- How do these results compare to the values in discrete times. Use the following mortality rate:

$$
\mu(t)=\exp \left(-7.85785+0.01538 x+5.77355 \times 10^{-4} x^{2}\right)
$$

8. Show the following formula:

$$
\begin{align*}
& { }_{t} \bar{V}\left(\bar{A}_{x: n}\right) \tag{2.13}\\
& \quad=\frac{1}{{ }_{t} E_{x}} \int_{0}^{t} \int_{t}^{n} v^{s+w}{ }_{s} p_{x w} p_{x}\left(\mu_{[x]+w}-\mu_{[x]+s}\right) \mathrm{d} w \mathrm{~d} s \quad 0 \leq t \leq n .
\end{align*}
$$

(Hint: Use the retropective formula for the reserve and

$$
\bar{P}\left(\bar{A}_{1: m}\right)-\mu_{[x]+s}=\frac{1}{\bar{a}_{x: m}} \int_{0}^{n} v^{w}{ }_{w} p_{x}\left(\mu_{[x]+w}-\mu_{[x]+s}\right) \mathrm{d} w .
$$

Then notice that double integral $\int_{0}^{t} \mathrm{~d} s \int_{0}^{t} \ldots \mathrm{~d} w=0$.)
Conclude that if mortality rate $\mu_{[x]+s}$ is a nondecreasing function s, then the expression on the RHS of (2.13) is nonnegative.
9. Show that if ${ }_{s} p_{[x]+t}$ as a function of s, then ${ }_{t} \bar{V}\left(\bar{A}_{x: \bar{t}}\right)$ is nondecreasing. Hint. Convert formula

$$
\begin{equation*}
{ }_{t} \bar{V}\left(\bar{A}_{x: \pi}\right)=\bar{A}_{[x]+t: \overline{n-t}}-\bar{P}\left(\bar{A}_{x: m}\right) \bar{a}_{[x]+t: \overline{n-t}} \tag{2.14}
\end{equation*}
$$

into

$$
\begin{equation*}
{ }_{t} \bar{V}\left(\bar{A}_{x: n}\right)=1-\left(\delta+\bar{P}\left(\bar{A}_{x: n}\right)\right) \bar{a}_{[x]+t: \overline{n-t}} \tag{2.15}
\end{equation*}
$$

Then notice that ${ }_{t} \bar{V}\left(\bar{A}_{x: n}\right)$ is nodecreasing provided $\bar{a}_{[x]+t: \overline{n-t}}$ decrases for $t \rightarrow n$. Now use

$$
\bar{a}_{[x]+t: \overline{n-t}}=\int_{0}^{n-t} v^{s}{ }_{s} p_{[x]+t} \mathrm{~d} s .
$$

2.3 A deterministic approach

We now show anothr approach to the theory of prospective and retrospecitve reserves In this subsection we assume hyptothesis HA.

Consider a cohort $\left\{l_{x+n}\right\}_{n=0}^{\infty}$ of lifes (x). Recall the relationship ${ }_{h} p_{x+k}=$ l_{x+k+h} / l_{x+k}), and that $d_{x+k}=l_{x+k}-l_{x+k+1}$ is the number of deaths in year k.

Remark Notice that it is not important the cohort is of size l_{x}. We can suppose that at the beginning the cohort of lifes (x) counts N. Then after the first year it counts $N l_{x+1} / l_{x}$, after two years $N l_{x+2} / l_{x}$, etc.

The portfolio consists of l_{x} lifes. Each of the life (x) is insured under our general policy from Section 2.2. We now analyse the cash flows in this portfolio. At the beginning $(k=0)$, the insurer obtains $l_{x} \Pi_{0}$. After the first year $(k=1)$, it pays b_{1} to the family of each from d_{x} deaths and obtains yearly premium Π_{1} from l_{x+1} survived, etc. Thus for those dying in period $[k-1, k)(k \geq 1)$ it pays total benefits $d_{x+k-1} b_{k}$ and obtains premiums $l_{x+k} \Pi_{k}$.

