ZADANIA DO WYKłADU Z STOCHASTIC GEOMETRY

Günter Last

Instytut Matematyczny, Uniwersytet Wrocławski $2006 \label{eq:weight}$

1. LISTA 1 3

1 Lista 1

1.1 Let \mathbb{Q} be a probability measure on \mathbb{Y} , N a point process on \mathbb{X} and Φ an independent Q marking of N. Prove that for every measurable $f: \mathbb{X} \times \mathbb{Y} \to [0, \infty)$

$$L_{\Phi}(f) = L_N(f^*),$$

where

$$f^*(x) = -\log \int e^{-f(x,y)} Q(dy), \qquad x \in \mathbb{X} .$$

1.2 Let K be a stochastic kernel from \mathbb{X} to \mathbb{Y} , N a point process on \mathbb{Y} and Φ a K-marking of N. Let $f: \mathbb{X} \times \mathbb{Y} \to [0, \infty)$ be measurable and define

$$f^*(x) = -\log \int e^{-f(x,y)} K(x, dy), \qquad x \in \mathbb{X}.$$

Prove that

$$L_{\Phi}(f) = L_N(f^*).$$

1.3 (M/G/ ∞ queueing system). Assume that customers arrive at a queueing system with infinite many servers at the instants T_1, T_2, \ldots of a homogenous Poisson process $N = \sum_{n=1}^{\infty} \delta_{T_n}$ of intensity $\gamma > 0$. Assume that the n-th customer requires service Y_n , where the Y_n are i.i.d. with distribution G and independent of N. Show that the departure process

$$D = \sum_{n=1}^{\infty} \delta_{(T_n + Y_n)}$$

is a Poisson process and compute its intensity measure $\tilde{\Lambda}$. Show that $\tilde{\Lambda}$ is locally finite and that $\tilde{\Lambda}(dt) = \tilde{\lambda}(t) dt$. Compute $\lim_{t \to \infty} \tilde{\lambda}(t)$.

1.4 Let N be a simple point process on X, identified with its support. Define

$$S_0(B) = \mathbb{P}(N \cap B \neq \emptyset), \qquad B \in \mathcal{X},$$

and then inductively, for $k \in \mathbb{N}$

$$S_k(B_0; B_1, \dots, B_k) = S_{k-1}(B_0; B_1, \dots, B_{k-1}) - S_{k-1}(B_0 \cup B_k; B_1, \dots, B_{k-1}), \qquad B_0, \dots, B_k \in \mathcal{X}.$$

(i) Show that for $k \geq 0$

$$S_k(B_0; B_1, \dots, B_k) = \mathbb{P}(N \cap B_0 \neq \emptyset, N \cap B_1 \neq \emptyset, \dots, N \cap B_n \neq \emptyset)$$
.

(ii) Show that for $k \geq 1$

$$S_k(B_0; B_1, \dots, B_k) = \sum_{r=0}^k (-1)^r \sum_{1 \le i_1 < \dots < i_r \le k} S_0(B_0 \cup B_{i_1} \cup \dots \cup B_{i_r}),$$

where the inner sum equal $1 - S_0(B_0)$, for r = 0.

1.5 Let N be a simple point process on a finite set X and define

$$p(F) = \mathbb{P}(N = F), \qquad F \subset \mathbb{X},$$

 $c(F) = \mathbb{N}(N \subset F), \qquad F \subset \mathbb{X}.$

Then

$$c(F) := \sum_{K \subset F} p(K) .$$

Show the Möbius inversion formula

$$p(F) := \sum_{K \subset F} (-1)^{\operatorname{card}(F \backslash K)} c(K), \qquad F \subset \mathbb{X} \ .$$

- 1.6 Find a stationary point process, which is not isotropic.
- 1.7 Let Z be a random closed set and U a random rotation SO_d valued random variable) independent of Z.
 - (i) Show that $U \cdot Z$ is stationary random cloised set if Z is stationary.
 - (ii) Assume that U is distributed according to the unique rotation invariant probability measure ν on SO_d (that is $\int f(vv')\nu(dv) = \int f(v'v)\nu(dv) = \int f(v)\nu(dv)$, $v' \in SO_d$). Prove that UZ is isotropic.
- 1.8 Consider a Boolean model Z in \mathbb{R}^2 with typical grain $Z_0 = B(0, R)$, where $R \geq 0$ is a random variable satisfying $E(R^2 < \infty)$. Let

$$C_0(x) := \mathbb{E}[V_2(Z_0 \cap (Z_0 - x))].$$

(i) Show that

$$C_0(x) = \int_{\frac{||x||}{2}}^{\infty} (2r^2 \arccos \frac{||x||}{2} - \frac{||x||}{2} \sqrt{4v^2 - ||x||^2}) F(dv),$$

1. LISTA 1 5

where F is the distribution of R.

(ii) Show that the covariance function C(x) of Z satisfies

$$C(x) \sim (2p-1) + (1-p) \exp \left[-\gamma \pi \int_0^{\frac{||x||}{2}} v^2 F(dv) \right],$$

as $||x|| \to \infty$.

[Hint. Let B_1, B_2 be two ontersecting discs of equal radius r, whose centers are at distance t. Probe that $V_2(B_1 \cap B_2) = r^2 \arccos \frac{t}{r} - t\sqrt{r^2 - t^2}$.]