
Chapter III

The concept of reserve; one life
and one risk

1 The concept of prospective and retrospec-

tive net premium reserves.

Consider a policy with termination date n. For a whole life insurance we
may set n = ∞ and consider in interval [0,∞), otherwise we [0, n]. We make
an abreviation for the current value at time t - CVt.

We define prospective and retrospective loss respectively by

tL
pro = CVt of benefit outgo in [t, n]

− CVt of premium income in [t, n]

and

tL
retro = CVt of benefit outgo in [0, t)

− CVt of premium income in [0, t).

Notice that 0L
pro = L is the loss defined in Chapter [????] and unless it said

otheriwse we consider net models with net premiums only, that is EL = 0.
We now define prospective and retrospective reserve by

tV̄
pro

= E [ tL
pro|Tx > t] and tV̄

retro
= E [ tL

retro|Tx > t].

In the sequel we assume that
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26CHAPTER III. THE CONCEPTOF RESERVE; ONE LIFE ANDONE RISK

(*) tL
pro = tL

retro = 0 for t > Tx, that is after death books are closed.

Notice that

L = vt( tL
pro + tL

retro),

from which we obtain

E [ tL
pro] = E [− tL

retro].

In view of the above equation we can consider only prospective loss and
reserve and therefore we will denote them from now on by tL and tV̄ , t ∈ [0, n]
for continuous polices and kL, kV , k = 0, . . . , n for discrete ones.

Proposition 1.1 Under assumption (∗)

tV̄ = tV̄
retro

.

Proof We have

tV̄
retro

= E [− tL
retro|Tx > t] =

− tL
retro

tpx

=
− tL

tpx
= E [− tL|Tx > t] = tV̄ .

We may rewrite tV̄
retro

as follows. Define tG
retro as APV of premium

income in [0, t) minus APV of benefits outgo in [0, t). Then

tV̄
retro

=
tG

retro

tEx

,

where tEx = vt tpx is the actuarial discounting function.

Remark Let us see the mechanism of actuarial accumulation. Suppose
we consider a cohort of size lx of lives (x). Each pay 1 on a bank account
with interest rate i. After time t they have lx(1 + i)t and for one survived
there is lx(1 + i)t/l[x]+t. However because tpx = l[x]+t/lx they accumulated
1/(vt tpx)lx = 1/tExlx. On the other hand we see that tEx is an actuarial
discounting function.



1. THE CONCEPTOF PROSPECTIVE AND RETROSPECTIVE NET PREMIUMRESER

Survay of formulas for net premium and reserve function; contin-
uous contracts

Whole life insurance

net premium: P̄ (Āx) = Āx/āx,

reserve: tV̄ (Āx) = Ā[x]+t − P̄ (Āx)ā[x]+t.

Term insurance for n years

net premium: P̄ (Ā1
x:n

) = Ā1
x:n

/āx:n,

reserve: tV̄ (Ā1
x:n

) = Ā1

[x]+t:n−t
− P̄ (Ā1

x:n
)ā[x]+t:n−t.

umowa: Pure endowment for n years

net premium: P̄ (A 1
x:n

) = Ā 1
x:n

/āx:n,

reserve: tV̄ (A 1
x:n

) = Ā 1

[x]+t:n−t
− P̄ (A 1

x:n
)ā[x]+t:n−t.

umowa: Endowment for n years

net premium: P̄ (Āx:n) = Āx:n/āx:n,

reserve: tV̄ (Āx:n) = Ā[x]+t:n−t − P̄ (Āx:n)ā[x]+t:n−t.

Whole life insurance, premium paid for h < n years

net premium: hP̄ (Āx) = Āx/āx:h,

reserve:
h

tV̄ (Āx) =

{

Ā[x]+t − hP̄ (Āx)ā[x]+t:h−t dla t ≤ h

Ā[x]+t dla t > h.

