AN APPROACH TO THE FORMULA \(L = \lambda V \) VIA THE THEORY OF STATIONARY POINT PROCESSES ON A SPACE OF COMPACT SUBSETS OF \(\mathbb{R}^k \)

Tomasz Rolski

University of Wrocław

1. Introduction

Much attention has been drawn to the queueing formula \(L = \lambda V \); see [11,12,13,14]. In this context \(L \) means "average queue", \(\lambda \) means "intensity of arrivals" and \(V \) means "average delay in queue". In this note we point out that the formula \(L = \lambda V \) is valid for stationary processes of random compact sets \(\mathcal{Y} \) in \(\mathbb{R}^k \). Informally speaking it is a collection of random compact sets strewed over \(\mathbb{R}^k \) in a stationary manner. A formal definition will be given in Section 4. In this context \(L \) means "average number of sets covering zero", \(\lambda \) means intensity of \(\mathcal{Y} \), and \(V \) means "average volume of a typical set". Clearly concepts of the intensity and average volume of a typical set need explanations and they are studied in Sections 5 and 6. The formula \(L = \lambda V \) is studied in Section 6. The proof of \(L = \lambda V \) is based on the behaviour of sample path and applies Nguyen-Zessin's ergodic theorem for point processes; see [8]. Finally in Section 7 we deal with the number of sets from a stationary process of random compact sets \(\mathcal{Y} \) overlapping a compact set \(X \). The special case of such a problem was considered in [6], and recently, in this setting, was independently studied by Stoyan [12].

2. Preliminaries

Throughout the paper we denote the \(k \)-dimensional Euclidean space by \(\mathbb{R}^k \) and the Borel \(\sigma \)-field of subsets of \(\mathbb{R}^k \) by \(\mathcal{B}^k \). The set of all non-negative real numbers we denote by \(\mathbb{R}_+ \). For a topological space \(E \) we denote by \(\mathcal{E} \) the Borel \(\sigma \)-field of subsets of \(E \). The open ball in a metric space \(E \) with the center \(x \) and the radius \(r \) we denote by \(B(E, x, r) \). The complement of a set \(A \) is \(A^c \). The indicator function of a set \(A \) is \(1_A(x) \). The following notations and convention are used:
Consider a probability measure on a measurable set E. Let f be such that $f(x) = g(x)$ for bounded f. Then $(\mathcal{E}, f) = (\mathcal{E}, g)$.

Next, define a measure \mathcal{E} on (\mathcal{E}, f). For any function h measurable with respect to (\mathcal{E}, f), we define $\mathcal{E}[h] = \int h \, d\mathcal{E}$.

For a measurable mapping γ, we define $\mathcal{E}[\gamma] = \int \gamma \, d\mathcal{E}$.

If \mathcal{E} is a probability measure on (\mathcal{E}, f), then for any measurable function h on \mathcal{E}, we define $\mathcal{E}[h] = \int h \, d\mathcal{E}$.

For a measurable space (X, \mathcal{X}), we define $\mathcal{E}[X] = \int \mathcal{X} \, d\mathcal{E}$.

If \mathcal{E} is a probability measure on (\mathcal{E}, f), then for any measurable function h on \mathcal{E}, we define $\mathcal{E}[h] = \int h \, d\mathcal{E}$.

For a measurable space (X, \mathcal{X}), we define $\mathcal{E}[X] = \int \mathcal{X} \, d\mathcal{E}$.

If \mathcal{E} is a probability measure on (\mathcal{E}, f), then for any measurable function h on \mathcal{E}, we define $\mathcal{E}[h] = \int h \, d\mathcal{E}$.
The mean of the point process \(\{ (T_x) \}_{x \in \mathbb{R}} \) is defined as the random variable \(\mu(T_x) = \int_{\mathbb{R}} \rho(x) \delta(x-T_x) dx \), where \(\rho(x) \) is the intensity function.

Theorem 1.1 (Mecke's Theorem) Let \(\Lambda \) be a point process in \(\mathbb{R}^d \), and let \(\rho(x) \) be its intensity function. Then the random variable \(\mu(T_x) \) is a Poisson random measure with intensity \(\rho(x) \).

Corollary If \(\rho(x) \) is a locally finite measure, then \(\mu(T_x) \) is a Poisson point process in \(\mathbb{R}^d \).

Definition A point process \(\Lambda \) is said to be a point process in a set \(\mathcal{A} \) without multiple points if there exists a function \(\chi : \mathcal{A} \to \{0,1\} \) such that for any \(a \in \mathcal{A} \),

\[
\chi(a) = \begin{cases} 0 & \text{if } a \in \Lambda \setminus \{a\} \\ 1 & \text{if } a \notin \Lambda \setminus \{a\} \end{cases}
\]

This means that for each point \(a \in \mathcal{A} \), there are no other points of \(\Lambda \) in the set \(\mathcal{A} \) and \(a \) itself.

Lemma 1.2 If \(\Lambda \) is a point process in \(\mathcal{A} \) without multiple points, then \(\chi(a) \) is a random variable with distribution \(\rho(a) \).

