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Chapter 1

Gaussian variables,
vectors and processes

1 Gaussian random variables

Let 1 )
) = xTr) = 6_%, T € ]R
¢( ) ¢0,1( ) \/ﬂ
and fora€e R and o >0
1 (z—a)2
a.02(T) = e 222 z€R
Pa,02(T) o
Clearly we have
/ Thqo2(x) dz = a,

Il
Q

| e-athpwar = o

— 00

Definition 1.1 We say that a random variable X is Gaussian or normal
N (a,0?) with mean a and variance o2 if X has density wrt the Lebesgue
measure equal to ¢, ,2(z). If a = 0 and o? = 1, then we say that X is a

standard Gaussian variable. If a = 0, then we say that X is centered.

We denote the standard Gaussian distribution function by

®(z) = /_m #(y) dy
1



2CHAPTER 1. GAUSSIAN VARIABLES, VECTORS AND PROCESSES

and its tail function by

o
Yo)= [ .  seR
T
The moment generating function of Gaussian random variables are com-
puted in the next Proposition.
Proposition 1.2 For all z €

o] 2,2
/ €% g o2(x) do = exp (az + U; ) .

—0o0

In particular, the characteristic function of X is

2242

o(t) = Ee™ =~ "3- | teR.

Proof
L /ooe” T dr = L ff”/ooe”e_2 dz
27 Jo V2 o0
L gax /ooe”e_T do = o [ mZmEid gy
2 oo V2 oo
o0 _ )2
e e2 / exp (— (@ —2) ) dz = et
- 2
because for all z € U' !
[e'S) _ 52
/ exp(—%) dz = v2m. (1.2)
—0o0

We have the following estimations for the tail function ¥(z).

Proposition 1.3 For all x > 0

2
exp(—%) —1

exp(—%) (7' —27%) <P(z) < T z > 0.

(2m)1/2 = = (2m)1/2

Proof Using substitution s = z + 2=t we have

L Ooexp _i ds—i ooexp _wx—l dt
V21 Jg 2 _\/27r 0 2

B exp(—EZ—Z) L[ 2242
= W:c ; exp | —— exp (—t) dt.

1Dac referencje

Iy
&
!
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Since for all z > 0,¢t >0

2
we have
[e’s] _2t2 o0 —2t2
12/ exp(—x )exp(—t) dtZ/ (1—3c y=1-272
0 2 0 2
from which the result follows. O
Exercises

1.1 Show that for all z € I

/Oo exp (—(w;z)2> dz = V2.

—00

2 Gaussian random vectors

Let X be a random vector, that is a measurable mapping X : (Q, F,P) —
R¢ or a equivalently sequence of random variables X = (X1,...,Xq)7.

Definition 2.1 We say that a random vector X is Gaussian if for all
t=(t1,...,ta)T random variable 2?21 t;X; = X"t is Gaussian.

To determine the exact distribution of Z‘;:l t;X; we must know its
mean a(t) and variance o2(t). However

d d
a(t) = thXj = th]EXj = tTa,
Jj=1 Jj=1

where @ = (ay,...,a,)T = (EXy,...,EX,)T. Furthermore we have (for
simplicity we assume a = 0

j=

,_.

x~
Il
-
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where ¥ = (0jk)j k=1,...,d is the covariance matriz of X with entries:
Ojk = Cov (Xj,Xk) .

Since the variance is nonnegative, and from (2.3), we have that for all
t e R*
t"St >0

which means that X the matrix is nonnegative definite. It is also symmetric.
Thus we see that any vector @ € R? and symmetric and nonnegative matrix
3 determines uniquely one Gaussian distribution (sometimes called multi-
variate Gaussian (normal) distribution), which we denote by Ny(a,X).

From the above we also see that each covariance matrix is symmetric
and nonnegative definite.

Proposition 2.2 If X ~ Ny(a,X), then its characteristic function is

T
o(t) = EeX 't = exp (z'aTt _t Et) .

2

Proof The random variable X”t ~ NVy(a”t,tT$t) and next use Proposi-
tion 1.2. O

Let X be the standard Gaussian vector Ny(0,I), where 0 = (0,...,0)% €
R¢ and T = diag(1,...,1)7 is the unit d x d-matrix. Note that it has the
density function

bo,1(@) = (2m) Ve AT

We will utilize matrix notations. For example EX X7 is a covariance
matrix of X.
For a d x d matrix L and a matrix a define Y by

Y=L"X+a.
Proposition 2.3 For X ~ Ny(0,1),
Y ~ Ny(a,X)
where ¥ = LL" .

Proof Since Y7t = (IX)Tt + aTt = XT (Lt) + a”t, we have that Y is
Gaussian. Clearly

EY =E(LX +a)=LELZ+a=LEX +a=a.
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For the covariance we compute
S=E(Y -a)(Y —-a)"ELX(LX)" = LEXX'L
= LIt =rLi”.
O

Proposition 2.4 Let X ~ Ny(a,X) and assume the covariance matriz X
is nonsingular. Then there exists o density with respect \g of form

¢a’2(w) — (ZW)_d/2|E|_1/ 6—5(:1:—(1) 3T (x-a) )
Proof

O

In the following proposition we give an algebraic proof of an inverse the-

orem to Proposition (2.4). The presented result is a special case of a more

general theorem on inverse Fourier transform of integrable characteristic
functions.

Proposition 2.5 Let 3 be nonsingular. Then

1 . . t* Xt
ba5@) = gz [T T
’ T Rd

for all z € R%.

Proof For simplicity we assume @ = 0. Let ¥ = LLT. We have for
t,reR

(t+iL ')t +izL™") =tTt +i(tTL 'z + 2T (L) Tt — 2T .

Hence

TE—I 1
exp (—%)/ exp <—§(t+iL_1m)T(t+iwL_1)> dt
Rd

= / exp (—%(tTt+i(tTL_1m+mT(L_1)Tt))> dt
Rd
1
= |E|1/2/ exp (—5(828T+2i8T$)> ds,
Rd

where in the last equation we used substitution ¢ = LTs. Now
T
t

exp —1(t+iL—1a:)T(t+imL—1) dt = [ exp _tt dt = (2m)?/2.
/Rd 2 /R 2

Hence the result follows. O
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2.1 Simulation of Gaussian vectors

The aim is to express Gaussian vectors through a sequence of independent
random variables Uy, ..., Uy having the same uniform distribution #[0, 1],
called random numbers. In principle such uniformly distributed random
variables can be generated on computers, however on computers we can
generate only pseudorandom numbers behaving similarly to random num-
bers. In the simplest case of a sequence of i.i.d standard Gaussian random
variables we can use ®~1(U;),...,®~1(U;), where ®~1(x) is the inverse
function to ®(x) but the method requires the explicit knowledge of the
inverse function.

2.2 Box-Muller method

The following method, known as Box-Muller method, allows to generate
a pair (X, X") of independent standard Gaussian random variables. We
express them in terms of polar coordinates X = Rcos©, X' = Rsin ©.

Proposition 2.6 Random wvariables R and © are independent, © uni-
formly distributed U[0,27) and R having the Raleigh distribution with den-
sity f(r) =rexp [-r%/2] 1(r > 0).

Proposition 2.7 [Box-Muller] Let U,U" are independent and uniformly
U[0,1] distributed. Random variables

X = (=2logU)Y2cos2aU’, X' = (—2logU)*?sin 27U’

are independent standard Gaussian variables.

2.3 Recursive and Cholevsky method

We now discuss how to simulate a sequence of n + 1 Gaussian variables
Xo, .. .,X, or a Gaussian vector X,, = (Xo,...,X,)? ~ N,51(0,%,). We

will consider centered variables only. Let X 11 = (X1, Xs,...,Xpt1) be a
Gaussian vector with distribution N,42(0,X,+1), where
) ol
1= ( " ntl ) , (2.4)
On+1 On+ln+l

where opt1 = (Ont10,---,0n4+1n). It turns out that knowing a vector
X, ~N(0,%,) we cn generate X 11 in view of the following proposition.

Proposition 2.8

(Xn+1|X0 = ZTg,--- 7Xn = .Z’n) ~ N(a(mn),si),
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where
— Ty —1 —
an(xn) = (Ony1) 2, , Tn = (Zgy.-.,%n)
and
2 T
8y = Ontlnt1 — (Ont1)” Bony1.
Thus we can simulate Xy, . .. recursively using recurrence from Proposition

2.8. The drawback of this method is that it is difficult to organize the
calculations economically.

A remedy is the following simulation method, which we call Cholevsky
method, although in principle the Cholevsky method is an algorithm for the
following factorization of the matrix X,:

>, =L,LE,

where L, = (Ijk)jk=1,...,n is a lower triangular matriz (that is l;; = 0 for
all j < k). Notice that if L, is known, and Yp,...,Y, is a sequence of
i.i.d. standard Gaussian r.v.s, then X = LY has the required distribution
Nn+1(0,%,). The Cholevsky factorization is given in the next proposition.

Proposition 2.9

5o = oo (2.5)
= 2.6)
1
liv1j — ; (2.7)
o Lij(ois1 5 — Yoo liv ikl 1)
1
lit1iv1 = Oit1i41 — Zlfﬂ r 0<7 < (2.8)

k=0

It is important to note that to compute factorization of 3,1 fulfilling (2.4),

we have r
D= b ). (2.9)
ln+1 ln+1 n+1
where 1,11 = (lnt1 0y- 5 lnt1 »)? and L1 41 are computed by (2.8).

In conclusion, simulation via Cholevsky factorization is exact (no ap-
proximation is involved) and one does not need to set the time horizon in
advance. Moreover no matrix inversion is needed. The drawback of the
method is that becomes slow and storage demanding as n becomes large.2.

Exercises

2Cited from Asmussen (1999), p. 101
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2.1 Let X be a covariance matrix. Show that
1
R%>t — exp (—itTEt>

is integrable if and only if det X # 0.

2.2 Let Xi,...,X4 has joint normal distribution such that there exists
only one index k for which o} < o}, for all j # k. Then for t = oo

t_
P(maxX; >t) ~P(X; >t) ~ ¥ ( U"’“) . (2.10)
J k

Hence 1 1
tll{go T log]P(lgljaéXn Xj > t) - ﬁ

Hint. P(Xj > ¢) < P(max; X; > ¢) < Y7, P(X; > ), for all
t>03

2.3 Let Uy, ..., U, are independent uniformly distributed ¢[0, 1] random
variables. Show that ®~1(U), ..., ®~1(U,) are independent standard
Gaussian random variables.

2.4 Complex variables
Let (X, X') ~ My(a,X). Random variable of form
Z=X+iX'
is called complex Gaussian. The expected value or mean of Z is
EZ=EX+iEX =a+id =m.
Notice that the knowledge of a and
E(Z-m)(Z-m=EX-a?+EX' -d)? =0} +0}

is not sufficient to determine the distribution of Z.
Let now X1,..., Xy, X],...,X;, be Gaussian and set Z; = X; +iX].
Then (Z1,...,2Zy) is a complex Gaussian random vector.

Exercises

2.1 Let X and X' be independent and set Z = X +iX’. Show that EZZ
and E ZZ determine the distribution of Z.

3A co sie dzieje gdy maksimum jest osiagniete dla 2,3, itd sigm?
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3 Gaussian processes

Let {X(t), t € T} be a real valued stochastic process (random function)
with a general space of parameters T. In particular we are interested in
T=R,R;,[0,1) or T = Z,Z, however we will need in some places the
space T to be a family of subsets. For example in the next chapter 7' can
be a sigma field of subsests. By a finite dimensional distribution (fi-di) *
of {X(t)} we mean

H(ty,..tn) (B) = P(X(t1),...,(tn)) € B), ~ B € B(R").

Let £ be the family of all finite sequences of nonrepeating elements from 7'
that is £ = U;; V;(T), where V;(T') denotes the set if one-to-one functions
from 1,...,n to T. The family of finite dimensional (fi-di) distributions of
the stochastic process {X(t)} is {ur, L € L}. Let L be a sequence (not

necessarily finite) and L a subsequence of L. By m ; : RY - RF we

denote the restricting a function in R” to the domain L'. The family of
fi-di distributions of {X ()} has the following consistency property:

Bpr = prLo (WL,L’)_I- (3.11)

In the following theorem we consider an inverse problem. Instead from
starting from a stochastic process {X (t)}, which defines the corresponding
family of fi-di distributions, we begin now with a family of distributions
{pr, L € L}, where uy, is a distribution on R” and fulfilling (3.11). We
say then that there is given a consistent family of fi-di distributions.