Endowment for n years, premium paid for zh < n years)

net premium: hP̄ (Āx:n) = Āx:n/āx:h,

reserve:
h

tV̄ (Āx:n) =

{

Ā[x]+t:n−t − hP̄ (Āx:n)ā[x]+t:h−t dla t ≤ h,

Ā[x]+t:n−t dla h < t ≤ n.

Life annuity deffered on m years, with level premium paid for h
years (h ≤ m)

net premium: hP̄ (m|āx) = m|āx/āx:h,
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reserve:1
h

tV̄ (m|āx) =











m−t|ā[x]+t − hP̄ (m|āx)ā[x]+t:h−t dla t ≤ h,

m−t|ā[x]+t dla h < t ≤ m,

ā[x]+t dla t > m.

We now demonstrate a formula for net premium reserve for the whole life
insurance.

Example 1.2 Consider the whole life insurance from Section II.0.2 In this
case we can write loss tL at t by

tL = vT−t1(Tx > t)− P̄ (Āx)āT−t1(Tx > t). (1.1)

Since (Tx − t|Tx > t) ma taki sam rozkad co T[x]+t wic

E [ tL|Tx > t] = E [vT[x]+t − P̄ (Āx)āT[x]+t
]

= Ā[x]+t − P̄ (Āx)ā[x]+t. (1.2)

Net premium reserve for the whole life insurance is denoted by tV̄ (Āx).

2 Thiele differential equation

We will deal with random cash flows. In this case the present value of such
cash flow is a random variable. Therefore we need a characteristic for such
the random variable and hence we will use the notion of the expected cash
flow (EPV). Sometimes it is called the ‘actuarial value.

2.1 Continuous time modelling

We consider a general model for a life insurance2 of life (x), for a period n,
with a benefit function b(t), and endowment b∗n at n, paid by a premium
with rate Π̄(u). Define Prt(·) = Pr(·|Tx > t). One of the basic notions are
reserves. To define it we first consider the future loss after t ∈ [0, n]. Thus
under Prt we can define

tL =



















0 if Tx ≤ t,

b(Tx)v
Tx−t1(Tx ≤ n) + b∗nv

n−t1(Tx > n)

−
∫ Tx∧n

t
Π̄(u)vu−t du

if Tx > t.
(2.3)

1Cos tu nie gra. Czy teraz ok.TR
2assurance?
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We will call tL by the prospective loss of the insurer. We now define prospec-
tive reserve (or if is clear reserve) by

tV̄ = Et[ tL ].

In the proof here and later we will use the following. Denote by T[x]+t

the conditional future lifetime of life (x), under condition Tx > t, that is
T[x]+t =d (Tx − t|Tx > t). Notice that Pr(T[x]+t > u) = up[x]+t. Its denity
function we denote by f[x]+t(s). Under HHP we have up[x]+t = upx+t.

Proposition 2.1 If Π̄(t) is a premium rate, then the mathematical prospec-
tive reserve tV̄ fulfills

tV̄ =

∫ n

t

vu−t
u−tp[x]+t

(

b(u)µ[x]+u − Π̄(u)
)

du+ b∗nv
n−t

n−tp[x]+t. (2.4)

for 0 ≤ t ≤ n.

Proof For clarity of the considerations we make an assumption that Π(t) =
b(t) = 0 for t > n. From the definition

E [ tL|Tx > t] =

= E

[

b(Tx)v
Tx−t1(Tx ≤ n)−

∫ Tx∧n

t

Π̄(u)vu−t du

∣

∣

∣

∣

Tx > t

]

+b∗nv
n−tPr(Tx > n|Tx > t)

= E

[

b(Tx − t+ t)vTx−t1(Tx ≤ n)−

∫ (Tx−t+t)∧n

t

Π̄(u)vu−t du

∣

∣

∣

∣

Tx > t

]