Proof (Continued)
are random variables. It follows from the fact that
\[\mathbb{E}(\mathbf{X}_t | \mathbf{X}_0) = \mathbf{T}_t \mathbf{X}_0. \]

Proof. First we note that
\[\mathbb{E}(\mathbf{X}_t | \mathbf{X}_0) = \mathbf{T}_t \mathbf{X}_0. \]

To prove (5.9), denote a subset of \(\mathbb{R}^d \)
\[\mathcal{F}_t = \{ \mathbf{X}_t | \mathbf{X}_0 \in \mathcal{F}_0 \}. \]
and the Corollary 4 after Theorem 5.1 is the immediate consequence of
the existence of the limit in (5.9). The first three cases do not apply because a regular system of sets, the
regularity of open, bounded, convex sets \(\mathcal{F}_0 \), \(R > 0 \) is said to be.

The value \(y \) is called the intensity of the process of random sets \(\mathbb{P}. \)

Consider a stochastically ergodic processes of random sets \(\mathbb{P}. \) Let

\[\mathbb{P} \text{ is intensity of } \mathbb{P}. \]
6. Formula 1 = \(A^2 \).

\[L_1^* \]

\[\text{Let } L \text{ be a canonical process of random sets in } R, \text{ in other words,} \]

\[\text{need not to be strongly uniform, } H, \Delta, \gamma, \text{ and } K. \]

\[\text{The proof of (9.6) is similar to the proof of (9.5). Note after that} \]

\[a. \]

\[0 = (\frac{L_{1,0}^*}{L_{1,0}}) \]

\[\text{and} \]

\[(\frac{L_{1,0}^*}{L_{1,0}^*}) \text{ for } \gamma \neq L_{1,0}^* \]

\[\text{It follows from the inequalities} \]

\[a. \]

\[0 = (\frac{L_{1,0}^*}{L_{1,0}}) \]

\[b. \]

\[(\frac{L_{1,0}^*}{L_{1,0}}) \text{ for } \gamma \neq L_{1,0}^* \]

\[\text{It was shown in the proof of (9.5) that} \]

\[(\frac{L_{1,0}^*}{L_{1,0}}) = (\frac{L_{1,0}^*}{L_{1,0}}) \]

\[\text{where} \]

\[(\frac{L_{1,0}^*}{L_{1,0}}) \text{ for } \gamma \neq L_{1,0}^* \]

\[\text{Now we prove (9.7), in view of (9.5) we need only to show} \]

\[\text{complete the proof of (9.5).} \]

\[\text{Where do assume the p.m. distribution of the distribution of } \]

\[0 = (\frac{L_{1,0}^*}{L_{1,0}}) \]

\[(\frac{L_{1,0}^*}{L_{1,0}}) \text{ for } \gamma \neq L_{1,0}^* \]

\[\text{which follows from that} \]

\[0 = (\frac{L_{1,0}^*}{L_{1,0}}) \]

\[(\frac{L_{1,0}^*}{L_{1,0}}) \text{ for } \gamma \neq L_{1,0}^* \]

\[\text{Thus for completing the proof of (9.5) we remark that} \]

\[0 = (\frac{L_{1,0}^*}{L_{1,0}}) \]

\[(\frac{L_{1,0}^*}{L_{1,0}}) \text{ for } \gamma \neq L_{1,0}^* \]

\[\text{The same logically from another proof:} \]

\[0 = (\frac{L_{1,0}^*}{L_{1,0}}) \]

\[(\frac{L_{1,0}^*}{L_{1,0}}) \text{ for } \gamma \neq L_{1,0}^* \]
and from the corollary we have theorem 1 in [8].

\[(\mathcal{L}(\rho))_{\mathbf{0}} = \mathcal{L}(\rho) = \mathcal{I}(\rho) \]

Let \(\mathcal{H}(\rho) \) be the measure. Denote

\[\mathcal{G}(\rho, (0))_{\mathbf{0}} = \mathcal{I}(\rho) \]

where

\[(\mathcal{I}(\rho))_{\mathbf{0}} \neq 0 \]

Since then

\[I \text{ is a stationary process of random sets with the finite inter-} \]

Theorem 6.1.5

\[(\mathcal{I}(\rho, (0)), (0))_{\mathbf{0}} = (\mathcal{I}(\rho, (0)), (0))_{\mathbf{0}} \]

Then

\[(\mathcal{I}(\rho))_{\mathbf{0}} \neq 0 \]

Proceed, substitute to (6.1.5) the function

\[\mathcal{H}(\rho)_{\mathbf{0}} = \mathcal{H}(\rho)_{\mathbf{0}} \]

where

\[(\mathcal{I}(\rho))_{\mathbf{0}} \neq 0 \]

...
From (6) it follows that $b < 8$, we ask for the expected value

$$d = \frac{1}{\mathbb{P}[\mathcal{X}]} \mathbb{E}[X]$$

K.K. define

where $\mathcal{X} = \{x\}$, $x^* = \mathbb{E}[X]$. Let \mathcal{X} be a stationary countable process of random sets. Recall that \mathcal{X} is a special process of random sets was derived (inequality (3.1)).

