . (= d . 7.
i log S G(rydt = - log \ F(t)dr,

=

x

which implies for every x > 0

{ 6(yae = ¢ {F(nyar.

RY X

Since ep(0) = eG(0) = my = mg, we have ¢ = 1 and the proof is completed.

5. DA.’s earlier (<) than M

In {12] Stoyan has shown that all d.f.’s F such that F(b+)—F(a) =1 (a < b)
and b < v, where v is the root of the equation v = 1—log[(l—~a) (v—a)™*}, are
earlier (<) than M,, .

It is also known (see [7]) that

{NBUE} c {F: F <M, }.

Notice that the inequality F <. M,, is equivalent to the inequality

(2) r; g F(n)dt < exp[(—x)/m}, x>0,

which means, for a non-lattice d.f. F with a mean equal to m, that the equilibrium
d.f. of the d.f. F is stochastically less (<) than the negative exponential d.f. with
the mean equal to m.
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TheOREM 3. F <c Mam if and only if for every x > 0

1¢ o1 1 1 m
3 e
3) xd ee(1) m + x tog m
Proof. The assertion follows from the fact that (2) is equivalent to
me 1 Sf(r)dz < expl[(—¥) >0
e < expl(—x)/m), x>0,

and this, by Lemma 1, is equivalent to

Le ot I
dr = - x> 0,

1
— ]Og,r,'}f,.*_, ,S.d-,, ,
X m xd ep(1) m
which in turn is equivalent to 3).
CoroLLARY 1. The class of d.f’

\
J

f . S ! .
‘F. Y o) dt <mg; x>0

s {F: F <, M,,,F} is equal to

which contains the class of NBUE d.fs.
The class of d.f.’s {F: F < M,,.F} can
Used in Expectation.
COROLLARY 2.

be called Harmonic New Better than

‘ F: .\'&»-l odt<m, X >0}c {F: F <, M}
l Lo er(1)

and

-‘F:F<CM,,,1C{F:x“S odr<m, x> 0p.
Ut 3 |} er (D) T

<
m,,\ "

¢ 1 i :
_dr < m, x > 0, implies M < m (the right

Proof. Since the condition X [\——=~
4 N

side limit of the left side in O is equal to mg), we have for every x >0

X
X

meg 1
Cog ez
%% T +0 ex(1) m

which is equivalent, by Theorem 3, to F < M,,.

In order to prove the second inclusion let us consider a d.f.

Fe U {F: F<. My}

mg
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Then, by Corollary |, we have

1 S 1 | 1
s dl 2 —- 2
N ep(t) Mg m
and the proof is completed.
The following theorem gives some properties of the class {F: F <. M, }:

THEOREM 4. Let Fie (F: F< . M,}, i=1,..,n Then

n -”—1 l
Q) H Fie {F: F<L< M,} where u=m }_J i
i=1 i=1
(if) i-[la-FreF F<om,,
i=1
(iii) FoxFyx  xF,e {F1 F <, Mun),
(i) PFEF F=cMy) pi>0, D pi=1.
f=1 i=1

Proof. (i) From property (II) of the relation < it follows that

H Fi <. (t—expl(— - )/m])".

In [1] it has been proved that
H(-) = (I —exp[(—~ - )/m])" € {IFR}.

The class {IFR} is contained in {NBUE} and hence, by Corollary 1, H <, M, .
In order to finish the proof it suffice to notice that the mean value of the d.f. H is
equal to

X n n

(S '2; (- 1)i+1(';)6)(]3[(—1'[)/)77]611 =m Zj,’ -r(_-ll.)ifl' (7) =m ’Z; l, )

(i) We have for every x > 0

R X 3

L

VI T Fnar < S Fi(nydr < { Mu(nyar,

o

i=1 R x

which completes the proof.
(ii)) Let X;, i =1, ..., n, be independent random variables such that P(Y; < x)
= Fi(x). Then, for every nondecreasing convex function ¢,
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¢ NS AN G R
\ g (x)dF* ... *F (nx) = b(p( v A ) < S : \ Eq(X)
i " o "

e8] LS

i 1 g P dFi(x) < \ ¢ (X)dM (),

.
i Q0

Il

(iv) For every nonnegative increasing and convex function ¢, we have

xi

qdemm }J. P < § 4 COIMa().

which means that Z piF < M.
i=1
The following theorem gives a necessary condition for F <. M,:

THEOREM 5. If F < My, then

T
e < m", n=1,2,...
n!