+b∗nv
n−t

n−tp[x]+t

= E

[

b(T[x]+t + t)vT[x]+t1(T[x]+t ≤ n− t)−

∫ (T[x]+t+t)∧n

t

Π̄(u)vu−t du

]

+b∗nv
n−t

n−tp[x]+t

=

∫ ∞

0

(

vsb(s+ t)−

∫ s+t

t

Π̄(u)vu−t du

)

f[x]+t(s) ds

+b∗nv
n−t

n−tp[x]+t
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and continuouing

∫ ∞

0

(

vsb(s+ t)−

∫ s+t

t

Π̄(u)vu−t du

)

f[x]+t(s) ds

=

∫ ∞

0

vsb(s+ t) f[x]+t(s) ds

−

∫ ∞

0

∫ ∞

0

1(t ≤ u ≤ s+ t)Π̄(u)vu−t du f[x]+t(s) ds = (∆)− (∆∆).

Consider now

(∆∆) =

∫ ∞

0

∫ ∞

0

1(t ≤ u ≤ s+ t)Π̄(u)vu−t du f[x]+t(s) ds

=

∫ ∞

0

∫ ∞

t

1(0 ≤ u− t ≤ s)Π̄(u)vu−t du f[x]+t(s) ds

=

∫ n

t

Π̄(u)vu−t
u−tp[x]+t du.

Now

(∆) =

∫ ∞

0

vsb(s+ t) f[x]+t(s) ds

=

∫ n

t

vu−tb(u)f[x]+t(u− t) d u

∫ n

t

vu−tb(u)µ[x]+u u−tp[x]+t du.

The proof is completed.

Corollary 2.2 (Thiele differential equation) Suppose functions b(t), Π̄(t),
µ[x]+t are continuous. Then

d tV̄

dt
= Π̄(t) + δ tV̄ + ( tV̄ − b(t))µ[x]+t . (2.5)

Furthermore tV̄ given by formula (2.4) is the unique solution such that nV̄ =
b∗n.
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Proof From formula (2.4), using the identity u−tp[x]+t = upx/ tpx for 0 ≤
t ≤ u we obtain

tV̄ =
1

vt tpx

(
∫ ∞

t

(

b(u)µ[x]+u − Π̄(u)
)

vu upx du+ vnb∗n npx

)

.

Differentiating with respect t

d tV̄

dt
=

= −
(

b(t)µ[x]+t − Π̄(t)
)

+
µ[x]+t + δ

vt tpx
(

∫ ∞

t

(

b(u)µ[x]+u − Π̄(u)
)

vu upx du,

from which we obtain (2.5). Notice that passing in (2.4) with t ↑ n we obtain

nV̄ = b∗n. Since this is a linear differential equation, it has with a given
boundary condition the unique solution and it has to be (2.4).

For many contracts continuity assumption in Corollary 2.2 is not fulfilled.
However in most cases these functions are piecewise continuous with finite
number of discontinuities.3 Then we can proceed recursively. Start at n with

nV̄ = b∗n and solve to backward to the last jump t0 before n. Next continue
with the new boundary t0V̄ up to the next jump before t0.

Remark Equation (2.5) has the following intuitive meaning. The increment
of reserves d tV̄

dt
is a result of inflows of premiums at rate Π̄(t) dt minus the

outflow of benefits ( tV̄ − b(t)) paid with probability µ[x]+t.

2.2 Discrete time policies

Consider prospective reserve kL at k = 0, . . .. We define prospective (net
premium) reserve

kV = E[kL|Kx ≥ k].

The general concept will be illustrated first by the special case of endowment.

Example 2.3 Consider the following endowment policy for life (x), with
maturity at n. The insurance sum is C = 1, and the net level premium is

3In these notes by piecewise continuous we mmean always that the number of jumps is
finite and that segments are right continuous.
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computed at discount factor v. In this policy the loss is

L = vKx+11(Kx < n) + vn1(Kx ≥ n)− Π

Kx∧(n−1)
∑

l=0

vl.

