
Chapter IV

One life, few decrements

1 We now consider the theory with one life but few risks. Another name is
the theory with multi decrements and we will stick to such a terminology. In
this theory we are allowed to distinguish more causes of death. For example
we can have: 1 – natural death, 2 – death from an accident. In this case
we have two decrements. We can add for example the third one like 3 –
disability. Another natural example with two decrements is 1 – natural death,
2 – withdrawal. In this chapter we consider only models for one life (x), for
which at an instant of death, there can happen one event from the list of
decrements. In the classical life insurance we have only two states or in other
words statuses “ALIVE” and “DEAD”. So we have the event at the moment
of death. Thus the moment of deaths is the moment of exit from status
“ALIVE”. One can say the exit happened due to specific decrement. Using
multistate diagrams we can illustrate our situation as on Figure IV.

1 Basic probabilistic notions

1.1 Time and cause of exit from status

We denote by Tx the future lifetime of (x) (other interpretations are also
possible, in general this is the exit time from the status), and by Jx the
number of decrement, which caused the exit. Notice that we allowed to have
m different decrements, which are numbered. Thus we have a vector (Tx, Jx),
where Tx ≥ 0, and Jx assumes values in {1, . . . ,m}. We suppose that there
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Figure 0.1: A general multiple decrement model.

exists a joint density function in the form fx(t, j) t ≥ 0, j = 1, . . . ,m. For
example the probability that the death time is in interval (a, b) and was
caused by decrement j is

Pr( a < Tx ≤ b, Jx = j ) =

∫ b

a

fx(t, j) dt.

Hence

Pr( Jx = j ) =

∫ ∞

0

fx(t, j) dt,

and the distribution function of Tx is

Pr(Tx ≤ t ) = Fx(t) =
m
∑

j=1

∫ t

0

fx(v, j) dv,
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and its density functions

fx(t) =
m
∑

j=1

fx(t, j).

In actuarial notations we write

• the probability of exit from the status for life (x) before time t:

tq
(τ)
x = Pr(Tx ≤ t),

• the probability of not exiting before t is

tp
(τ)
x = 1− tq

(τ)
x ,

• the probability of exit for life (x) before time t from the decrement
j

tq
(j)
x = Pr(Tx ≤ t, Jx = j),

• the conditional probability of the exit caused by decrement j of
life (x) before t + s under the condition that within time s was
in the status

tq
(τ)
[x]+s

= Pr(Tx ≤ s+ t |Tx > s) ,

tq
(j)
[x]+s

= Pr(Tx ≤ s+ t, Jx = j |Tx > s).

Notice that for multidecrement models we do not have tp
(j)
x (why?; see

Exercise 3.2).

We define force of decrement due to decrement j µ
(j)
x (t) as

•

µ(j)
x (t) =

fx(t, j)

Sx(t)
.

Heuristics behind this concept are as follows.

Compute

Pr(Tx ≤ t+ h, Jx = j|Tx > t) =

∫ t+h

t
fx(s, j) ds

Sx(t)
.
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Now if t is a continuity point of fx(t, j), then

∫ t+h

t
fx(s, j) ds

1− FX(t)
= µ(j)

x (t)h+ o(h).

On the other hand we define the total force of decrement

µ(τ)
x (t) =

fx(t)

1− Fx(t)
.

One can easily prove

µ(τ)
x (t) =

m
∑

j=1

µ(j)
x (t) , (1.1)

tp
(τ)
x = e−

∫ t

0 µ
(τ)
x (s) ds . (1.2)

d tq
(j)
x

dt
= fx(t, j) = tp

(τ)
x µ(j)

x (t) , (1.3)

tq
(j)
x =

∫ t

0
sp

(τ)
x µ(j)

x (s) ds . (1.4)

From these formulas we see that the knowledge of all forces of decrement
µ
(j)
x (t), j = 1, . . . ,m gives a full information about the distribution of (Tx, Jx)

and allows to determine all characteristics as tp
(τ)
x , and tq

(j)
x . We leave the

proof to the reader in exercise 3.3.

Example 1.1 Consider

µ(1)
x (t) = 0.01, µ(2)

x (t)(2) = 0.02 ,

for all t ≥ 0. To determine fx(t, j) we first compute

µ(τ)
x (t) = µx(t)

(1) + µ(2)
x (t) = 0.03,

and hence using (1.2)

tp
(τ)
x = e−0.03t.

Now (1.3) yields for t ≥ 0

fx(t, j) =

{

0.01 e−0.03t, for j = 1,
0.02 e−0.03t, for j = 2.

(1.5)
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We will say that hypothesis of homogeneous population (HHP(τ)) holds
for the multi decrement model, if if

Pr(Tx ≤ t, Jx = j ) = Pr(T0 − x ≤ t, J0 = j |T0 > x ),

for all j = 1, . . . ,m, x, t ≥ 0. Then the standard hyphotesis of homogeneous
population (HHP) holds because

Pr(Tx > t) = 1−
m
∑

j=1

Pr(Tx ≤ t, Jx = j)

= 1−
m
∑

j=1

Pr(T0 − x ≤ t, J0 = j|T0 > x)

= Pr(T0 − x > t|T0 > x).