Theorem 3.1 [Daniell-Kolmogorov] For a given consistent family of fi-di
distributions {pr}, there exists a probability space (Q, F,P) and a stochas-
tic process {X (t), t € T} having {ur} as its family of fi-di distributions.

Typically nothing can be said about regular properties of the process
{X(t)} from Theorem 3.1. In fact, processes from the proof of Daniell-
Kolmogorov theorem have not required properties of their realizations. One
of approaches to define processes with required properties of realizations
(like for example with continuous realizations) is proving the existence of
a good modification. Thus we say that a stochastic process {X*(t), t €
T} is a modification of {X(t), t € T} if P(X*(t) = X(t)) = 1 for each
t € T. Moreover, for a topological space of parameters 7', we say that the
modification is continuous if for almost all (with respect to P) w € Q, the
function T' 5 ¢t — X (¢) is continuous.

4277
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Theorem 3.2 [Kolmogorov criterion] Let T' = R? or [0,1]%. If for some
a,C >0
E|X(t) — X(s)|* < Ot — s|%*¢, s,teT

then there exists its continuous modification.

Definition 3.3 We say that a process {X (t), t € T'} is Gaussian if its all
fi-di distribution pr are normal. Functions

at) = EX(@{), teT
R(s,t) = Cov(X(s),X(t), steT

are said to be the mean function and covariance function respectively.

It is clear that for L = (1, .. .,t,), the distribution pr, of (X (¢1),..., X (tn))
is jointly normal with mean (a(t1), ..., a(t,)) and covariance matrix (R(t;, ) k=1,...,n-
In Section [????] we prove that each covariance function is a positive
definite function. In contrast to covariance functions any function (not
even measurable) can be the mean function. By Daniell-Kolmogorov the-
orem functions a(-), R(-,-) uniquely determine the family of fi-di distri-
butions of a Gaussian process {X(t), t € T}. Therefore we will some-
times say that {X(¢)} is a(-), R(-,-)-Gaussian process and denote it by

{X(®)} ~ N(a(), R(-,-))-

Comments. Johnson and Kotz (1972), Lifshits (1995), Tong (1990)



Chapter 11

Order relations between
(GGaussian vectors

Let TF be a class of functions f : R — R. We will consider only integral
relations between two distributions on R? defined as follows. We say that
distributions g and u' are related with respect to <g and write p <g p' if

£(z) p(de) < / f(2) ' (de)
Rd Rd

for all f € F for which the integrals exist and are finite. We also write for
two random vectors X and X' with distributions u, p' respectively that
X <p X'.

1 Two basic lemmas

In the following lemma f : R? —» R is bounded with bounded and contin-
uous second derivatives.!

Lemma 1.1 Let X and X' be Gaussian vectors with mean and covariance
matrices a and a' and X, X' respectively and moreover we assume that the
covariance matrices are nonsingular. For 0 < v < 1 we define a Gaussian
vector X, with density ¢, (x) having the mean and covariance matriz va +
(1—v)a' and vE + (1 —v)X' respectively, where 0 < v < 1. Furthermore we
assume that f : R? = R is bounded with bounded and continuous second

1Tozsamosc pojawie sie Mueller and Scarsini; info od R. Kulik

11
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derivatives. Then

Ef(X') -Ef(X) =
- /[Za—a]/% 5o /(@) da

ik UJk
by o [ b aw]amkﬂ‘”)d"’]d” (L1)

7,k=1
- / f@)g. (@) do
R

[ 2 a0) av=o0) - 50) = B0 - B4,

we need to compute

Proof Let

Since

We have from Proposition 1.2.2

> T . T(E-EE
Dy (t) = et (va-(1-v)a')- ——5—~1—
Hence
0 s %
git®) = g [ 0@ a)- EE=2005, 4 a
~ Ty %
= z% Rd(tT(a—a')¢v(t) dt — %/R %)%( 9 at

We now have

S / et 5w ae = 0L / TG (1) dt,
) Rd Rd

(2w d 8.’17j (27T)d
- z‘a%qsv(m), (1.2)
-1 —itTx . 0 1 _iTx
(27{')d /l;d t]tke m¢v(t) dt = WW /l;d e m¢v(t) dt
= % 4@ (1.3)

6.%']'6.'Ek
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Therefore

;) 1 d , 52
T) = Z((l]’ - aj)a—mjm(w) +t3 Z(Ujk - ajk)i@xjaxk Po(x). (1.4)

j=1 Ik

Integrating by parts

Li@% P aw - - [ s@®aw as)
R4 R4 €L j

32%( ) _ 9 f(x)
/Rd fla )6.7:]83:] dz = R4 ¢v(m)6wj6xk dz (1.6)

Hence by (1.4), (1.5) and (1.6)

d
99(v) _ f( )8¢51() 2) dz Z a; — a; / bo(z 6;‘”) dx +

4 q a,k 0*f(x)
Z /Rd ¢v(w) Ba:](’)a:k dz

O

Remark The result of Lemma 1.1 can be written using the following no-
tations. For the gradient we write

Vi) = (et @ e t@)

and for the Hesse matriz

(HS) (@) = (%fgxkf(m))i,j_l .

=1,...,

Furthermore for a d x d-matrix
d
A) =) ajj;
i=1

for two d x d—matrices A, B we have

d
B)= Y ajbj-

k=1
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Then
Ef(X')-E f(X) =
= /0 /Rd [(a' —a)" (Vf)(z)+ %tr[(E' — X)(Hf)(z)]¢y(z) da

| @ = a7 (V1) (@) + gul(® - D) HEN@]x(de). (1.7

where 7(dx) fo ¢y () dv de.

Let X and X' are two independent copies of the standard Gaussian
vectors in R? and

Y, =vX +V1-v2X', 0le<1.

(v.) = (h 7))

where I is d X d identity matrix.

note that

Lemma 1.2 Let f,g € C'(R%, R) such that the functions with first partial
derivatives are bounded by Aexp(B|z|). Then

Cov (f( /]EVf Vg(Y,) dv.

Proof

O

Corollary 1.3 Let f, g € C'(R%, R) such that the functions with first partal
derivatives are bounded by Aexp(B|z|). Then for X ~ N(0,X)

1
Cov (/(X),9(X)) = [ E(VSXO)TE(Vg(Y,) do
0
Remark Denote now p, the joint distribution of X,Y , (that is a 2d-

dimensional Gaussian distribution) and by n(dx, dy) = fo (dzx,dy) dv.
Then from Lemma 1.2

Cov (f( /Rd/Rd < (VH(x), (Vg)(y) > n(dx, dy).

Exercises
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1.1 Let X and X' be two independent Gaussian vectors with distribu-
tion N3(0,X) and Ny(0,X’) respectively. Let 0 < v < 1 Show that
v'/2X 4 (1 —v)Y/2X' has the distribution Ny(0,vX + (1 —v)X").

Comments. Mueller and Stoyan (2002), Bobkov et al (2001)

2 Stochastic order

For two vectors X and X' with distributions p and p' respectively, we say
that they are stochastically ordered and write X <g X' or p <g p' if

f@)plde) < | f(z) p'(dz) (2.8)
R4 R4

for all nondecreasing functions such that the integrals exists. In the follow-
ing result we need a notion of an upper set A, that is a set from B(R?) such
that if € A, then for all y > & we have y € A.

Proposition 2.1 The following sentences are equivalent.

() X <q X'

(ii) For all bounded nondecreasing functions f relations (2.8) holds.

(iii) For all bounded and continuous nondecreasing functions f relations
(2.8) holds.

(iv) For all upper sets U

P(X eU)<P(X'eU).
Proof (i)—(ii) obvious.
(ii)—(iii) obvious.
(iii)—(iv). Let d(z, A) = inf,ca |z — A| be the distance from z to A. For
each A it is a continuous function of z2 For an upper set U define

fn(z) = (1 = nd(z,U))+.

This function is bounded (obvious), nondecreasing (because U is an upper
set) and continuous and moreover lim, o, fn(z) | 1(z € U) for all z € R?.
Since [ f, du < [ fn dy/, passing with n — oo we obtain (iv).

(iv)—(ii) Let f be bounded and nondecreasing and v = inf f(x). Then

Up={z € R*: f(z) > a}

2REf?
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is an upper set. Let

In(x) =7+Z%1(m €U, )
k=0
Since 1
f@) = < falo) < @) +
we have

1 1
fdp-r< [ gans [ fadis [ paps s,
R4 n Rd Rd R4 n

Hence (ii) follows.
(ii)—(i). Let f be nondecreasing such that [ f du and [ f du’ are finite.
Let for M < N

M forz < M
@ =% f(z) forM <z<N
N forr > N

Since f4) is bounded and nondecreasing [ far du < [ fa du'. Now passing
first with N — oo and with M — —oo we obtain (i). O

Lemma 2.2 Let f be a nondecreasing and bounded continuous function.
Then there exists a sequence f, of functions from DOO(]Rd,]R) with all
derivatives bounded.

Proof For a nondecreasing bounded continuous function define

fn(x)

| @ w2 dy (2.9)

= [ bprnwi@-v) dy (210)

From (2.9) we conclude that f, is nondecreasing and from (2.10) we con-
clude that f,, is C*°(R%, R) with all derivatives bounded. Moreover f,(z) —
f(z) for all z € RY. O
Corollary 2.3 X < X' is equivalent to

E f(X) <E f(X')

for all nondecreasing and bounded functions from U™ (R, R) with bounded
derivatives.
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Proof We have to use Proposition 2.1 (iii) and Lemma 2.2. O

In the next lemma we characterize the stochastic ordering of Gaussian
vectors.

Theorem 2.4 Let X ~ Ny(a,X) and X' ~ Ny(a',X'). Then X <4 X'
if and only ifa < a' and T = X',

Proof Miiller and Stoyan p.96. The sufficient condition follows from
Lemma 1.1. Conversely |

Exercises

2.1 Show the equivalence of the following sentences for random variables
X and X':
(i) X < X'.
(ii) P(X >t) <P(X'>1t) for all t € R.
(iii) P(X <t) >P(X' <t) for all t € R.

Comments. Mueller and Stoyan (2002)

3 Upper and lower orthant orders

Conditions (ii) and (iii) from Exercise 2.1 can be expressed for random
vectors as follows.

(ii,) P(X >t) <P(X' > t) for all t € R?. (iii,) P(X < t) >P(X' <t)
for all t € RY.

Unfortunately for vectors of dimension greater or equal 2 conditions (ii,, )
(iii, ) are not equivalent. Therefore we introduce the following definitions of
the upper orthant order that is X <,, X' if condition (ii, ) hold. Similarly
we define the lower orthant that is X <j, X' if condition (iii,,) hold. Recall
that X = (X1,...,X4) and X' = (X},...,X,)

Proposition 3.1 The following conditions are equivalent.
() X <uwo X'.
(ii) We have

E H fi(X;) <E H £(X5) (3.11)

for all nonnegative nondecreasing and bounded function f; : R = R.
(iii) We have (3.11) for all nonnegative nondecreasing, bounded and con-
tinuous function f; : R — R.
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Proof (i)—(ii). Let f; (j = 1,...,d) fulfill condition of (ii) and define
upper set ‘
Ul ={z€R: fi(z) > a}

and v; = inf f;(z). Define

= 1
fjm(fb'j) =; + Z El(x] S U’];J-l-%)

k=1
From (i)
d d )
E [[ fim(&X) <E [ fim(X))
j=1 j=1
Since
d d d const
H fi(z;) < H fim(z;) < Hfa(mj)
7j=1 j=1 j=1

hence (ii) follows.
(ii)—(@1) Obvious.
The implication (ii)—(iii) is obvious. The converse can be proved similarly
like in the proof of (iii)—(iv) in Proposition 2.1. m|

Corollary 3.2 X <,, X' is equivalent to
d d
E [[ (X)) <E [] (X))
j=1 j=1

for all nonnegative nondecreasing function f; € C*°(R,R). with bounded
derivaties.