Proof. The simple proof is given in [8].
TueoREM 6. Let F,, F be d f’s such that
F’ljF’ Fﬂ <C M"ls

and
2
lim mg , = = lim mj, = m".
n—x n-—»0
Then
F=M,.

Proof. 1t is known that F, = F is equivalent to the inequality im F(x+)

o>
= F(x+), x 2 0. Hence and from Fatou's lemma we have for every x > 0
o0

o

{ F(nyar = SF(r+)d! { tim Fur+)de < lim { Fae)dr < mexpl(—x)/ml.

X XN on-e n—o X

Now we show that the only d.f. such that
(4) F<.M, and mg,= 2m = 2m*

is F=M,.

It is easy to verify that the d.f. M, fulfils (4).

Let us assume, to the contrary, that there exists a G # M,, such that G <. M,
and 2md = mg, . Then for every x >0

o

b R G(1)dt < exp[(—x)/mql

me -«
N



300 T. ROLSK!

and the inequality is strict at least at one point x,. Since both sides are continuous
we have

M2 _ L S S G(1t)dtdx < S expl(—x)/mg] = mg,
2my; me 99 Y

which contradicts (4).
For the class of d.f.'s {F: F <. M,,} we have the following theorems:

THEOREM 7. If F, Ge {F: F <. M,,}, then
FxGe {F: F<.M,}.

Proof. By property (IV) we have F*G <. M, * M. Since M,, x My, € {IFRA }
(see [2]), we have M, xM, < M, .m,. The statement follows from the transi-
tivity property of the relation <.

TuroreM 8. Let F,, F be d.f s such that

F,=F F,<.M,,

supmy = N < cc, lim(my, ,—2m;i) = 0.

n nee
Then F=M,,.

Proof. Since, according to Theorem 5. my , < 2mi < 2N?, we have m; — nie
(see [5], Theorem 11.4 B). As in Theorem 6, we can write

(5) F<¢. Mm,--

Moreover, from the assumption of the theorem it follows that myg , = 2mi. In
turn, in view of (5) this implies F' = M,,.

6. The discrete case

In this section only discrete d.f.'s will be considered. Writc

Pn) = i ipi, II(n) = Zﬂ i 7.
= = j=n =)

Notice that if F(x) = > p;0;(x), then
=0

i=

g ¥

F= Y py [E0d =Y =0+ PG+ -1 <x <,
izx X k=1

and

X

SG o (ydt = - P
-0 1—p l-—p

In the seque!l the following theorem will be useful.
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THEOREM 9. Relation

o

jolds if and only if P() < H(l) for i=1,2,

Proof. Since functions \ F(1)dt, S@(t)dt are convex and linear in [f, i+ 1),

X

i=0,1,..., relation

| Foydr = PG+ 1) <TG+ = g G(t)dt

holds if and only if

o0 T

Sm)m - P+D+ Z puli—x) < ITE+2)+ S mi-v = { Goyar,

h=i41 k=—i+1
i—1 < x<I.
This completes the proof of the assertion.
From Theorem 9 we infer that

F : ipiai <e G{i‘“
i=0 i

is equivalent to

) P+ < (Lot =00

which under the condition P(1) = - fp means that the equilibrium df ofadf F

i
is stochastically less (<) than the geometrical d.f. with the same mean value.
The function of the mean residual life is equal to

e,(l)—P(z+1)I\ p. =01,

Tueorem 10. If F = z i 0; <o Gy, then for n=1,2

7_{”- < - pw, where  mp = — »p—— .
0 eF(i)
Proof. Using the identity
1 P(i
® ~0.1,...,

to®m T PG+ T
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we obtain

" —71 r{—fl . n . . .
NN R0 T e
L el "o PG+1) / L PG+ P’

and the theorem is proved.

7. Remarks

Other classes ol d.f.’s can be obtained in the following way. One can invert
the inequalities in Theorems 3, 5, 6 and in Corollaries 1, 2. If we invert the in-
equalities in Corollary 1, then we find that

l

I
M, < F = {F: X S—()f—(—,) dt = mg: x > ()l‘.
;

Hence one can see that the class of NWUE of d.fi’s (see [7]) is contained in
(F: M, <.F}.

If we invert the inequalities in Theorem 4, then (iv) is true and (i), (it), (i) arc
not true. To see this it is sufficient to consider a negative exponential d.f. which
belongs to {F: M, <.F}.
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