• How do these results compare to the values in discrete times. Use the following mortality rate:

$$\mu(t) = \exp(-7.85785 + 0.01538x + 5.77355 \times 10^{-4}x^2).$$

8. Show the following formula:

$${}_{t}\bar{V}(\bar{A}_{1}_{x:\overline{n}})$$

$$= \frac{1}{{}_{t}E_{x}} \int_{0}^{t} \int_{t}^{n} v^{s+w} {}_{s}p_{xw} p_{x}(\mu_{[x]+w} - \mu_{[x]+s}) \, \mathrm{d}w \, \mathrm{d}s \quad 0 \le t \le n \,.$$
(2.13)

(Hint: Use the retropective formula for the reserve and

$$\bar{P}(\bar{A}_{1}_{x:\overline{m}}) - \mu_{[x]+s} = \frac{1}{\bar{a}_{x:\overline{m}}} \int_{0}^{n} v^{w} {}_{w} p_{x}(\mu_{[x]+w} - \mu_{[x]+s}) \, \mathrm{d}w$$

Then notice that double integral $\int_0^t ds \int_0^t \dots dw = 0.$) Conclude that if mortality rate $\mu_{[x]+s}$ is a nondecreasing function s,

Conclude that if mortality rate $\mu_{[x]+s}$ is a nondecreasing function s, then the expression on the RHS of (2.13) is nonnegative.

9. Show that if ${}_{s}p_{[x]+t}$ as a function of s, then ${}_{t}\bar{V}(\bar{A}_{x:\bar{d}})$ is nondecreasing. Hint. Convert formula

$${}_{t}\bar{V}(\bar{A}_{x:\overline{n}}) = \bar{A}_{[x]+t:\overline{n-t}} - \bar{P}(\bar{A}_{x:\overline{n}})\bar{a}_{[x]+t:\overline{n-t}}, \qquad (2.14)$$

into

$${}_{t}\bar{V}(\bar{A}_{x:\overline{n}}) = 1 - (\delta + \bar{P}(\bar{A}_{x:\overline{n}}))\bar{a}_{[x]+t:\overline{n-t}}.$$
(2.15)

Then notice that ${}_t \overline{V}(\overline{A}_{x:\overline{n}})$ is nodecreasing provided $\overline{a}_{[x]+t:\overline{n-t}|}$ decrases for $t \to n$. Now use

$$\bar{a}_{[x]+t:\overline{n-t}]} = \int_0^{n-t} v^s {}_s p_{[x]+t} \, \mathrm{d}s.$$

2.3 A deterministic approach

We now show anothr approach to the theory of prospective and retrospecitve reserves In this subsection we assume hyptothesis HA.

Consider a cohort $\{l_{x+n}\}_{n=0}^{\infty}$ of lifes (x). Recall the relationship ${}_{h}p_{x+k} = l_{x+k+h}/l_{x+k}$), and that $d_{x+k} = l_{x+k} - l_{x+k+1}$ is the number of deaths in year k.

Remark Notice that it is not important the cohort is of size l_x . We can suppose that at the beginning the cohort of lifes (x) counts N. Then after the first year it counts Nl_{x+1}/l_x , after two years Nl_{x+2}/l_x , etc.

The portfolio consists of l_x lifes. Each of the life (x) is insured under our general policy from Section 2.2. We now analyse the cash flows in this portfolio. At the beginning (k = 0), the insurer obtains $l_x \Pi_0$. After the first year (k = 1), it pays b_1 to the family of each from d_x deaths and obtains yearly premium Π_1 from l_{x+1} survived, etc. Thus for those dying in period [k-1,k) $(k \ge 1)$ it pays total benefits $d_{x+k-1}b_k$ and obtains premiums $l_{x+k}\Pi_k$.

Now looking prospectively at $k \ge 1$ for future benefits (at k+1, k+2, ...) and premiums (paid at k, k+1, ...) we have the amount

$$\sum_{h=0}^{n-k-1} b_{k+h+1} v^{h+1} d_{x+k+h} + b_n^* l_{x+n} v^{n-k} - \sum_{h=0}^{n-k-1} \prod_{k+h} v^h l_{x+k+h}.$$

This gives per capita of one **alive** at k

$${}_{k}\mathcal{V} = \frac{1}{l_{[x]+k}} \left(\sum_{h=0}^{n-k-1} b_{k+h+1} v^{h+1} d_{x+k+h} + b_{n}^{*} v^{n-k} l_{x+n} - \sum_{h=0}^{n-k-1} \Pi_{k+h} v^{h} l_{x+k+h} \right).$$
(2.16)

Upon a reflection remembering that $d_{x+k+h}/l_{x+k} = \Pr(K_{x+k} = h) = {}_h p_{x+k} q_{x+k+h}$ and $l_{x+k+h}/l_{x+k} = \Pr(K_{x+k} \ge h) = {}_h p_{x+k}$ the above is ${}_k \mathcal{V}$.