Proof Similar to the proof of the Corollary 2.3.
Parallel results exist for the lower orthant <), with

d d
E [] 50 > €[] £0x0) (3.12)
j=1 j=1

for all nonnegative, nonincreasing and bounded fuctions f; : R =+ R.
In the next result we compare two Gaussian vectors.

Theorem 3.3 Let X ~ N(a,X) and X' ~ N(a',%').

(i) We fzave X <uo X' if and only if a; < aj, 055 =0, j=1,...,d and
ojk <0y, for j #Ek.

(ii) We have X >1, X' if and only if a; > a;-, ojj = a;j j=1,...,d and

ojr < a;-k for j #k.
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The next corollary is a version of Slepian theorem, an important tool
for studying supremums of Gaussian processes.

Corollary 3.4
(i) Ifaj <ay, 055 =0;; j=1,...,d and oj < 0y, for j #k, then

7
min X; <g min X..
1<j<d 1<j<d 7

(i) If a; > a'j, ojj = a;j j=1,...,d and o5, < o;k for j # k, then

I
max X; <g max X,.
1<j<d 1<5<d

Proof P(X >t) < P(X > t) for all t € R? yields P(min<jcq X; >
t) < P(mini<j<q X; > t) for all ¢t € R. Similarly P(X <) < P(X <)
for all t € R? yields P(minj<j<q X; < t) < P(min;<j<q XJI. > t) for all
teR. O

For a multivariate distribution we denote by F;(z;) = F (oo, ..., 2j,...,00)
the j—marginal distribution. Let

F*(z1,...,34) = min Fj(z;)
j=1,...,d

be the upper Fréchet distribution. If F; = ... = F; and X ~ Fi, then
(X,X,...,X) has distribution FT.

Proposition 3.5
F >, FT.

Comments. Mueller and Stoyan (2002), Slepian (1962), Tong (1990)

4 Convex, supermodular and directional con-
vex orderings

Let
Al f(z) = f(@1,.. ., 25 + 0, @) = f(T1,.. ., %), .., Ta)-
Definition 4.1 (i) We say that f : R? — R is supermodular (sm) if for

vj, v >0 ‘
AVAYFf(2) >0 j#k.
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(ii) We say that f: R* — R is directionally convex (dcx) if for v;, vy > 0
AVANf(@)>0 1<jk<d.

If moreover an sm function is nondecreasing we write then ism, and if a dex
functions is nondecreasing we write idcx.

Definition 4.2
(i) We say that X <., X' if

Ef(X) <Ef(X)

for all convex functions provided the integrals exist. We call such the or-
dering by convez order or cx order
(ii) We say that X <;., X' if

Ef(X) <Ef(X)

for all increasing and convex functions provided the integrals exist. We call
such the ordering by inceasing convex order or icx order.
(iii) We say that X <y, X' if

Ef(X) <Ef(X)

for all sm functions provided the integrals exist. We call such the ordering
by supermodular order or sm order.
(iv) We say that X <jen X' if

E f(X) <Ef(X')

for all ism functions provided the integrals exist. We call such the ordering
by inceasing supermodular order or ism order.
(v) We say that X <g., X' if

E f(X) <Ef(X')

for all dex functions provided the integrals exist. We call such the ordering
by directionally convex order or dcx order.
(vi) We say that X <;jep X' if

Ef(X) <Ef(X')

for all idcx functions provided the integrals exist. We call such the ordering
by increasing directionally convex order or idcx order.
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Proposition 4.3 The following sentences are equivalent.
(i) X <gm X'
(i) For all bounded and continuous sm functions f : R? - R

Ef(X) <Ef(X").

(i) For all bounded sm functions f € C*(R* = R)
E f(X) <E f(X').
In the next result we compare two Gaussian vectors.

Theorem 4.4 Let X ~ N(a,X) and X' ~ N(a',%).

(i) We have X <gn X' if and only if a; = aj, 055 =05 j=1,...,d and
Ojk < G;k fOTj 75 k.

(ii) We have X >gex X' if and only if aj = a;-, oj; < a;.j j=1,...,d and
Ojk S U_Ijk: fOTj 75 k.

(iii) If a; gl a;, 0j; < 05 = 1,...,,d and oji, < oy, for j # k, then
X <jeax X . Conversely X <jcqx X yields a; < a;, and oji < Tk for
J#k

Proof (i) —. Immediate from the definition and simple properties of
the sm ordering that marginals have to be equal and that covariances are
ordered. 7??. Immediate from formula (1.1).

(ii) =». X <dex X' implies o), < 0, and because X; <cx X; we have
a; = a'j and 0;; < a;-]-

??7?. Immediate from formula (1.1). O

Exercises

4.1 (a) If f € C2(R%, R), and

then f is sm.

(b) If f € C?>(R%, R), and
& f(x)
8wj6‘xk

>0, 1<4,k<d,

then f is dc.

4.2 Show that minj<j<qx; is ism.

Comments. Mueller and Stoyan (2002)
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5 Associated Gaussian vectors
We say that a sequence of random variables X7, ..., Xy is associated if

Cov f(X1,...,Xq),9(X ...

)

JXd)

for all nondecreasing functions f,g : R? — R such that the covariance
exists.

Theorem 5.1 [Pitt] Let X ~ Ngy(a,X) be a Gaussian vector. Then
X1,...,Xg is associated if and only if

ok 20, 1<j,k<d

Proof The sufficient part follows immediately from Corollary 1.3. For he
necesary part use f(x) = z; and g(x) = x.

Proposition 5.2 Let X ~ Ny(a,X) be associated and X* = (X},..., Xq)T
Ny(a,diag{o11,...,044}) (that is X* consists of independent Gaussian
variables and X; =q Xj for j=1,...,d). Then

max X; <g max X.
1<j<d 1<j<d” ?

Proof Since X is associated, then 3 has all entries nonnegative. Let
X" = (07;) be the covariance matrix of X*. Clearly, 0}, < o, hence by
Proposition 3.4 the result follows. a

Exercises

5.1 Let X ~ Ny(a,X) and det = # 0. If £~ ! has all off-diagonal entries
nonpositive, then Xi,..., X  is associated.

Comments. Mueller and Stoyan (2002), Pitt (1982), Gutmann, S. (1978)
Correlations of functions of normal variables. J. Multivariate Anal. 8,
573-578. Tong (1990)

~



Chapter 111

Covariance theory of
Gaussian processes

1 Stationarity

Let L = (t1,...,tp) and L+t = (1 + t,...,t, +t), where T = R,R4 or
ZZ,.

Definition 1.1 We say that {X(t), t € T} is stationary if pur, = pr4e, for
all L € T™ such that L+t € T".

Proposition 1.2 (a(-), R(,-))-Gaussian process {X (t), t € R} is station-
ary if there exists a function r : R — R such that R(s,t) = r(t — s) and
a(t) = const.

Proof  Since p; is the same for all ¢ € R we have a(t) = EX(t) =
const. We have ) = f1(0,t—5)- Without loss of generality we can as-
sume s < t. Hence Cov (X (s),X(t)) = Cov(X(0),X(t — s)). Denote
r(t) = Cov (X (0), X (¢)). Thus R(s,t) = r(t — s). On the other hand, since
R(s,t) = R(t, s) we have R(s,t) = r(|t — s|) for all 5,t € R. O

Similarly for {X(n), n € Z} we have R(n,m) = rjp_p|.

Definition 1.3 We say that a stochastic process {X(t),t € T} has sta-
tionary increments (si) if

(X(t2) = X(t1),..., X(tn) — X(t1)) =a
=q (X(t2+h)—X(t1+h),...,X(tn+h)—X(t1+h))

for all ty,...,tn,t1 +h,...;tn,+h €T andn=1,....

23
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Note that if {X(¢)} is si, if and only if {X (¢) — X (0)} is si.

Definition 1.4 We say that a real valued stochastic process X (t), t € T,
where T'= R,R4 or ]Rd,]Ri is self-similar (ss) with self-similarity index
H (H-ss) if for all ¢ > 0 we have

{c X (ct), t €T} =q{X(t),t €T}

Proposition 1.5 Let {X(t), t € R} be (a(-), R(,-))-Gaussian process.
The following sentences are equivalent.

(i) The processes with stationary increments.

(ii) The mean and covariance function fulfill

a(s+t) = a(s)+a(t), s,teR, (1.1)
Ris,t) = 502 +0%(s) — o (It — s]), (12)

where o(t) = R(t,t) = Var X (t).
(iii) There exist a constant a € R and a function 0 : Ry — R such that
E(X(®#) —X(s) = a(t—os), (1.3)
Var (X (1) — X(s)) = (|t —s). (1.4)

Example 1.6 Let {Z(t), t € R} be a stationary centered Gaussian process
with covariance function {r(t — s)}. We define the integrated Gaussian
process (IG) by

| [fz(s)ds fort >0
X® = { E)Z(s) ds fort <0.

Actually we need measurability of {Z(¢)}, however in our applications the
process Z has continuous realizations and therefore fot Z(s) dv is a random
variable.! This IG process is with stationary increments because fors < ¢

t t—s
E (X (t) — X(s))? = ]E(/ Z() dv)QE(/O Z() dv)? = o2(t — 5).

We now express o2 (t) in terms of the covariance function of {Z(t)}. Thus

E/OtZ(v) dv/OtZ(w) dw

Q/Ot/vtr(w—v) dvdw=2/0t/osr(v)dvds.

o*(t)

= /Ot/otEZ(v)Z(w)dvdw
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1.1 Complex Gaussian processes

Exercises

1.1 Show that the following sentences are equivalent.
(i) Stochastic process {X (t), t € R} (not necessarily Gaussian) has
stationary increments.
(i) {X(@t+h)—X(h),te R} =¢ {X(¢) — X(0), t € R}.
(iii) For t1 <...<t,,n=1,...and he R

(X(t2) — X(t1),..., X(tn) — X(tn-1)) =4
=4q (X(tz +h) —X(tl +h),...,X(tn +h) —X(tn_l +h))
1.2 Prove that if {X(¢),t¢ > 0} is H-ss, then {Y(¢), t € R} defined

by Y(t) = e tH X (e!) is stationary. Conversely if Y (t), t > 0 is
stationary, then X (t) = t'Y (logt) is H-ss.

1.3 Let {X (¢)} be a centered stationary Gaussian process with covariance
function R(t). Show that the process is continuous in probability if
and only if R(t) is continuous.

2 Covariance functions

In this section we study further properties of covariance functions. For a
real valued process {X (), s,t € T} such that IE (X (¢))? < co we define its
covariance function by

R(s,t) = Cov (X (s),X(t)), teT.

In case of complex valued stochastic processes { X (t), ¢t € T'}, where X (t) =
X*(t) +iX'(t) and X*(t), X'(¢) are two real valued stochastic processes
corresponding to the real and imaginary part of X (t¢) respectively. For
such the process one define the mean and covariance function by

E X(t) = a(t) = E X" (t) + iE X'(¢),
and
Cov (X (s), X(t)) = R(s,t) = E(X(s)-E X (s))(X(t) —EX(t)), steT.

Recall that a complex valued functions {g(s,t), s,t € T} is Hermitian if
g(s,t) = g(t,s) for all s,t € T. For a real valued functions this property
means that it is symmetric.
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Definition 2.1 We say that a real or complex valued function g : 72 = R

is positive definite if for all ¢1,...,t, and 21,...,2, € C
> gltsite)zzk > 0. (2.5)
J k=1

In case of real valued function g(s,t) in definition (2.5) it suffices to consider
Z1,---,2n € R.

Proposition 2.2 Covariance function is a Hermitian positive definite func-
tion.