To finish the proof considering to the Mathematics' textbook (6),

4. The number of sets overlapping a set X

$$\sum_{X \in \mathcal{X}} \mathbb{I}(X) = \mathbb{E}[X] = \mathbb{E}[X]$$

Hence $\mathbb{E}[X] = \mathbb{E}[X]$ and

$$\mathbb{E}[X] = \mathbb{E}[X]$$

and

$$\mathbb{E}[X] = \mathbb{E}[X]$$

Lemma 7 and the Corollary 1 after Theorem 1 in (8) (2)

To prove (6) (9) it is easy to find a similar argument as in the proof of Proposion 8.

From (1) that for each X

$$\lim_{T \to \infty} \frac{X}{\mathbb{E}[X]} = \lim_{T \to \infty} \frac{X}{\mathbb{E}[X]}$$

then from the ergodic theorem

$$\lim_{T \to \infty} \frac{X}{\mathbb{E}[X]} = \lim_{T \to \infty} \frac{X}{\mathbb{E}[X]}$$

we have $X = X$. Moreover, if $x_0 \in X$ and $\lim X = 0$

$$\mathbb{I}(x_0) = \frac{\mathbb{I}(x_0)}{\mathbb{I}(x_0)} = \frac{\mathbb{I}(x_0)}{\mathbb{I}(x_0)}$$

$$\mathbb{E}[X] = \mathbb{E}[X]$$

$$\mathbb{E}[X] = \mathbb{E}[X]$$

Thus it suffices to show that

$$\lim_{T \to \infty} \frac{X}{\mathbb{E}[X]} = \lim_{T \to \infty} \frac{X}{\mathbb{E}[X]}$$

The proof of the theorem is based on the hypothesis

$$\mathbb{P}[\mathcal{X} = \mathbb{E}[X]]$$

From Lemma 6.1 we have

$$\mathbb{P}[\mathcal{X} = \mathbb{E}[X]]$$

where \mathcal{X} denotes the collection of invariant sets with respect to (7).
Note that if $X(0)$ then 7.2 reduces to (6.2).

\[N^X(r) = (\mathbb{P}^0)^X \cdot \mathbb{E}^{X(0)} \cdot N \]

Thus we arrived at the relation where O is the distribution of random variable X on $(N^X, (\mathbb{P}^0)^X)$. Hence by (3.2):

\[N^X(r) = (\mathbb{P}^0)^X \cdot \mathbb{E}^{X(0)} \cdot N \]

Then $\mathbb{E}^{X(0)}$ is the distribution of random variable X on $(N^X, (\mathbb{P}^0)^X)$. Therefore, the distribution of X on $(N^X, (\mathbb{P}^0)^X)$ can be obtained by

\[N^X(r) = (\mathbb{P}^0)^X \cdot \mathbb{E}^{X(0)} \cdot N \]

And $\mathbb{E}^{X(0)}$ is the distribution of random variable X on $(N^X, (\mathbb{P}^0)^X)$. Therefore, the distribution of X on $(N^X, (\mathbb{P}^0)^X)$ can be obtained by

\[N^X(r) = (\mathbb{P}^0)^X \cdot \mathbb{E}^{X(0)} \cdot N \]

Then $\mathbb{E}^{X(0)}$ is the distribution of random variable X on $(N^X, (\mathbb{P}^0)^X)$. Therefore, the distribution of X on $(N^X, (\mathbb{P}^0)^X)$ can be obtained by

\[N^X(r) = (\mathbb{P}^0)^X \cdot \mathbb{E}^{X(0)} \cdot N \]

And $\mathbb{E}^{X(0)}$ is the distribution of random variable X on $(N^X, (\mathbb{P}^0)^X)$. Therefore, the distribution of X on $(N^X, (\mathbb{P}^0)^X)$ can be obtained by

\[N^X(r) = (\mathbb{P}^0)^X \cdot \mathbb{E}^{X(0)} \cdot N \]
Let \(\{ x_i \} \) be a complete orthonormal system defined on \(\mathbb{N} \), such that

\[
\sum_{i=1}^{\infty} x_i = 0, 1, 2, \ldots
\]

Then, we have that

\[
\sum_{i=1}^{\infty} \frac{x_i}{x_i^2} = \frac{1}{x} \quad \text{for all } x \neq 0, 1, 2, \ldots
\]

1. Introduction

Technical University of Gesztese, Fored

Research Parkon

Testing Program

HYDROLOGICAL SERIES AND APPLICATIONS IN DISEMINATION

SEQUENTIAL ESTIMATION OF A HYDROLOGICAL FUNCTION

perton, 1979. Without, position-type assumptions. Pregini, Berghadde, Pret-

[10] Steinman, S. J.: On the relation between time series and
Mathematical Statistics
Symposium on
The First Pannonian

V. M. Zolotarev
Leopold Schmetterer
Pál Révész

Statistics
Lecture Notes in