We now look retrospectively how much money we collecte up to k-1:

$$\sum_{h=0}^{k-1} \prod_{h} (1+i)^{k-h} l_{x+h} - \sum_{h=0}^{k-1} b_{h+1} (1+i)^{k-(h+1)} d_{x+h},$$

which gives per survived capita the amount

$$\frac{1}{l_{x+k}} \left(\sum_{h=0}^{k-1} \prod_{h} (1+i)^{k-h} l_{x+h} - \sum_{h=0}^{k-1} b_{h+1} (1+i)^{k-(h+1)} d_{x+h} \right).$$
(2.17)

Comparing the present values of (2.16) and (2.17) we notice that these two amounts are equal if

$$\frac{1}{l_{x+k}} \left(\sum_{h=0}^{n-k-1} b_{k+h+1} v^{k+h+1} d_{x+k+h} + b_n^* v^n l_{x+n} - \sum_{h=0}^{n-k-1} \Pi_{k+h} v^{k+h} l_{x+k+h} \right) = \frac{1}{l_{x+k}} \left(\sum_{h=0}^{k-1} \Pi_h v^h l_{x+h} - \sum_{h=0}^{k-1} b_{h+1} v^{h+1} d_{x+h} \right),$$

which after small manipulations yields

$$\sum_{h=0}^{n-1} b_{h+1} v^{h+1} d_{x+h} - \sum_{h=0}^{n-1} \prod_h v^h l_{x+h} = 0.$$
 (2.18)

This is exactly the condition that (Π_i) is net premium.

Consider now (2.17). We rewrite it in the form

$$\frac{1}{l_{x+k}} \left(\sum_{h=0}^{k-1} \Pi_h (1+i)^{k-h} l_{x+h} - \sum_{h=0}^{k-1} b_{h+1} (1+i)^{k-(h+1)} d_{x+h} \right)$$
$$= \frac{1}{v^k {}_x p_k} \left(\sum_{h=0}^{k-1} \Pi_h v^h {}_x p_h - \sum_{h=0}^{k-1} b_{h+1} v^{h+1} {}_{h|} q_x \right) = {}_k \mathcal{V}^{\text{retro}}$$

that is, this is the retrospective reserve. Thus

$$_{k}\mathcal{V}=\frac{1}{_{k}E_{x}}_{k}\mathcal{V}^{\text{retro}}$$

where $_{k}E_{x} = v^{k}_{x}p_{k}$ is the actuarial discounting function.

Example 2.7 Consider for a theoretical group of l_{40} lifes x = 40-the term insurance for 10 years on the sum 1000, dying according to according TT Tablicy Trwania Zycia TTZ-Pl97m from Błaszczyszyn and Rolski []. Suppose the interest rate is i = 0.04 (or v = 0.96154). In table 2.1, we present the mathematical reserve computed with net level premium

$$1000P_{\substack{1\\40:\overline{10}}} = \frac{1000A_{1}}{\ddot{a}_{40:\overline{10}}} = \frac{\sum_{h=0}^{9}1000v^{h+1}d_{40+h}}{\sum_{h=0}^{9}v^{h}l_{40+h}} = 6.41053.$$

Reserves in column (1) are computed with use of formula (2.16). Considering year [k, k + 1) in column (5) we obtain the amount gathered at the end of year, which divided by l_{40+k+1} gives $_{k+1}V_1$. Remember that $_{0}V_1$ = 0. Thus we have a recurrence

$$(5) = 1000[l_{40+k}({}_{k}V_{1} + P_{1} + Q_{40:\overline{10}})(1+i) - d_{40+k}]$$

Table 2.1: Term insurance from Example 2.7). Consecutive columns consist: (1) = $1000_k V_1 = (5)_{k-1}/l_{40+k}$, (2) = $1000_k V_1 = l_{40+k}(1+i)$, (3) = $1000P_{40:\overline{10}} l_{40+k}(1+i)$ (4) = $1000b_{k+1}d_{40+k}$, (5) = (2) + (3) - (4).