For the case of processes with stationary increments we have the follow-
ing characterization of covariance functions.
Let

f@¢»=/mwmt4an—nuww, (2.6)

—0o0

where v is a measure such that
o0
/ min(u?, 1) v(du) < 0.
— o0

It is straightforward to prove that f(s,t) is Hermitian and positive definite.
Proposition 2.3 Let f(s,t) be defined by (2.6). We have that

1. f(s,t) is well defined,

2. f(s,t) is Hermitian and positive definite,

3. if v is symmetric, then f(s,t) is real (and this will be assumed from
now on),

4. for s,t e R
Fo,0) = 50 + fls,9) — flE—s,t—8).  (27)

Later in Theorem 6.11 we show that any positive definite function f(s,t) of
has to be of form (2.7). From the above proposition it follows the following
result.

Proposition 2.4 A centered real valued Gaussian process with covariance
function R(s,t) of form (2.6) has stationary increments.
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Example 2.5 (i) [Wiener process] Let R : R, — R be defined by R(s,t) =
s At. The following argument shows that R(s,t) is positive definite (that
is symmetric is obvious). We have

s/\t=/ 1(v < 8)l(v < t)dv
0

and hence for all ¢1,...,t, € Ry and 21,...,2, € R

n n [os}
Z tj A tk ZjRE = Z / 1(’1) S tj)l(v S tk) d’l)ijk
jik=1 gik=1"0
2

0o n
/ 1(v <t;)z; | dv>0.

Centered Gaussian process {W(t), t > 0} with covariance function s A ¢
is called Wiener process. Later on we shall also require that W () has
continuous trajectories. The Wiener process is 1/2-ss.

(ii) [Brownian bridge] Let R : [0,1]2 — R be defined by R(s,t) = sAt —
st. The following argument shows that R(s,t) is positive definite (that is
symmetric is obvious). We have for all ¢1,...,¢, € Ry and 21,...,2, € R

n
(tj ANty — tjtk) ZjZk =
k=1
n 1 1 1
(/'Kvgtﬂﬂvgtwdv—/‘Mvgtﬂdv/‘Mvﬁt@d@qn
= o 0 0
2

Al il(l(?} <tj)z;) | dv- ‘/01 ;(l(v <tj)zj)dv ] >0.

j=

Centered Gaussian process {I/?/' (t), 0 <t < 1} with covariance function
s At — st is called Brownian bridge process.
(iii) [Wiener—Chentsov random field] Let for s = (s1,...,84) € R% and

t=(t,...,tn)T €RYL

d
R(S,t) = H(S] N tj).
We have
R@ﬂ:/l@gﬂ@gﬁ%, (2.8)
Rd

+
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from which we immediately show that it is positive definite. Symmetry
is obvious. Centered Gaussian process {W(t), t € ]Ri} with covariance
functions R(s,t) is called Wiener-Chentsov random field. The Wiener-
Chentsov process is d/2-ss.

Exercises

2.1 Show that function R(s,t) defined by (2.8) is symmetric positive def-
inite.

2.2 Show that the Wiener process is 1/2-ss, Wiener-Chentsov random
field is d/2-ss.

2.3 Show that cos(t — s) — cost — cos s + 1 is positive definite.

2.4 Let A, O be two independent random variables — A having Raleigh
distribution with density function g(z) = xexp(—22/2)1(z > 0) and
O being uniformly distributed over [0, 27]. Show that

X(t)=Acos(®—1t), te R
is a centered stationary Gaussian process and that
X(t)=Asin(@—1t), teR

is its independent copy. Find the covariance function.

2.1 Fractional Brownian motion
The main result proved in this subsection is the following theorem.

Theorem 2.6 Let f : R?> - R be defined by
1
Fls,8) = (sl + 11 = [t = 8]%).

If 0 < a <2, then f is positive definite.

The proof for a = 2 is straightforward, because f(s,t) = st and we can
immediately check condition (2.5). To prove the theorem for 0 < a < 2 we
need the following facts.

Lemma 2.7 For0<a<2ands >0

™

oo
t™%sints dt = ———~
/0 S 2T () sin (Z2) i
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Proof Fichtenholz II, 539.3

Lemma 2.8 Fora >0
I(a+1) = al(a).

Proof Fichtenholz II, 531.

Proof of theorem We show that f(s,t) can be written as (2.6), in particular
we use (2.7) and that

f(s,8) = / e — 12 ( du) = |s[°,

—0Q
holds for o
v(du) = (21)" (e + 1) sin ( : ) u[ =% du. (2.9)
Since ‘
le** — 1|> = 2(1 — cos su)
we have

R

/ e — 1P y(du) = 2(2m) 'T(a+1)s (%)/ (1 — costu)|u|~1=* du
4(27)7'I'(a + 1) sin (% / / sin su ds du

4(27)7'T(a + 1) sm(E // smsud ds =t°,

where in the last equation we used the results of Lemma 2.7 and 2.8 O

Definition 2.9 Centered Gaussian process { Bg(t), t > 0} with covariance
function

1
R(s,t) = 5(tZH + 2 — |t — 52H)

is called fractional Brownian motion with Hurst index H. We denote it by
H—{Bm.

Clearly 0 < H < 1. We will use rather 0 < H < 1, then 0 < a < 2
remembering that o = 2H. Formula (2.9) defines spectral density hy (u) of
the fBm:

() = Gy *(H)ul 171,

where

2
C2(H) = \/ T(2H + 1)sin (rH) (2.10)

We will study spectral representations for {Bm’s in Section 6.4.
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Remark Since EBg(0) = 0 and Var By(0) = R(0,0) = 0 we have
By (0) = 0 a.s.. Note that H-fBm is H-ss. For H = 1/2, {By»(t)} is
the Wiener process. If W ~ N (0,1) and X (t) = Wt, then X = By, that is
an 1-fBm.

Remark The H-fBm for H > 1/2 serves as an example of a Gaussian
process with long range dependence property. Thus consider the sequence
Xn, n =0,1,..., defined by X,, = Bg(n + 1) — Bg(n). Its covariance
function is for n =0,1,...,and m =1, ...

1 A A
R(n,n+m) =B XpXnim = 5(jm - 12H —2m? 4 |m + 12%) (2.11)

and so the sequence is stationary with covariance function r,,, = R(n,n+m)
and ro = 1. Gaussian sequence with the covariance function like in (2.11)
is called a fractional Brownian noise (H—{Bn)

Exercises

2.1 Prove that fractional Brownian motion is sample continuous. Hint.
Prove that IE (X (¢) — X (5))?" = EW?"|t — s|>I", where WA (0, 1).

3 Positive and negative definite functions

Besides of the concept of positive definite functions we have also the fol-
lowing one: a function g : T2 — R is said to be negative definite if for
t1,...,tn € T and wy,...,w, € R such that w; +...+w, =0

n
g(tj,tk)ijk S 0.
J.k=1
We will not consider complex functions but mention that in such the case if
g : T? = U, then g is positive definite if for ¢1,...,t, € T and wy,...,w, €
I such that w; +...+w, =0

n

3 f(ts, tr)wimk < 0.

jok=1
We assume that g(0) = 0 which yields
9(s,0) = 9(0,5) = 0.

Moreover g(t — s) = g(s — t), which yields that f is symmetric.
In the sequel T = R? and g is real.
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Lemma 3.1 Let
1
f(s,t) = 5(9(t) + g(s) — g(t — 3)).
f(s,t) is positive definite if and only if g(t) is negative definite.

Proof Let f be positive define and wy, ..., w, € R such that 377, w; = 0.
We have

n
0> Z F(tj, tr)wjwg

J.k=1
n
= Z g(tj)wjwg + Z (tr)wjwg —Zg (t; — tr)wjwg
7,k=1 k=1 7.k
1 n
= -3 > glt; — te)wjwy, (3.12)
Jik=1

and so g(t) is negative definite. Conversely suppose g(t) is negative definite
and let ty,...,t, € T,ws,...,w, € R (we do not assume that 2?21 wj =
0). Let to—Oand wo——z _, wj. We have

n

Z t _tk Z f(tj,tk)ijk = — Z f(tj;tk)ijk-

=1 4.k=0 k=1

O

Theorem 3.2 [I. Schur] (i) If fi and f2 are positive definite, then fif2 is
also positive definite.
(ii) If f is positive definite, then ef is positive definite too.

Proof (i) To each positive definite function f; we can associate a Gaussian
process {X;(t), t € T} defined on a probability space (Q;,F;,P;), (j =
1,2). Let {Y(¢), t € T}, where Y(t) = X;(t)X2(t) be defined on (Q; x
Oy, F1 @ Fo,P; @Py). Clearly the covariance function of Y is f; f> and the
covariance function must be positive definite.
(ii) It follows from

o0

=Y 5

7=0

[
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Theorem 3.3 [Schoenberg] For all ¢ > 0 function R* 3 t — exp(—cg(t))
is positive definite, if and only if g(t) is negative definite.

Proof We have
cg(t) =1—e=® +o(c,),

where lim._,q o(c,t)/c = 0 for all ¢£. Hence for ¢4,...,t, € R? and w; € R
such that }°, w; =0

n
ng(tj — ty)wjwg + Z k)WjWE = Ze—CQ(t ). Wk
j’k

Jrk=1 7.k

If we choose ¢ > 0 sufficiently small, then the LHS is negative. The converse
part follows from Schur theorem 3.2. O

Proposition 3.4 Function R 3 t — g(t) is negative definite if and only
if there exists a symmetric measure v (v(A) = v(—A)) on R? such that

/ min(juf?,1) v( du) < 0o
Rd
and

o) = [ et 1P u(aw)
2/ (1 = costu®) v(du).
Rd

Proof t — f(t) = exp(—g(t)) is a characteristic function (recall that
g(0) = 0) of an infinitly divisible distribution. Therefore, taking under
account that g(t) is real, we have by the Lévy-Khinchin representation
that there exists a symmetric measure v’

o(t) = /R /Rd(1 ~ costu)/ (du)

/ min(|u|?, 1) ' (du) < 0o
R4
itu? _ 1|2

and

To complete the proof note that |e = 2(1 — costu”) and so
v=uv'/2 O

Comments. Bozejko (1987)
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3.1 Lévy fractional Brownian field

We show now that e~°I*” is a characteristic function for 0 < H <1,or
equivalently [t|?H is negative definite. Hence it follows from Lemma 3.1
that

1
R(s,t) = S (It + [s]*" — s — ") (3.13)

is a covariance function. A centered Gaussian process {X(t), t € R%}
with a covariance function given by (3.13) (and X (0) = 0) is called Lévy
fractional Brownian field (H-LfBf). A special case of interest is when
H =1/2. Then the process is called is called Lévy Brownian field or Lévy
Brownian motion.

That function g(t) = |¢|? is negative definite can be easily seen directly
from definition. We now show that g’ is negative definite too. It follows
from a more general result presented below.

Proposition 3.5 If g(s,t) is negative definite and g(s,t) > 0, then g*#
is negative definite too, for 0 < H < 1.

Proof We need the following integral formula

i o2 dv
tH:CHA (].—e t)m, tZO

where 0 < H < 1 and

—c|s—t2H

Corollary 3.6 ¢ is positive definite.

Exercises

3.1 Show that |t|? is negative definite.

4 Space IL*(u) and I3 (u)

Let (I, &, 1) be a measurable space. We define I.?(1) to be a family of all
functions f : E — R such that [ f>du < co. On this space we introduce
the scalar product < f,g >,= [ fgdu. The square of the distance between

fand gis||f —gll}, = [(f —9)* dp.
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We define L7 (1) to be a family of all functions f : E — L' such
that [|f|*dp < co. On this space we introduce the scalar product <
f,9 >,= [ fgdp. The square of the distance between f and g is || f—g||; =
J1f =gl dp.

Two cases are of interest:

e E=0Q,&=F and g = P where (Q,F,P) is our basic probabil-

ity space. In this case functions are random variables X such that
E X2 < oo or in the case of complex random variables E|Z|? < oo.
In this case the scalar product is defined by < X, X' >p= EXX'
and in case of complex random variables < Z, Z' >p=E ZZ'.

e E =[—a,qa], £ = B[—a,a] and p = v is a measure. Another case of
interest is when E = R, F = B(R).

5 Integration wrt white noise

Our aim is to define fT f dM from a deterministic functions on the space
of parameters with respect to the so called white noise defined below. We
assume that (T, T, v) is a measurable space with a finite measure v. Define

R(A, A =v(ANA), A AeT.

Since R(A, A") = [, 1414 dv it is easy to prove that R is positive definite
and of course symmetric.