Now looking prospectively at $k \geq 1$ for future benefits (at $k+1, k+2, \ldots$) and premiums (paid at $k, k+1, \ldots$) we have the amount

$$
\sum_{h=0}^{n-k-1} b_{k+h+1} v^{h+1} d_{x+k+h}+b_{n}^{*} l_{x+n} v^{n-k}-\sum_{h=0}^{n-k-1} \Pi_{k+h} v^{h} l_{x+k+h} .
$$

This gives per capita of one alive at k

$$
\begin{equation*}
{ }_{k} \mathcal{V}=\frac{1}{l_{[x]+k}}\left(\sum_{h=0}^{n-k-1} b_{k+h+1} v^{h+1} d_{x+k+h}+b_{n}^{*} v^{n-k} l_{x+n}-\sum_{h=0}^{n-k-1} \Pi_{k+h} v^{h} l_{x+k+h}\right) . \tag{2.16}
\end{equation*}
$$

Upon a reflection remembering that $d_{x+k+h} / l_{x+k}=\operatorname{Pr}\left(K_{x+k}=h\right)={ }_{h} p_{x+k} q_{x+k+h}$ and $l_{x+k+h} / l_{x+k}=\operatorname{Pr}\left(K_{x+k} \geq h\right)={ }_{h} p_{x+k}$ the above is ${ }_{k} \mathcal{V}$.

We now look retrospectively how much money we collecte up to $k-1$:

$$
\sum_{h=0}^{k-1} \Pi_{h}(1+i)^{k-h} l_{x+h}-\sum_{h=0}^{k-1} b_{h+1}(1+i)^{k-(h+1)} d_{x+h}
$$

which gives per survived capita the amount

$$
\begin{equation*}
\frac{1}{l_{x+k}}\left(\sum_{h=0}^{k-1} \Pi_{h}(1+i)^{k-h} l_{x+h}-\sum_{h=0}^{k-1} b_{h+1}(1+i)^{k-(h+1)} d_{x+h}\right) . \tag{2.17}
\end{equation*}
$$

Comparing the present values of (2.16) and (2.17) we notice that these two amounts are equal if

$$
\begin{aligned}
& \frac{1}{l_{x+k}}\left(\sum_{h=0}^{n-k-1} b_{k+h+1} v^{k+h+1} d_{x+k+h}+b_{n}^{*} v^{n} l_{x+n}-\sum_{h=0}^{n-k-1} \Pi_{k+h} v^{k+h} l_{x+k+h}\right)= \\
& =\frac{1}{l_{x+k}}\left(\sum_{h=0}^{k-1} \Pi_{h} v^{h} l_{x+h}-\sum_{h=0}^{k-1} b_{h+1} v^{h+1} d_{x+h}\right)
\end{aligned}
$$

which after small manipulations yields

$$
\begin{equation*}
\sum_{h=0}^{n-1} b_{h+1} v^{h+1} d_{x+h}-\sum_{h=0}^{n-1} \Pi_{h} v^{h} l_{x+h}=0 \tag{2.18}
\end{equation*}
$$

This is exactly the condition that $\left(\Pi_{j}\right)$ is net premium.
Consider now (2.17). We rewrite it in the form

$$
\begin{gathered}
\frac{1}{l_{x+k}}\left(\sum_{h=0}^{k-1} \Pi_{h}(1+i)^{k-h} l_{x+h}-\sum_{h=0}^{k-1} b_{h+1}(1+i)^{k-(h+1)} d_{x+h}\right) \\
\quad=\frac{1}{v^{k}{ }_{x} p_{k}}\left(\sum_{h=0}^{k-1} \Pi_{h} v^{h}{ }_{x} p_{h}-\sum_{h=0}^{k-1} b_{h+1} v^{h+1}{ }_{h \mid} q_{x}\right)={ }_{k} \mathcal{V}^{\text {retro }}
\end{gathered}
$$

that is, this is the retrospective reserve. Thus

$$
{ }_{k} \mathcal{V}=\frac{1}{{ }_{k} E_{x}}{ }_{k} \mathcal{V}^{\text {retro }}
$$

where ${ }_{k} E_{x}=v^{k}{ }_{x} p_{k}$ is the actuarial discounting function.
Example 2.7 Consider for a theoretical group of l_{40} lifes $x=40$-the term insurance for 10 years on the sum 1000, dying according to according TT Tablicy Trwania Zycia TTZ-P197m from Błaszczyszyn and Rolski []. Suppose the interest rate is $i=0.04$ (or $v=0.96154$). In table 2.1, we present the mathematical reserve computed with net level premium

$$
1000 P_{40: 10 \mid}=\frac{1000 A_{1}}{\ddot{a}_{40: 10: 10}}=\frac{\sum_{h=0}^{9} 1000 v^{h+1} d_{40+h}}{\sum_{h=0}^{9} v^{h} l_{40+h}}=6.41053 .
$$

Reserves in column (1) are computed with use of formula (2.16). Considering year $[k, k+1$) in column (5) we obtain the amount gathered at the end of year, which divided by l_{40+k+1} gives ${ }_{k+1} V_{10: \overline{10}}$. Remember that ${ }_{0} V_{10: 101}=0$. Thus we have a recurrence

$$
(5)=1000\left[l_{40+k}\left({ }_{k} V_{10: \overline{10}}+\underset{40: \overline{10}}{P_{1}}\right)(1+i)-d_{40+k}\right] .
$$