k	l_{40+k}	d_{40+k}	(1)	(2)	(3)	(4)	(5)
0	94 012	421	0.00	0	$626 \ 774$	421 000	205 774
1	93 591	460	2.20	214 005	623 967	460 000	$377 \ 971$
2	$93\ 131$	500	4.06	393 090	620 900	500 000	$513 \ 990$
3	$92\ 631$	544	5.55	534 550	617 567	544 000	608 116
4	92087	589	6.60	$632 \ 441$	$613 \ 940$	589 000	$657 \ 381$
5	$91 \ 498$	639	7.18	$683 \ 676$	$610 \ 013$	639 000	$654 \ 689$
6	90 859	693	7.21	$680 \ 876$	605 753	693 000	$593\ 629$
7	$90\ 166$	750	6.58	$617 \ 374$	601 133	750000	468 507
8	89 416	811	5.24	$487 \ 247$	$596\ 132$	811 000	272 379
9	88 605	874	3.07	$283 \ 275$	590 725	874 000	0
10	87 731	0	0.00				

Table 2.2: Endowment assurance from Example 2.2). Consecutive columns consist:

 $\begin{aligned} (1) &= 1000_k V_{40:\overline{10}} = (5)_{k-1} / l_{40+k}, \\ (2) &= 1000_k V_{40:\overline{10}} \, l_{40+k} (1+i), \\ (3) &= 1000 P_{40:\overline{10}} \, l_{40+k} (1+i), \\ (4) &= 1000 b_{k+1} d_{40+k}, \\ (5) &= (2) + (3) - (4) \end{aligned}$

k	(1)	(2)	(3)	(4)	(5)
0	0.00	0	8 110 736	421 000	$7\ 689\ 736$
1	82.16	$7 \ 997 \ 326$	$8\ 074\ 415$	460 000	$15\ 611\ 741$
2	167.63	$16\ 236\ 211$	$8 \ 034 \ 729$	500 000	$23\ 770\ 940$
3	256.62	$24\ 721\ 777$	$7 \ 991 \ 593$	544000	$32\ 169\ 370$
4	349.34	$33 \ 456 \ 145$	$7 \ 944 \ 660$	589000	$40 \ 811 \ 805$
5	446.04	$42 \ 444 \ 277$	7 893 845	639000	$49 \ 699 \ 122$
6	546.99	$51\ 687\ 087$	7 838 716	693 000	$58 \ 832 \ 803$
7	652.49	$61 \ 186 \ 115$	$7\ 778\ 929$	750000	$68\ 215\ 044$
8	762.90	$70 \ 943 \ 646$	$7 \ 714 \ 224$	811 000	77 846 869
9	878.58	$80\ 960\ 744$	$7 \ 644 \ 256$	88 605 000	$87\ 731\ 000$
10	1000.00				

Example 2.8 Consider as in Example 2.7 a cohort l_{40} of lifes (40) having bought the endowment assurance for 10 years for sum b = 1000. In Table 2.2 we present reserves collected if the net premium is paid

$$1000P_{40:\overline{10}} = \frac{1000A_{40:\overline{10}}}{\ddot{a}_{40:\overline{10}}} = \frac{\sum_{h=0}^{9} 1000v^{h+1}d_{40+h} + 1000v^{10}l_{40+10}}{\sum_{h=0}^{9} v^{h}l_{40+h}}$$
$$= 82.95521.$$

Exercises; on line lecture 2

- 1. Derive Thiele recurrence (2.10) from formula (2.16).
- 2. Analyse term insurance from Example 2.7, however terminated after 3 years. Show entries of Table 2.1 in this case.

2.4 An analysis of a real portfolio

Suppose that at the beginning of the k year there is still N_k active polices. We know this number, although in practice it differs from the theoretical one obtained from life tables. We make the following analysis for period [k, k+1)of polices for lifes (x) bought k years ago. The insurer has at k+1 (formally just before k+1) reserve $_{k+1}\mathcal{V}$ per head to be paid obligations for deaths from [k, k+1). Let D_k denotes the number of deaths in [k, k+1). It is a random variable. Knowing that at the beginning of the interval [k, k+1) is N_k , we can expect the number of deaths $N_k q_{[x]+k}$. Thus the difference at the end of analysed year is

$$N_k q_{[x]+k} - D_k \; .$$

Since for one alive at k there is prepared reserve $_{k+1}\mathcal{V}$, and b_{k+1} is the benefit paid at k+1 per head, then we have a difference

$$b_{k+1} - {}_{k+1}\mathcal{V}$$

for one insured alive at k. This amount is called *death strain at risk* (DSAR). In the whole portfolio we have

$$I_{k+1} = (N_k q_{[x]+k} - D_k)(b_{k+1} - {}_{k+1}\mathcal{V}) .$$
(2.19)

The quantity I_{k+1} is said to be a mortality profit.