Definition 5.1 Real centered Gaussian process {M(A4), A € T} with
covariance function R(A,A") = v(A N A’) is said to be a real Gaussian
white noise with intensity v.

Example 5.2 Let v be the Lebegue measure on R;. We call then the
defined Gaussian white noise by Wiener white noise

Proposition 5.3 If Ay,..., A, € T are disjoint, then M(A,),..., M(A,)
are independent an

3

M( AJ) = iM(AJ), a.s.

J j=1

It turns out that there exists a probability space (2, F,P) with a Gaus-
sian white noise { M (A)} defined on it and such that, for almost all (w € ),
A — M(A) is finitely additive. One can construct examples, however, that
A — M (A) is not o-additive. We now show how to construct [ fdM for
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functions f € ]LQ(E, &,v). We denote the scalar product on this space by
< f,g>,and ||f —g|]2 =< f—9,f — g >,. We denote by Lgtep(T') the
family of step functions.

Step 1. For a simple function f(t) = Z?:l a;1(t € A;), where a; € R and
A; € T we define

[ ) by = 3 aspac4)
T =
Lemma 5.4 Let f1,..., fn be simple functions on T.

(1) We h/a/Ue
]dM dM - 2 7
</f ’/f2 )>P <f1,f >

(ii) Random vector

(/Tfld,M,...,/TfndM)

has joint multivariate normal distribution N (0, (< fj, fr >)jk)-

Corollary 5.5 Let f, f' be simple functions.
() E(f fdM — [ f'dM)? = [(f = ) dv.
(ii) If f(t) = f'(t), then E(f fdM — [ f'dM)* = 0.

Step 2. Let f € L?(v). There exists a sequence of simple functions f,
(they of course belong to I?(T)) such that f, N f. Since

B([ foart = [ fary = [ (fu= fu v

the sequence { [, fn dM} is a Cauchy sequence in L*(P). Therefore there
exists the limit

lim | f.dM

n—oo T

in I>(IP). This limit we denote by Jr fdM. Tt is an exercise to check that
it does not depend on the choice of the sequence {f,}.

Lemma 5.6 Let fi,..., fn € L2(v). (1) W have

< /Tfl dM,/fz dM) Sp=< fi, fo > .

In particular

]E(/TfldM)2=/dey.



36CHAPTER III. COVARIANCE THEORY OF GAUSSIAN PROCESSES

(ii) Random vector

(/fldM,...,/fndM)

has joint multivariate normal distribution N (0, (< fj, fr >)jk)-

Example 5.7 Let v be an intensity measure on R absolute continuous wrt
Lebesgue measure A(-). Let h(z) be the density of v. Define

M(A) = /Oo 1(z € A)hM2(2) W(dz), A€ B(R),

—00

where {W(A)} is the Wiener white noise. Then {M(A4), A € B(R)} is a
Gaussian white noise with intensity measure v. Namely using Lemma 5.6
for A, A’

EM(A)MA" = /Oo 1(z € Ap?(2)1(z € A)hY?(z)de = v(AN A).

— 00

Therefore {M(A)} is a Gaussian white noise with intensity measure v.

5.1 Integration wrt complex white noise

Although in these notes we study real valued processes (or eventually as-
suming values in ]Rd), to get some representations, like some harmonizable
representations, we need to use complex white noise.

As before (T, T,v) be a measurable space with a finite measure v. Let

Z(A) = M"(A) +iM'(A), AeT (5.14)

be a complex stochastic process, where {M*(A)} and {Mi(A)} are real
white noises. A complexr white noise with an intensity measure v hs to
fulfill the following conditions:

E|Z(A)P = v(A), (5.15)
E Z(A)Z(A) = 0. (5.16)

for A, A’ € T disjoint. Conditions (5.15) and (5.16) is equivalent to
E[(M")*(4) + (M)*(4)] =

v(4), (5.17)
E M (A)M*(A") + EM'(A)M'(A") =0, (5.18)
E[M(AMT(AN] - E[M"(AM (A")] =0 (5.19)

for A, A" € T disjoint.
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Note that conditions (5.15), (5.16) case the intensity measure v does
not determine uniquely the white noise. An example of a complex white
noise is as follow.

Example 5.8 (i) Let {M"(A), A € T} be a real Gaussian white noise with
intensity measure (1/2)v and {Mi(A4), A € T} be an independent copy of
{M*(A)}. Then {Z(A)} defined by (5.14) is a complex white noise that is
conditions (5.15),(5.16) hold.

We now show how to construct [,. fdZ for functions f € Li(T,T,p),
that is the space of functions f : T — I, such that [|f|?dv < co. Recall
that the scalar product on this space is defined by: < f,g >,= [ fgdv.
We denote by L ¢(v) the family of simple functions.

Step 1. For a simple function f(t) = E?:l a;1(t € A;), where a; € I and
Aj € T we define

/ W) Z(dw) = Y a;2(4;) .
T =
Lemma 5.9 Let fi,...,fn € ]L%’S(T).

(1) We have
’ (jAM dM == -
</T L 7‘/.](‘2 )>P <f17f2 >

(/Tflch,...,/TfndZ)

has a joint multivariate normal distribution.

Corollary 5.10 Let f, f' € ]LQD,S(I/).
(i) ]E(fodZ_fole)2 = fT(f_fl)2dV-
(i) I F(t) = 1'(3), then E(f fdZ — [ J'dz)’ = 0.

(ii) Random vector

Step 2. Let f € L} (v). There exists a sequence of simple functions
fn € ]LZD’S(I/) (they of course belong to I, ()) such that f, 3 f. Since

B(| a2~ [ fnizi*= [ (fa= o) av

the sequence {[ f, dZ} is a Cauchy sequence in I*(P). Therefore, there
exists the limit

n—oo

lim | f.dZ
T

in L?(P). This limit we denote by [, fdZ. It is an exercise to check that
the limit does not depend on the choice of the sequence {f,}.
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Proposition 5.11 Let fi,...,f, € ]L%(I/).
(i) W have

< / f1 dZ,/ f2 dZ >p=< f1,f2 >, .
T T

Bl [ nazk = [ |nfan

In particular

(ii) Random vector

(/Tfle,...,/TfndZ)

has a joint multivariate complexr normal distribution.

5.2 Tilde complex white noise

The following notion will play an important role in defining real harmoniz-
able representation of Gaussian processes. Let T = R, 7 = B(R), and v
is a finite symmetric measure (that is v(4) = v(—A) for A € B(R)). We
define first the real white noise {M*(4), A € B(0,00)} with intensity mea-
sure sv and independent of M*({0}) ~ N(0,v({0})). Let {M'(A4), A €
B(0,00)} be independent copy of {M*(A), A € B(0,00)}. Furthermore let
M~*({0}) ~ N(0,v({0})) be a random variable independent of {M*(A)}
and {M!(A)}. We next extend uniquely {M*(A)} and {M(A4)} on the
whole line R to satisfy M*(A) = M*(—A) and M'(A) = —Mi(—A) for all
A € B(R). This condition yields M!({0}) = 0. We now define the tilde com-
plez Gaussian white noise {Z(A), A € B(R)} by Z(A) = M*(A)+iM'(A).
Note that

EZ(A)Z(A) =v(A).
This definition is valid if instead from v on R we consider a symmetric
measure v on a symmetric interval [—a, a].
In the case when v is the Lebesge measure on R we call the above
defined tilde white noise by tilde complex Wiener white noise. Such the
process we denote by {W}.

Consider now ‘_che case when T'= R and 12(1/) be the class of functions
f(z) = f*(z) +if'(z) be such that

f@ =7, [ @R ) <oo. (5.20)

—0o0

For such functions we define the integral I(f). The novelty here is that Z
does not fulfill condition (5.16) on the whole line and therefore the second
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equation below is by definition.
10 = [ 12
- /( @ 2+ 50) () + [ s Za

(0,00)

/ F@) Z(da) + £(0) MT({0}) + / f(z) Z(de)
(0,00) (0

100)

2 (/ f*(z) M (dz) —/ fi(z) Mi(dw)> + f7(0) M({0})
(0,00) (0,00)
Notice that from (5.21) (in the proof we use that f1(0) = 0)

B = [ 1f@)P vl

and

BN = [ " @) T vlde) -

Assuming that v is absolute continuous wrt the Lebesgue measure, let
h be the spectral density of v. We have for

/ o) F(dw), geTLW)

— 00

is equal in distribution to
| st V/E@ W), g€ Li0),

where {WW(A)} is the tilde complex Wiener white noise (that is a complex
tilde Gaussian white noise with the Lebesgue intensity measure). Actually
we can consider a Gaussian process

{[ 1wa, serim)}

and show that its fi-di distributions are the same as in the Gaussian process

{/O:o f(“)mW(du), fe L%«(l/).}

Exercises
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5.1 Show that -
{ / f) Z(du),  f € L)}

is equal in distribution to

/ " H) /A W (), | € L),

6 Spectral representation of (Gaussian pro-
cesses

6.1 Stationary processes

Theorem 6.1 [Bochner| Let R : R — U be continuous. {R(t—s), s,t € R}
is Hermitian and positive definite if and only if there exists a finite measure
v on (R, B(R)) such that

R(t) = / T etiy(dy),  teR.

—0o0

The measure v is called spectral measure.

Note that for R to be real we need to assume that v is symmetric, that is
v(A) = v(—A) for all A.

If we say that {X(t)} is a stationary process with spectral measure v
on R then tacitly assume that the covariance function R(t) is continuous.

Let {Z(A), A € B(R)} be a tilde complex white noise from Section 5.2.

Theorem 6.2 A stationary Gaussian process with spectral measure v on
R has the following spectral representation:

X)) = /m it Z( du)

—0o0

- 2/°°costqu(du)—2/°°sintuMi(du)+Mr({o}), t R

X't = / it 7 (du)

—0Q

= 2/00 costu M"(du) + 2/00 sintu M'(du) + M*({0}), t(6.R)
0 0
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Proof ~ Formula (6.21) follows directly from (5.21) applied to f*(t) =
costu — 1 and f'(t) = sintu. Next note that X (¢) and X'(¢) have the
same covariance function. O

Example 6.3 Let v = §_1 + g + 6_1. Then
o .
R(t) = / e™ v(du) =1+ 2cost .
—o0

Let M}, M1, Mg be independent and M¥, M ~ N(0,1/2) and M§ ~ N(0,1).
The tilde complex white noise Z is concentrated on points —1,0, 1:

Z({1}) = Mi +iMj, Z({0}) = Mg, Z({-1}) = Mf —iMj.

Then ©
X(t):/ e Z(du) = 2MF cost — 2M1 sint + M.
—0oQ
Clearly
EX(t)X(s) = 4E(M)?costcoss+ 4E (M})?sintsins + E (MF)?

2(costcoss + sintsins) +1 = 2cos(t — s) + 1.

Notice that )
X'(t) = 2M7 cost + 2M] sint + M.

is another spectral representation of {X (¢)}.

Example 6.4 Suppose now that a symmetric discrete measure v has
atoms at \j, j = —N,...,N; at A\; > 0 a mass 07, j = 1,...,N and
at Ag = 0 a mass o3. Let {MJr , M]‘} are independent random variables,

M}, M} ~ N(0,1/2) and Mg ~ N(0,1) Then a process
N .
X)) = ZZ(MJlr cos A\jt + M sin A\;t) + Mg
i=1

is stationary Gaussian with spectral measure v. Let ®; € [—7, 7] be such
that

cos®; =

and let
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for j =1,..., N. We now can write
N
X(t) =2 Ajcos(\jt + ®;) + M. (6.23)
j=1

Note that A;,®; (j =1,...N) are independent , A; has Raleigh distribu-
tion and @; is uniformly distributed.

Example 6.5 Function e /*~5/ is symmetric positive definite with spectral
measure h(u) du, where

a

"= Sy

u € R,

see Feller I1.2 Centered Gaussian process with covariance function eIt~
is called a stationary Orstein- Uhlenbeck process. Let W (t) = W0, t], where
W is the Wiener white noise, that is a (Gaussian white noise with the
Lebesgue intensity measure (see Example (5.2)). It is straightforward to
prove that

X (t) = e” W (), teR,
or that .
X'(t) = / etV (dy),  teR.