Table 2.1: Term insurance from Example 2.7). Consecutive columns consist:
(1) $=1000_{k} V_{1}=(5)_{k-1} / l_{40+k}$,
$(2)=1000_{k} V_{10: 10}^{40: 10} l_{40+k}(1+i)$,
(3) $=1000 P_{40: 1010} l_{40+k}(1+i)$
(4) $=1000 b_{k+1} d_{40+k}$,
$(5)=(2)+(3)-(4)$.

k	l_{40+k}	d_{40+k}	(1)	(2)	(3)	(4)	(5)
0	94012	421	0.00	0	626774	421000	205774
1	93591	460	2.20	214005	623967	460000	377971
2	93131	500	4.06	393090	620900	500000	513990
3	92631	544	5.55	534550	617567	544000	608116
4	92087	589	6.60	632441	613940	589000	657381
5	91498	639	7.18	683676	610013	639000	654689
6	90859	693	7.21	680876	605753	693000	593629
7	90166	750	6.58	617374	601133	750000	468507
8	89416	811	5.24	487247	596132	811000	272379
9	88605	874	3.07	283275	590725	874000	0
10	87731	0	0.00				

Table 2.2: Endowment assurance from Example 2.2). Consecutive columns consist:
(1) $=1000_{k} V_{40: 10 \mid}=(5)_{k-1} / l_{40+k}$,
(2) $=1000_{k} V_{40: \overline{10}} l_{40+k}(1+i)$,
$(3)=1000 P_{40: \overline{10}} l_{40+k}(1+i)$,
$(4)=1000 b_{k+1} d_{40+k}$,
$(5)=(2)+(3)-(4)$

k	(1)	(2)	(3)	(4)	(5)
0	0.00	0	8110736	421000	7689736
1	82.16	7997326	8074415	460000	15611741
2	167.63	16236211	8034729	500000	23770940
3	256.62	24721777	7991593	544000	32169370
4	349.34	33456145	7944660	589000	40811805
5	446.04	42444277	7893845	639000	49699122
6	546.99	51687087	7838716	693000	58832803
7	652.49	61186115	7778929	750000	68215044
8	762.90	70943646	7714224	811000	77846869
9	878.58	80960744	7644256	88605000	87731000
10	1000.00				

Example 2.8 Consider as in Example 2.7 a cohort l_{40} of lifes (40) having bought the endowment assurance for 10 years for sum $b=1000$. In Table 2.2 we present reserves collected if the net premium is paid

$$
\begin{aligned}
1000 P_{40: \overline{10}}=\frac{1000 A_{40: 10}}{\ddot{a}_{40: \overline{10}}} & =\frac{\sum_{h=0}^{9} 1000 v^{h+1} d_{40+h}+1000 v^{10} l_{40+10}}{\sum_{h=0}^{9} v^{h} l_{40+h}} \\
& =82.95521 .
\end{aligned}
$$

Exercises; on line lecture 2

1. Derive Thiele recurrence (2.10) from formula (2.16).
2. Analyse term insurance from Example 2.7, however terminated after 3 years. Show entries of Table 2.1 in this case.

2.4 An analysis of a real portfolio

Suppose that at the beginning of the k year there is still N_{k} active polices. We know this number, although in practice it differs from the theoretical one obtained from life tables. We make the following analysis for period $[k, k+1)$ of polices for lifes (x) bought k years ago. The insurer has at $k+1$ (formally just before $k+1$) reserve ${ }_{k+1} \mathcal{V}$ per head to be paid obligations for deaths from $[k, k+1)$. Let D_{k} denotes the number of deaths in $[k, k+1)$. It is a random variable. Knowing that at the beginning of the interval $[k, k+1)$ is N_{k}, we can expect the number of deaths $N_{k} q_{[x]+k}$. Thus the difference at the end of analysed year is

$$
N_{k} q_{[x]+k}-D_{k} .
$$

Since for one alive at k there is prepared reserve ${ }_{k+1} \mathcal{V}$, and b_{k+1} is the benefit paid at $k+1$ per head, then we have a difference

$$
b_{k+1}-{ }_{k+1} \mathcal{V}
$$

for one insured alive at k. This amount is called death strain at risk (DSAR). In the whole portfolio we have

$$
\begin{equation*}
I_{k+1}=\left(N_{k} q_{[x]+k}-D_{k}\right)\left(b_{k+1}-{ }_{k+1} \mathcal{V}\right) . \tag{2.19}
\end{equation*}
$$

The quantity I_{k+1} is said to be a mortality profit.