The future loss (or prospective loss) after year k = 0, . . . , n− 1 is

kL = vKx+1−k1(Kx < n) + vn−k1(Kx ≥ n)− Π

Kx∧(n−1)
∑

l=k

vl−k.

Π is the level net premium if EL = 0. Then

Ax:n − Πäx:n = 0

and hence Π = Px:n = Ax:n/äx:n
Furthermore

kV = E[kL|Kx ≥ k]

= E[vKx+1−k1(Kx < n)|Kx ≥ k] (2.6)

+E[vn−k1(Kx ≥ k)|Kx ≥ k] (2.7)

−E[Π

Kx∧(n−1)
∑

l=k

vl−k|Kx ≥ k]. (2.8)

Recalling (Kx − k|Kx ≥ k) =d K[x]+k we have

(2.6) = E[vKx+k+11(Kx+k < n− k)],

(2.7) = vn−kPr(Kx ≥ n− k),

(2.8) = −Πäx:n−k .

Hence remembering that

E[vK[x]+k+11(K[x]+k < n− k)] + vn−kPr(Kx ≥ n− k) = Ax:n−k

we have

kV = Ax:n−k − Πäx:n−k .

Small manipulations yield the formula for prospective reserve written in ac-
tuarial notations:

kVx:n = A[x]+k:n−k − Px:n ä[x]+k:n−k . (2.9)
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We now introduce a general discrete model. We denote by bk - benefit
paid at k = 0, . . . , n, b∗n – endowment paid at n, Πj – premium paid at
j = 0, . . . , n− 1 (beginning of the j-th year of the policy). In this model the
prospective reserve is for k ≥ Kx

kL = bKx+1−kv
Kx+1−k1(Kx < n) + b∗nv

n−k1(Kx ≥ n)−

Kx∧(n−1)
∑

j=k

Πjv
j−k.

Proposition 2.4 We have

kV =
n−k−1
∑

j=0

bk+j+1v
j+1

j|q[x]+k + vn−kb∗n n−kp[x]+k

−
n−k−1
∑

j=0

Πk+jv
j

jp[x]+k

Proof Denote by K[x]+k the conditional curtate future lifetine of (x) after k
years under condition Kx ≥ k; that is Pr(K[x]+k ≥ n) = np[x]+k. Recall also
the convention that Πj = 0 for j ≥ n − 1 and bj = 0 for j > n. Beginning
from the definition we have

E [kL|Kx ≥ k]

= E

[

bKx+1v
Kx+1−k1(Kx < n) + b∗nv

n−k1(Kx ≥ n)−
Kx
∑

j=k

Πjv
j−k

∣

∣

∣

∣

Kx ≥ k

]

= E

[

bKx−k+1+kv
Kx−k+1 + b∗nv

n−k1(Kx ≥ n)−
Kx−k
∑

j=0

Πk+j v
j

∣

∣

∣

∣

Kx ≥ k

]

= E

[

bK[x]+k+k+1v
K[x]+k+1 −

K[x]+k
∑

i=0

Πk+iv
i

]

+ b∗nv
n−k

n−kp[x]+k

=
∞
∑

j=0

(

vj+1bk+j+1 −

j
∑

i=0

viΠk+i

)

jp[x]+k q[x]+k+j + b∗nv
n−k

n−kp[x]+k

=
∞
∑

j=0

bk+j+1v
j+1

jp[x]+k q[x]+k+j + b∗nv
n−k

n−kp[x]+k −
∞
∑

j=0

Πk+jv
j

jp[x]+k ,

which completes the proof.

Moreover we have the Thiele recursion formula
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Corollary 2.5 We have nV = b∗n and for 0 ≤ k < n

kV = vbk+1 q[x]+k − Πk + v k+1V p[x]+k, (2.10)

Remark We can rewrite (2.10) as follows

kV − v k+1V +Πk = v(bk+1 − k+1V)q[x]+k. (2.11)

The left hand side can be read as available fund at the beginning of year k
and the right hand side is a projection of expenses.