— o0

are stationary Orstein-Uhlenbeck processes.

Example 6.6 Consider an IG process defined in Example 1.6 Since r(t) =
J exp(itu) v'(du) for some symmetric and finite measure v', we have

t ot t t poo
o?(t) = / / r(v —w) dwdv / / / e y(du) dv' dw
o Jo 0 Jo Jooo
oo t t oo |eitu _ 1|2
= / / / e™ dv dw v'(du) / ———V'(du)
—oc0JO0 JO —o0 u

:/ et — 1 ( du),

—0o0

where v(du) = (1/u?)v'(du).

Exercises

22727
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6.1 Show from the definition that for two independent standard Gaussian
variables X and X', the process

X(t) = X(cost—1) + X'sint
is with stationary increments.

6.2 Show that
X (t) = e W (e**), teR,

or
t
X'(t) = / e=t=0 M(du),  teR.

X' (t) =/t e~ M(du), teR,

where M is a Gaussian white noise with the Lebesgue intensity mea-
sure, are stationary Orstein-Uhlenbeck processes.

6.3 Show that a stationary Orstein-Uhlenbeck process is Markov.

6.4 Show that if { X (¢)} is a stationary Gaussian process with continuous
covariance function is Markovian, then it is an Orstein-Uhlenbeck
process. Hint. For a proof of a reverse statement show that the
assumptions yield the exponential form of the covariance function.

6.2 Stationary sequences

In the following theorem function f is defined on dZ = {..., -2d, —d,0,d, 2d, . .

for some d > 0.

Theorem 6.7 [Herglotz] {f(x — y), =,y € dZ} is Hermitian and pos-
itive definite if and only if there exists a finite measure on [—7/d,w/d],
B[—n/d,w/d]) such that

f(nd) = / e y( du), t € R.
[—7/d,m/d]

The measure v is called spectral.

Proof Loeve, M. Probability Theory, Van Nostrand, Princton.

Note that for {f(nd)} to be real we need to assume that v is symmetric.

3
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In this section we study real stationary Gaussian sequences with covari-
ance function r,(d) = E XoX,, n € Z, which by Herglotz theorem can be

expressed by
T (d) = / e™ M y(du).
[—n/d,m/d]

The we say that {X,} is a stationary Gaussian sequence with spectral
measure v on [—n/d, 7 /d).

Example 6.8 Let {X(t), t € R} be a stationary process with spectral
measure v and define {X,, = X (nd), n € Z}. Clearly {X,} is stationary.
Compute now its covariance sequence

ro(d) = EXoX,= R(nd)= / T eindu ()

— 00

i e y(du).

k——oo Y ((2k—1)n/d,(2k+1)n/d]

Since function u — €% is periodic with period 27/d we receive

R(nd) = /( o ¢ind (), (6.24)
where
Va(A) = i W(@2k = 1)rjd+ A), AC (=r/d,x/d), (6.25)
and o
s/ d) = vt/ ) = 5 3 v((@k =i /) (620

Note that v, is a finite measure on [—m,7]. If v has a continuous density
h(u), then v, has density, called a spectral density:

2wk

7), —rfd<u<m/d (6.27)

ha(u) = > hlu+

k=—o0

We want to give a spectral representation of a stationary real Gaus-
sian sequence with a given covariance sequence {r,(d)} having the spectral
measure v on [—m/d,/d]. Let for example

X, = / e M(du), n € X,
[~ /d,n/d]
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where M is a Gaussian white noise with intensity measure v on [—7/d, 7/d].
From Proposition (5.11) {X,} is a complex Gaussian sequence and

EX,imX, = / ey (du)
[—m/d,m/d]

which shows that {X,} is stationary with covariance sequence {r,(d)}.
Unfortunately this sequence is tilde complex and therefore to get a real
spectral representation we need to use complex Gaussian white noises. It
turns out that in this case we need to apply {Z(A) = M*(A)+iMi(A), A €
B[-n/d,w/d]} from Example 5.8 (iii).

Theorem 6.9 A stationary Gaussian sequence with symmetric spectral
measure v on [—m/d,n/d], where d > 0, has the following spectral repre-
sentation:

Xn(d)

— / ez’ndu Z(du)
[-n/d,m/d]

= 2/ cosndu M*(du) — 2/ sin ndu M(du) + M"({0}), (6%
(0,m/d]

(6.28)

O/d
or
X' (d) = (6.30)
B / cos nhu M*( du) + 2 / sinndu M (du) + M"({0}), &)
(07/d O/d

Proof One has to adapt formula (5.21) and the proof of Theorem 6.9,
changing the domain of integration R to [—m/d, 7 /d)

Example 6.10 Let v be discrete symmetric measure on [—m/d,n/d] of

form
N-1

Z 012' ds;

j=—(N-1)

where s; = s_; and so = 0 and o; > 0. It is clear that M™ and M' are
concentrated on {sx, k = —(N —1),...,N — 1} and let M*({s;}) = MJ,
Mi({s;}) = M;, j=1,...,N — 1, M} are independent and M;,M]‘ ~
N(0,1/2) for j # 0 and M™ ~ N(0,1). Then from Theorem 6.9
N-1
Xn(d) =2 0;(Mj cosns;jd — Mjsinns;d) + M;. (6.32)
j=1
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6.3 Processes with stationary increments

Theorem 6.11 Let f(s,t) be continuous of form
Fs,1) = %(02(3) +o2(t) — o%(t — 5)). (6.33)

for some real even (symmetric) function o%(t). Function f(s,t) is positive
definite if and only if

o2(t) = 1 et _ 112 u(du) (6.34)

for some spectral symmetric measure v on R such that

/oo min(u?,1) v(du) < co.

Proof Let f(s,t) be positive definite. Then by Lemma 3.1 function o2(t)
is negative definite and such functions were characterized in Proposition
3.4. Conversely substituting (6.34) to (6.33) we have

f(s,t) = /_OO (€% —1)(e” ™ — 1) v(du)

and the proof of positive definite property is immediate. |

Let M be a white noise with intensity measure v. Clearly
oo
X() = / (e — 1) M(du)
-0

has covariance function

R(s,t) = / (€ — 1)(e= it — 1) w(du)

— o0

but unfortunately the process is complex. Let Z = M* + iM' be a tilde
complex white noise with intensity measure v.

Theorem 6.12 The Gaussian process with stationary increments and
spectral measure v on R has the following spectral representation:

X(t) = /oo(e““—l)Z(du)

—0Q

= 9 /0 ™ (cos(tu) — 1) M*(du)

-2 /Oo sintu M'(du) + M"({0}), t € R.  (6.35)
0
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Let W be the tilde complex Wiener white noise defined in Section 5.2.
Note that {Z(A)} defined by

7(4) = /A (h(t)) "2 1(h(t) > 0) 7 (de)

is a complex tilde white noise with spectral density h. Note that this is
an even function. Since v is symmetric we can assume that h is an even
function. We can express formula (6.35) as follows:

X'(t) = /oo (e — 1)(h(t))/*1(h(t) > 0) W (du) (6.36)

—0o0

= Z/Oo(cos tu — 1)A'Y 2 (u) W (du) + 2/oo sin tuh'/? (w) W' (d(§.37)
0 0

where W* and W' are two independent Wiener white noise.

6.4 H-1fBm

Consider H-fBm with spectral density function hg(u) defined by (2.9).
Then from (6.36) we have

X't) = /oo (et — 1)Cy Y (H)u|~7=1/2 Z(du) (6.38)

2/ Cy Y (H)u B2 (costu — 1) W*(du)
0
_2 / O (H)yu B2 sintu Wi(du).  (6.39)
0

where Cy(H) was defined by (2.10). Therefore (6.39) is a spectral repre-
sentation of the H—{fBm. We now rewrite

2/ Cy Y (H)u =2 (costu — 1) W*(du)
0
—2/ C5 Y (H)u =12 sin tu W( du)
0
= 2 / h C;I(H)u—w—l/?)% W (du)
0

2 / c;l(H)u*H*l/?)#Wi(du).
0
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Notice that R > u — % isodd and R 3 u — % even and that the
process

2 / Cy L (HYu=H=1/2) 7“’“;‘ ~ L (du)
0

—2/ C;I(H)u*H*l/?)S"lT“ Wi(du), t>0
0
has the same distribution as the process

/ C _(H- 1/2)COStZ_1Wi(du)

+2/ C{l(H)u_(H_l/Z)y Wr(du), >0
0

and hence by (5.21)

2 / Oy (Hyu (H-1/? L”Z W( du)
0

_2/ Oy (Hyu=H-1/2) sin tu W ( du)

u
= / Cy Y (H)|u|~ (H_1/2)er(du)
u
(H-1/2)Costu —1
+2 C H)|u|~ TW(du)
o0 zut
- [ o 2w (6.40)

The formula (6.40) is called harmonizable representation of the H-{Bm.
Consider the H-fBn {X,, n € Z} defined in Section 2.1. Notice that
X(0),X(1),...1is an H—Bn with the covariance sequence given by (2.11).

Proposition 6.13 The H—fBn has spectral density

o

1
a — —2 H itu -1 2
h (u) C,*(H)le | kz lu+ 272+

Jo” cos(au) (sin(z/2))*x =2~ dz
[ (sin(z/2))2z2H1dg

(6.41)

- < u < 7(6.42)

Proof Samorodnitsky and Taqqu, p- 333.
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6.5 Isotropic random fields

Consider now a stationary (sometimes it is said homogeneous) Gaussian
field {X (t), t € R%} with covariance function

r(t) = /Rd eit’® v(dz)

for some finite measure v. We say that this field is isotropic if r(t) = p(|¢t|)
for some function p : R — R.

Comments. Samorodnitsky and Taqqu (1994), Theorem 6.11 — Doob
(1953), p. 552, Lindgren (1999) Loéve, Breiman

7 Integration wrt Gaussian processes

In this section {X (t), t € T} is a centered Gaussian process, defined on
(Q,F,P). We assume that T = R, R, or [0,1]. Note that X(t) € L*(P)
for all ¢ € T. The Gaussian process has the covariance function R(s,t),
Which is assumed to be continuous. Our aim is to define the notion of
fT . We will deal analogously as it was in the case of integration
wrt Gau551an whlte noise.

Let Hy be a Hilbert space defined defined as the IL?(IP)—closure of the
space of all finite linear combinations }_;a;X(t;). The sapce Hx is a

subspace of IL>(IP). We will show the isometry between a Hilbert space
H(R) defined in a moment and the Hilbert space Hx.
7.1 Space H(R)

As usual we start with the definition of the integral for simple function of
form f(t) = 1(t € (z,z + w]);

/Tf(t) dX(8) = X (2 + w) — X (w).
Note that
| #0) ax(®) ~ X 0.0*w).
Moreover if f'(t) = 1(t € (y,y + v]) is another simple function, then
E(X(z+w) - X(z ))(X(y+v) X(y) =
- ( / 0 axw [ g dX(t)) (7.43)
(z,y +v) + R(z,y). (7.44)

Rz +w,y+v) — R($+w y)— R
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If X is with stationary increments, that is with covariance function

R(s 1) = 3 (07(s) + 0°(t) — 0% (t ),
where 02(0) = 0, 0?(t) = 02(—t) we have

E(X(z + w) - X(2))(X(y +v) - X(y))

- (/ 164X [ 90 ax(9)

—5( z+w—(y+v) -’ (w+w—y)—o’(z— (y+v) +0°(z —y)).

(7.45)
Let Hs be a space of simple functions of form
t) = Zajl(t S AJ‘]), (746)
j=1

where A; are bounded Borel subsets of T'. For such functions We have to
consider two cases:

e R(s,t) is of bounded variation on every finite domain of T x T’; we
say in short that R(s,t) is of locally bounded variation,

e R(s,t) if of unbounded variation for on a finite domain of 7' x T'; than
we say in short that R(s,t) is of locally unbounded variation.