Example 2.6 As in 2.3 we consider the endowment policy with benefit b,
paid by net premium (Πj) with the following specifications. The third one
below is the so called Zillmer’s net premium. Formulas are stated under
hypothesis HA that is K[x]+k = Kx+k for all x, k ∈ Z+.

4

(i) Assumption Π = Π0 = Π1 = . . . = Πn−1 yields

Πäx:n = bE [vK+1∧n] = bAx:n.

Hence

Π = bxVn:=
An:x

än:x

is the level premium for this contract.

(ii) Assumption Π0 > 0 and Π1 = Π2 = . . . = 0 yields Π0 = bAx:n, which is
a single net premium for this contract.

(iii) Assumption Π0 < Π1 = Π2 = . . . = Πn−1 yields the so called Zillmer’s
net premium. Denoting ΠZ

0 = Π0, Π
Z
1 = Π1 and I = Π1 − Π0 the

equivalence principle gives

bE [v(K+1)∧n] = ΠZ
0 +ΠZ

1E [

K∧(n−1)
∑

j=1

vj]

4Dr. August Zillmer (1831–1893), German actuary. He was a manager in insureance
companys. The author of the first exhaustive text about life insurances: Die mathematis-

chen Rechnungen bei Lebens und Renternversicherungen, opublikowanej w Berline w 1861
pierwszego od czasu Tetensa (1736–1807).
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or in actuarial notations

bAx:n = −I +ΠZ
1 äx:n

which yields

ΠZ
0 =

bAx:n

äx:n
+

I

äx:n
− I, ΠZ

1 =
bAx:n

äx:n
+

I

äx:n
. (2.12)

We now compute formula for reserve, which we denote by kV
Z
x:n. Thus

for k = 1, 2, . . .

kV
Z
x:n = bAx+k:n−k − ΠZ

1 äx+k:n−k

= bAx+k:n−k − (
bAx:n

äx:n
+

I

äx:n
)äx+k:n−k

= b(Ax+k:n−k −
Ax:n

äx:n
äx+k:n−k)− I

äx+k:n−k

äx:n

= b kVx:n − I
äx+k:n−k

äx:n

= b kVx:n + I(1−
äx+k:n−k

äx:n
− 1)

= (b+ I)kVx:n − I

where in the last equation we used formula

kVx:n = 1−
äx+k:n−k

äx:n
.

Survay of formulas for net premium and reserve function; discrete
policies Recall that now x, k, h,m ∈ Z+. For term policies with termina-
tion n, reserves are defined for k < n.

Whole life insurance

net premium: Px = Ax/äx ,

reserve: kVx = A[x]+k − Px ä[x]+k .

Term insuracne for n years

net premium : P1
x:n

= A1
x:n

/äx:n ,

reserve: kV1
x:n

= A1

[x]+k:n−k

− P1
x:n

ä[x]+k:n−k .
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Pure endowment for n years

net premium : P 1
x:n

= A 1
x:n

/äx:n ,

reserve: kV 1
x:n

= A 1

[x]+k:n−k

− P 1
x:n

ä[x]+k:n−k .

Endowment for n years

net premium : Px:n = Ax:n/äx:n ,

reserve: kVx:n = A[x]+k:n−k − Px:n ä[x]+k:n−k .

Whole life insurance, premium paid for h < n years

net premium: hPx = Ax/äx:h ,

reserve: h
kVx =

{

A[x]+k − hPx ä[x]+k:h−k , dla k ≤ h

A[x]+k, dla k > h .

Endowment for n years, premium paid for h years (h < n)

net premium: hPx:n = Ax:n/äx:h,

reserve: h
kVx:n =

{

A[x]+k:n−k − hPx:n ä[x]+k:h−k , dla k ≤ h ,

A[x]+k:n−k , dla h < k ≤ n .