We are going to define an inner product which behaves on indicator
function 1(- € A) consistently with (7.43). If R is of locally bounded vari-
ation, then we define

L1(-€A),1(-€ A"y >r = / / 1(z € A)1(y € A") d®R(z,y), (7.47)
TJT

for every set A, A" which is a finite union of intervals (z,z + v]. Unfor-
tunately for R(s,t) of locally unbounded variation the above integral may
diverge. For example consider an H—Bm with H < 1/2. Then

/01 /01 d2R(s, t) =

Thus if R is of locally unbounded variation, then we define
< 1(- € A),1(- € A) Sp= / / R(z,y) di(w € A) di(y € A'), (7.48)
TJT

for every set A, A’ which is a finite union of intervals (z,z + v]. In the next
lemma we assume that the measre generated by R(s,t) is positive.
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Lemma 7.1 (i) If R is of locally bounded variation positive measure,

then < -,- >g defined by (7.47) is an inner product on the space {1(- €

A), A bounded Borel subset of T'}.

(ii) (ii)® If R is of locally unbounded variation, then < -,- >gr defined by

(7.48) is an inner product on the space {1(- € A), A € {bounded Jordan measurable subsets of T'}}.

Proof (i) Let A be bounded Borel. For every € there exists A’ = 2?21 (x5, 2+
v such that R(A x A??7?7A" x A") < e. Hence we have

A[;fmnga

Other conditions are obviously fulfilled.
(it) 77777 OIt is clear that in these two cases we can extend the

above inner product for simple functions of form 377, a;1(- € A;) where
A; are bounded Borel subsets of T'. The space of such the simple functions
we denote by Hs. Thus the space (Hs, < -,- >g), where

e if R is a positive measure of locally bounded variation, then
<1.8'>n= [ [ 1@10) @)
TJT
e if R is a positive measure of locally unbounded variation, then

<8 >n=5 [ [ Raw af@ ar),

is an inner product space but it is not Hilbert.
Note that in the case when R is defined by an si process, then we have

e if R is of bounded variation
<tf>e=[ [ 1@rw ¢oa-y,
e otherwise
< f, f >r= _71/ / o*(z,y) df(z) df'(y).
TJT

Let

Ifllr=V< [, f>r

Two simple functions f, g will be considered identical if || f — g||g = 0.

3To jest na razie odgadniete. Taka funkcja ma wahanie ograniczne (Lojasiewicz) na
dowolnym [0,¢]. Czy to wahanie jest rowne 07
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7.2 R of bounded variation

For f,g € Hs we define formally

< f,9 >n= /T /T F()g(t) d2R(s,1). (7.49)

Clearly the above definition is consistent with (7.47). In case of processes
with stationary increments, we have to integrate, instead from d?R(s,t),
wrt —(1/2) d?0%(s—t). Note that, under our assumptions, (s,t) — o2(s—t)
is of bounded variations on every finite domain too.

Lemma 7.2 (H, < ---,- >Rg) is an inner product space and hence for

f1, f2 € Hs
(€ fi,a >R < K fi, fi >R K fo, f2 >R - (7.50)

Proof We have to check whether conditions of the inner product space are
fulfilled. All are clear but one condition: < f,f >gp>0and <L f, f >r=0
if and only if f = 0. However for f(t) = 3_7_; a;1(t € (25, z; + w;])

< f,f >r=Var Y _ a;(X(z; +w;) — X(z;)) > 0.
j=1

The inequality (7.50) holds for inner product spaces; see Sikorski v. II, p.
107. For the second part of the condition note that < f, f >gr= 0 means
thar f is equivalent to 0. O

We now define the Hilbert space H as the completion of Hg, so that it is
a Hilbert space with inner product, denoted again by < -,- >g. A typical
element in H is a Cauchy sequence of simple functions. There is a question
about a more detailed describtion of H and a formula for inner product of
two functions from H.

In the case when R(s,t) defines a locally finite positive measure R(-)
we can proceed as follows. Consider the space of functions

HR)={fT->R: <L f, f>r<00.}
Proposition 7.3 H = H(R).

Proof We start from the inner product space (Hs, < -, >r). Let {fn},
where f,, € Hstep, be a Cauchy sequence with respect to norm || - ||g. We
have to show that f, is also a Cauchy sequence for the convergence with
respect to measure R. Then there exists a subsequence {f,, } converging
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to a function f, R-almost surely. We have to show that ||f — fn||r — 0.4

O
Let |R|(z,y) be the of total variation measure defined by R. Let H° be
the class of functions f : R — R such that

| [ 1101 @iris.0 < o,

TJT
//f(s)l(te(“’bl) &2 |R|(s,t) < oo.
TJT

Under this assumption we have the following result.

Proposition 7.4 Functions from H° form a dense subset of Hr. If f,g €
Wi and [ [ 1£()9(0)] |R|(s,1) < oo, then

< f,g>n= /T /T F(s)g(t) &R(s,1).

Proof huangcambanis p. 589.

We now define [;. f(t) dX (t) for simple functions of form f(t) = 37, a; [(t €
(zj,z;+v;]) in the usual way. We denote such the subsepce of simple func-
tions by Hstep. Next the map

Htep 3f—>/f dX € H(X)
T

preserves inner product and hence it can be extended to an isomorphism
on H(R) to a closed subspace of H(X). However 1(- € [0,t]) € H(R) and
X(t) = [1(s € [0,t]) dX (s), and hence it follows that the isomorphism is
onto H(X). Concluding the map

H(R) > f = 1(f) = / " H(t) dX (1) € H(X)

establishes an isometric embedding.
We now consider special cases of interest. First we study the Wiener
process, which is a special case of the fractional Brownian motion.

Example 7.5 Consider {W(t), t € R4} a Wiener process. In this case
o%(x —y) = |z — y|. Tt is easy to see that for two simple functions f, g

< f,9>n= /0 " Hg(t) at. (7.51)

4Skonczyc. Popatrzec do Sikorskiego v.2, str 16.
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In fact
H(R) = L*(N)
and the inner product is given by (7.51).
Transformation

HE)> 1> 1) = [ £ aw(e) e BOW)
0
establishes an isometric embedding.

Example 7.6 Consider {X(t), t € R4} an IG process, where X (t) =
fg Z(s) ds and Z is stationary with covariance function {r(s —¢)}. In this

case o2(z — y) = 2f0|z_y| Jo r(v) dv dw. It is easy to see that for two
simple functions f, g

& f,9>r=2 / T g(s)r(t — ) dt ds. (7.52)
0
Transformation
)3 f 1) = | i) dx () = / " F)2() dt € HOW)

establishes an isometric embedding.

7.3 Integration wrt fBm; H > 1/2

In this subsection we consider { X (¢), t > 0}, where X (t) = Bg(t). Without
loss of generality we suppose that 7 = R;. We have R(s,t) = 1(o2(t) +
o%(s) — o%(t — s)), where

o?(t) = |t|*H, teR.

Remark ® Note that in this case

1 S t
ST+ 2T = 5T) = / / HEH — Dw - o*" dw do,
0 0

and therefore d2R(s,t) = H(2H — 1)|s — t|?=2 ds dt. Functions f,g €
L£2()) belong to H(R) 8 and
& f,9 > = H2H - 1)/ / F(0)g(8)]s — =2 ds dt < co.
o Jo

5Spawdzic ?
6To be proved!!!
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For f € H(R) we have

/0 T (0) dBa(t) ~ N0, < 1,1 >r).

It can be proved (see Ruzmaikina (2000), Statement 4.1) that if H > 1/2
and f € LY/ then f € H(R).

Lemma 7.7

TAY
/ C%‘jr(l'—u,)Hfg(x—u)H*%du:I{(QI{_1)|$_:U|2H727

— 00

where

_ [H@H-1)T3/2- H)
“H=A\T(H-1/2T2-2H)

Proof Gripenberg and Norros [ JAP, 33,400—410].
Define for f € H(R) define (see Oksendal and Zhang, 2001)
Trf(u) = / f@)eg(z —u)T3/2 da.

Lemma 7.8 Ty defines an isometry from Hg into L?(R,).

Lemma 7.9 If{Y(t), t > 0} is a centered Gaussian process with increasing

variance function VarY (t) = 02.(t) and covariance function

Cov (Y (), Y (t)) = min(a?(s), 0> (1)),
then Y is a process with independent increments.
Proof Let 0 <z <y < z. Then
E (X(y) — X(2))(X(2) - X(y)) =
min(o*(y),0%(2)) — min(o*(y), 0*(y)) — min(0*(z), 0* (2)) + min(o”(z), 0*(y)) = 0
O

We now define for each ¢ > 0 function ~(, )by

st HE s 2H D o< s <t
() = { A st

where
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Lemma 7.10 For0<a<1,0<z<1, we have
1
/ v (1 —v) ¥z —v|** ' dt = B(a,1 — ).
0
Lemma 7.11
¢
/ y(t,v)|s —vPH2dv=1, for 0<s<t
0

Proof Norros et al, p. 576. m|

Proposition 7.12 The centered Gaussian process

t
M(t) = / A(t,5) dX(s)

has independent increments and variance function E M?(t) = Ct272H
where C =777.

Proof Lett <t'. We have
t t
EMEME) =B [ /0 (tw) dX (w) /0 ~(t,v) dX(v)]

t ot
= [ [ 2@ won o HEH = = o2 dw do
0 Jo

H(2H—1)/0t7(t,w) dw </Otl

Proposition 7.13 Proces {M (t) t € R} generates, up to sets of measure
zero, the same filtration as {X (t), t € Ry }.

Il

A(t',0)|w — o2 dv)

Proof Norros et al, p. 580.

Corollary 7.14 The process

eeM(t)—%E M2(¢)

is a mean one martingale.
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7.4 R is not of locally bounded variations

For f,g € Hs we define the inner product by
< f,9 >r= / / R(t, s) df(t) dg(s). (7.53)
TJT

Clearly the above definition is consistent with (7.48). In case of processes
with stationary increments, we have to change the integrand to o%(s — t).
Note that, under our assumptions, (z,y) — o2(x — y) is not of bounded
variations on some finite domain too. Let

Iflle = V< f, f >~

Two functions f,g € Hs will be considered identical if ||f — g||r = 0. We
now define the Hilbert space H(R)* as the completion of Hg,,,, so that it is
a Hilbert space with inner product, denoted again by < -,- >g. There is
a question about a formula for inner product for two functions from H(R).
More precisely we ask for conditions when for f,g € H(R) formula (7.53)
holds.

Exercises

7.1 Show that (7.51) holds for simple functions.

Comments. Huang & Cambanis (1978), Norros et al (1999), Gripenberg
and Norros (1996), Molcan & Golosov (1969), Ruzmaikina (2000)

8 Simulation

Suppose we want to make a computer simulation of an H—Bm on interval
[0,T]. Since on computers we can only simulate a finite number of random
variables we choose an integer N and d = d(T,N) > 0 such that Nd =T
and simulate values of {X(¢)} in points 0,d,2d, ..., Nd. Therefore in the
next subsection we discuss a simulation method of stationary sequences,
which bases on spectral representations of stationary sequences.

8.1 Stationary sequence

Formula (6.32) suggest the following procedure of simulation of a station-
ary Gaussian process {X(t), t € R} with spectral measure v having a
continuous density h(u). For this we have to discretize v( du) = h(u) du:
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1. choose the simulated time interval [0,T] and step d > 0 such that
Nd=T,and N

2. set s; = (wj)/(Nd) ==j/N', for j=0,...,N —1,

3. approximate

21y
happr (8;) Z h(s; + _J

j=—J
where J is taken enough large,
4. compute the mass 07 = 7 happrox(s;), for j =0,..., N —1,
5. generate Uy, ..., Usn_1 —independent and uniformly distributed ran-

dom variables and set”
M; = cos(2nUj)/—logUn+;
]\IJ1 = sin(27rUj)\/—log Un+j
for j=0,...,N —1; (see (1.2.6)),
6. compute X, (d) for n =0,..., N — 1 using formula (6.32).

In practice we need to simulate
Xn(d),n=0,...,N -1 (8.54)

for large N. Therefore it is recommended to choose N = 2™ for some m
and use for computing (8.54) the Fast Fourier Transform (FFT) procedure.