Whole life annuity due deffered for m years, with premium paid
for m years

net premium: P (m|äx) = m|äx/äx:m,

reserve: kV (m|äx) =

{

m−k|ä[x]+k − P (m|äx) ä[x]+k:m−k , dla k ≤ m ,

ä[x]+k , dla k > m .

Exercises; will be shifted later at the end of the section.

1. Define sx:n = ax:n
nEx

. Show

(1 + i)n
l[x]

l[x]+n

n
∑

k=1

vk = sx:n .

Similarly define s̈x:n = äx:n
nEx

and show

(1 + i)n
l[x]

l[x]+n

n−1
∑

k=0

vk = s̈x:n .
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2. Show formulas for tV̄ (Āx):

tV̄ (Āx) = 1−
āx+t

āx
,

(ration of annuities)

tV̄ (Āx) =
Āx+t − Āx

1− Āx

(ratio of life insurances)

tV̄ (Āx) =
P̄ (Āx+t)− P̄ (Āx)

P̄ (Āx+t) + δ

(premium ratio formula).

3. Show the retrospective formula for continuous reserve:

tV̄ (Ā1

x:t
) = P̄ (Ā1

x:t
)s̄x:t −

Ā1

x:t

tEx

= P̄ (Ā1

x:t
)
āx:t

tEx

−
Ā1

x:t

tEx

.

4. Derive the Thiele differential equation for general model if the force of
interest is δ(t). Write the Thiele recurrence if in the k-th year there is
discount factor vk.

5. We consider a term life insurance with death benefit b paid at the
instant of death, which is financed by a level premium of Π̄. Write and
next solve the Thiele differential equation for the net premium reserve
P̄ (Āx:n).

6. We consider a term life insurance with death benefit b paid at the end
of death year, which is financed by a level premium of Pn:x. Write and
next solve the Thiele reccurence for the net premium reserve kV (m|äx).

7. We consider the endowment policy. The death benefit is 200,000 USD
and an endowment is 100,000 USD. We consider a life x = 30 and 65
as the age of maturity of the policy.

• How much is a single premium for this insurance if the technical
interest rate is 3.5%?
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• How do these results compare to the values in discrete times. Use
the following mortality rate:

µ(t) = exp(−7.85785 + 0.01538x+ 5.77355× 10−4x2).

8. Show the following formula:

tV̄ (Ā1
x:n

) (2.13)

=
1

tEx

∫ t

0

∫ n

t

vs+w
spx wpx(µ[x]+w − µ[x]+s) dw ds 0 ≤ t ≤ n .

(Hint: Use the retropective formula for the reserve and

P̄ (Ā1
x:n

)− µ[x]+s =
1

āx:n

∫ n

0

vw wpx(µ[x]+w − µ[x]+s) dw .

Then notice that double integral
∫ t

0
ds

∫ t

0
. . . dw = 0.)

Conclude that if mortality rate µ[x]+s is a nondecreasing function s,
then the expression on the RHS of (2.13) is nonnegative.

9. Show that if sp[x]+t as a function of s, then tV̄ (Āx:t) is nondecreasing.
Hint. Convert formula

tV̄ (Āx:n) = Ā[x]+t:n−t − P̄ (Āx:n)ā[x]+t:n−t , (2.14)

into

tV̄ (Āx:n) = 1− (δ + P̄ (Āx:n))ā[x]+t:n−t . (2.15)

Then notice that tV̄ (Āx:n) is nodecreasing provided ā[x]+t:n−t decrases
for t → n. Now use

ā[x]+t:n−t =

∫ n−t

0

vs sp[x]+t ds.

2.3 A deterministic approach

In this subsection we assume hyptothesis HA. Consider a cohort {lx+n}
∞
n=0

of lifes (x). Notice the relationship hpx+k = lx+k+h/lx+k). Recall that dx+k =
lx+k − lx+k+1 is the number of deaths in year k.