8.2 Simulation of H—fBm

We want to simulate an H—Bm on [0, 7] and without loss of generality we
assume that T = 1. Since fBm’s are selfsimilar it suffices for simplicity to
study how to simulate, instead from the sequence By (j/N), j=0,...,N—
1, the sequence B(0),...,B(N). We write X,, = Bg(n + 1) — Bg(n) and
recall that X (0), X (1),...is an H—{Bn with the covariance sequence given
by (2.11). Note that from ([????]) we can write

X, =2 / cosnu(h; (u) /2 W du) — 2 / sin (b ()2 W du)
0 0

7Czy 2 pod log wyrzucic?
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where h¥ was given in Proposition 6.13. We now discretize the spectral
density function as follows: set s; = (27j)/(INd) and

hn(u) = oy, for s; <t <sjq1,

2\ 2
o= (%) mae

where

We then obtain
1/2 N—1

. . N-1 . .
27 rra 2T 27j ira 2T, . 2mj
Xn = \/§ (N) J_E - WJhH(T) COS’I’LT—\/i ]_E . thH(T)SlnnT,

for j =0,..., N—1 where W}, WJ‘ are independent and identically standard
Gaussian random variables.

Remark

8.3 Interpolation error

For a given H—{Bm {Bg(t)} we define {Bg”) (t), t > 0} to be the continuous
piecewise linear process such that Bgl)(kh) = Bg(kh), k = 0,1,.... We

want to study the difference between Wy (t) and WI(,h )(t) when the time
parameter is restricted to 0 < ¢t < 1. We define the following measures for
the discretization error:

5¥ =E sup |[Wr(t) - Wy'™ @),
0<t<1

1 1/p
5 = (E / W (t) — W};/m(t)v’dt) ,
0

where 1 < p < oo.
To analyze the difference By (t) — Bgi) (t) we brake this process into
processes
X;(t) = Bu(t) - BP(®), (j-1d<t<jd

for j =1,...,N and Nd = 1. Rescale these on [0, 1] as follows:

Xj(s) = X;(d(s +5—1)), 0<s<1.

We have

’

X (s) = Bu(d(s+j—1))=Bu((j—1)d)—s(Bu (jd)—Bu((j—1)d)), 0<s<1
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for j =1...,N and from the H-ss property of the fBm, these sequence of
processes is in distribution equivalent to

{d"Br(s), 0<s<1},
for j=1,2,...,N, where
Bu,j(s)=Bu ((s+j—1)) = Bu ((j —1)) — s(Bu (j) — Bu ((J — 1))
Gaussian process

Br(s) = Bu(s) — sBr(1)

is the H—fractional Brownian bridge.
Proposition 8.1 We have for 1 <p < o0
NH§R =¢

where
1/p

c= (E /01 Bu(t) — tBH(1)|pdt>

Proof We have

1 1/p
' ) I S (1/N)
(B [ But-ByM0Pa) = (B3 [ Bt - By 0P
0 =17 St<w

X L 1/p
(N;E/O X' (1)] dt)

1, 1/p
= N H (E/ |BH,1(t)|Pdt)
0

which completes the proof. O

DALSZA CZESC NIE JEST SKONCZONA.

Lemma 8.2

E max;=1,....n Supg<¢<1{| Bm,i 1)(t)

hnn_1>1£f (Togn)1/? > C1>0 (8.55)
o
E max;—;... ., su By (¢t
Tim sup Xi=1,...,n Pogt51|{ H,i )@ < O <oo. (856)

N—s0o (logn)t/2
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Proof We first show (8.55). Notice that

o ol
; > max .
E m 2 P, {Bu: V@] 2 E max {By; 1)(1/2)

We have

o o (1)
e = E{Bg; 1)(1/2){Buyr1 (1/2)
_ 1 lom _Yow  gom 1 o _ 1 yemy 1(2H
= 4[2(k+2) +2(k 2) + 3k 2(k+1) 2(k 1)2H] 51y K B57)
Therefore conditions of Theorem 4.3.3 from [14] are fulfilled. Remark also

ol
that { By ; 1)(1/2) is normally distributed with mean 0 and variance o%; =

1)2H _ 1. We use part (i) of the Theorem with u, = (2logn)'/?z. As
2
n — 0o

2

nl—e oo forz<l1,
Thus
maxi<i<n qu’il)(l/Q)
(202 logn)t/2

converges in probability to 1 as n — 0o. Hence using Fatou lemma

o maxicicn Bl 1)(1/2)
liminf IE — 2
n—co (20% logn)t/?

- ?

which yields (8.55). O

Proposition 8.3

o oo | o
O < e ey /e < NSUP e 7o Tt

< 00.
Remark The slow convergence with the exponent H is not surprising in
the light of the following facts. Following Ciesielski [?] realizations of the
H—Bm have the following Holder property: with probability 1

B — By (t
lim sup | HI;S) il )|1/2 < 0
d—=0+ o< sct<1: |s—t|<d |8 — t|H|log|s — 1|
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This yields that almost all realizations of {Bg(t), 0 < t < 1} belongs to
the class Hy—_. of Holder functions (0 < € < H). Recall that a continuous
function f € C[0,1] is Holder with exponent a, that is f € H,, if

L /() = (1)

sup

< x0.
0<s<t<i |s—t]*

On the other hand for a function f € H,, the Burkill-Whitney lemma (see
e.g. [7, 31]) implies the following result.

Proposition 8.4 Suppose that 0 = o <z < ... <z, =1, A = max|z; —
zi_1|,i=1,...,n. If f& is a piecewise linear function, that coincides with
f@)inz;,i=0,1,...,n, then

sup |f2(z) — f(2)] < LA®.
z€[0,1]

Therefore from Ciesielski theorem we can immediately conclude that, with
probability 1, for some random variable L and all 0 < € < H, supy<;<1 |Bu(t)—

B/ @) <L (%)

Comments. Yin (1966), Matheron (1973), Asmussen (1999), Burkill (1952),Whit-
ney (1957), Ciesielski (1961)



Chapter IV

Boundness and continuity

1 Separable modification

There is given a stochastic process {X (¢), t € T'} with a topological space
of parameters.

Definition 1.1 We say that {X(¢), t € T'} is separable if there exists a

denumerable dense subset T* C T, called a separant, such that for all open
vcrT

X(t) = X(t inf X(t)= inf X(¢ 1.1

sup X(#) = sup X(f)  jnf X() = inf X(®) (1.1)

From now on we assume that IE X?%(t) < oo, which is not a problem
when studying Gaussian processes. Let

px(s,t) = EY2(X(t) — X(5))?, s, teT.
Proposition 1.2 px is a pseudometric that is
1. px(s,t) = px(t,s), s,t €T,
2. px(s,u) < px(s,t) +px(t,u), s,t,u €T,
3. px(t,t) =0.

An intrinsic pseudometric generates an intrinsic topology on T'. Note that
condition px (s,t) = 0 does not imply always that s = ¢ (show examples).

Proposition 1.3 If (T, px) is separable, then for every countable dense
set T* C T there ezists a separable modification of {X(t), t € T} with
separant T™.

63
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Proof Let T* C T be a countable dense set. Define a px—measurable
mapping
T —T*

such that px (m,(t),t) < 27", n =1,2,.... We now define what will be a
separable modification

X*(t) = %{lirrgso%pX(ﬁn(t)) + linrr_l’LIéfX(wn(t))}.
ForallteT
Y PX(t)-X(ma(t) > €) <€ 2Y EXH)-X(ma(t)? =€ 2) 272" < 0.

Hence X (7, (t)) — X (t) a.s.. Therefore X*(t) = X (¢) a.s. andso {X*(¢), t €
T} is amodification of {X (¢), t € T'}. We now check condition (1.1). Define

A= |J1x@) # X))

teT*

Notice that since X* is a modification of X, we have P(4) = 0. Further
onlet w # A. Let t € V for some open V C T. Then immediately from the
definition of X*(¢)

X5 (t) <limsup X (t)

n—oo
and since

mn(t) €V

for enough big n we have

limsup X;(t) < sup X *(¢).
n—00 tevnT*

Hence

sup X3(t) < sup X*(¢)
tev tevnT*

which proves the first condition in (1.1). The second condition can be
verified similarly. O.

From now on in these notes we assume that all processes are separable.
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1.1 Metric entropy

For a (pseudo)metric space (T, px) we define N (T, ¢€) the smallest number
of closed px—balls of radius € tha cover T. The quantity

H(T,e) =log N(T\,e¢)

is called metric entropy of space T. The quantity
D(T, ) = / HY2(T, s) ds
0

is called the Dudley integral.

Example 1.4 Let {W(t), t > 0} be a Wiener process. Then py (s,t) =
|t — s|*/2. In general if By(t), t > 0}, then pp,(s,t) = |s — t|. We now
compute N(T,e) for T = [0,1]. Consider for example the e-ball covering
0. Tt has the center in €'/ Therefore it covers the interval [0,2¢'/H].

Therefore
N(T,e) = [1/(2¢/1)]

and hence H(T,€) = log[1/(2¢'/H)].

Example 1.5 Let {X(t),t > 0} be a stationary Gaussian process with
covariance function R(t) and without loss of generality we may assume that
Var X (t) = R(0) = 1. Then

px(s,t) = 21/7(1 = R(jt - s))'/2.

For a stationary Orstein-Uhlenbeck process with the covariance function
{exp(—alz —y|), z,€ Ry} {X(¢), t > 0} we have

p(s,t) = 21/2a1/2|t — s|1/2 +o(|t — s|1/2).

Theorem 1.6 Let {X(t), t € T'} be a centered Gaussian process, which is
bounded a.s. If
or = sup Var X (¢),
teT
then
IE sup X (t) < 4V2D(T, 07/2).
teT

Proof Lifshits, p. 179.

We say that a Gaussian process {X (t), t € T'} has bounded realizations
if sup, X (t) < oo and inf; X (t) > —o0, a.s. For centered Gaussian process
it suffices to consider only one condition sup, X (t) < co a.s..
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Theorem 1.7 [Dudley]. Let {X(t), t € T} be a centered Gaussian pro-
cess. If D(T,-) is bounded, then the process is bounded and with uniformly
continuous (with respect metric px ).

Remark Sometimes by Dudley integral one means [;° H'/?(T,s) ds.
Note that [, H'/2(T,s) ds converges if and only if D(T, €) does.

Exercises

1.1 Compute the intrinsic metrics for H—fractional Lévy Brownian motion
and then the corresponding metric entropy.

1.2 Show that N(T,e) and H(T,e€) are nonincreasing and so D(T\ ) is
concave. Hence

D(T, €1 + 6) < D(T, 61) + D(T, 62)

and
D(T, ce) < ¢D(Tye).

1.3 Show that there exists a stationary Gaussian process, variance 1, such
that for some ¢ >0and 0 < o < 2

R(t) = 1—c|t|* + o(|t|*).

1.4 Give an estimates for H([0,1],€) in the case of a stationary Orstein-
Uhlenbeck process.

Comments. Lifshits (1995)
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Supremum from a
Gaussian process; two
fundamental results

1 Borell inequality
2 Slepian inequality
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Chapter VI

Appendix

1 Analysis

1.1 Special functions

We denote by B the beta function
1
B = [ s t1-2P " ds,
0
where a, 8 > 0.

1.2 Spherical coordinates

We have to recall some notions. Spherical coordinates in R — 0 are

1 = TCospi,
To = rsine; cos s,
T3 = rsin; sin s cos s,
Tp—1 = TSinggsings...sinp,_9CoSPy_1
Tp, = rsing;sings...sing,_asing,_;
Jacobian equals
D(.Z’l,...,.ilj‘n) n—1 _: n—2

n s n—3 :
= =r sin (1 sin Qo ...sinp,_ 2,
D(T‘,QOl,.. -aSOn—l)

see Fichtenholz, III , p. 335.
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1.3 Inner product and Hibert space

Let H be a vector space. Inner product is a function
HxH>(f,9) »< f,9>€R
fulfilling
o <u,v>=<U,u >,

o < au + puv,w >=a < u,w > +f < v,w > for scalars a,8 and
u,v,w € H.

e <wu,u>>0and < u,u >=0if and only if u = 0.

A vector space with an inner product is said to be an inner product space
H. An complete separable inner product space H is called a Hilbert space.
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