Under HHP(τ) we have

µ(j)
x (t) = µ(j)

x (t) , (1.6)

tq
(j)
[x]+s

= tq
(j)
x+s . (1.7)

Curtate future lifetime is Kx = ⌊Tx⌋. In actuarial convention we write

• k|q
(j)
x = Pr(Kx = k, Jx = j) – probability of death from the risk j of

the life with complete number of years lived is k (k = 0, . . .) .

Suppose x is integer. We say that hypothesis of aggregation for model we few
risks (HA(τ)) holds if

Pr(Kx = k, Jx = j ) = Pr(K0 − x = k, J0 = j |K0 ≥ x ),

for k = 0, 1, . . ., j = 1, . . . ,m. Assumption HA(τ) for (Kx, Jx) yields HA for
Kx, that is

Pr(Kx = k) =
m
∑

j=1

Pr(Kx = k, Jx = j)

=
m
∑

j=1

Pr(K0 − x = k, J0 = j|K0 ≥ x)

= Pr(K0 − x = k|K0 ≥ x).

Under the hypothesis HA(τ) we can use the representation

Pr(Kx = k, Jx = j) = kp
(τ)
x q

(j)
x+k, (1.8)

kp
(τ)
x = p(τ)x p

(τ)
x+1 . . . p

(τ)
x+k−1 . (1.9)
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1.2 Interpolation hypotheses

Suppose x is integer. We say that the distribution of (Tx, Jx) fulfils hypothesis
of uniformity for multi-risk model (we write HU(j)) If HU(j) hold for all
j = 1, . . . ,m, then we write HUτ . if for n = 0, 1 . . .

n+uq
(j)
x = (1− u) nq

(j)
x + u n+1q

(j)
x , 0 ≤ u < 1 . (1.10)

In particular, for n = 0 we have the following interpolation formula

uq
(j)
x = u q(j)x 0 ≤ u < 1 . (1.11)

Formula (1.10) implies, summing with respect j = 1, . . . ,m,

n+uq
(τ)
x = (1− u) nq

(τ)
x + u n+1q

(τ)
x , 0 ≤ u < 1

which is hypothesis HU for Tx. We recommend the reader to prove the
following result.

Proposition 1.2 Under HUτ we have

µ
(j)
[x]+n+u

=
q
(j)
[x]+n

1− u q
(τ)
[x]+n

=
q
(j)
[x]+n

1− u+ u p
(τ)
[x]+n

. (1.12)

Similarly to hypothesis HCFM for distribution of Tx it is said that dis-
tribution of (Tx, Jx) fulfils hypothesis of constant exit rate from status j (we
write HCFM(j)), if

µ
(j)
[x]+n+u

= µ
(j)
[x]+n

, 0 ≤ u < 1,

for n = 0, 1, . . . and j = 1, . . . ,m.

If HCFM(j) for all j = 1, . . . , n, then we write HCFM(τ) Clearly HCFMτ

for (Tx, Jx) yields HCFM for Tx, and furthermore we have the following
relationship.

Proposition 1.3 If HCFM(τ) holds, then

uq
(j)
x =

µ
(j)
x

µ
(τ)
x

uq
(τ)
x 0 ≤ u < 1.
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Proof From the hypothesis we have µ[x]+u = µx for 0 ≤ u < 1. Next we
have for 0 ≤ u < 1

uq
(j)
x =

∫ u

0

fx(t, j) dt

=

∫ u

0
tp

(τ)
x µ

(j)
[x]+t

dt

= µ(j)
x

∫ u

0
tp

(τ)
x dt

=
µ
(j)
x

µ
(τ)
x

∫ u

0
tp

(τ)
x µ(τ)

x dt

=
µ
(j)
x

µ
(τ)
x

uq
(τ)
x .

1.3 Multiple decrement tables

By a multiple decrement table we call a sequence {(l
(τ)
n , d

(1)
n , . . . , d

(m)
n )}∞n=0,

in which the n-th element cosnsits of m + 1 natural numbers: l
(τ)
n i d

(j)
n ,

j = 1, . . . ,m. These numbers are: l
(τ)
0 is the cardinality of the cohort of

newborn lives, l
(τ)
n is the number of survived at exact age n, d

(i)
n repesents

the number of lives exiting from the cohort in period [n, n + 1). Clearly we

have
∑m

j=1 d
(j)
n = l

(τ)
n − l

(τ)
n+1 and dτn = lτx − lτx+1. In the section we assume the

hypothesis of aggregation HAτ . Hence formally probability of exiting from
the cohort in period [n, n+ k) due to decrement j:

kq
(j)
n =

∑n+k−1
l=n d

(j)
l

l
(τ)
n

n, k = 0, 1 . . . .

We can also use notation kd
(j)
n =

∑n+k−1
i=n d

(j)
i , and kd

(τ)
n =

∑m

j=1 kd
(j)
n . In

particular

d(j)n = l(τ)n q(j)n , .

In the book of Baszczyszyn and Rolski [?] there is attached an illustrative
table with two decrements: natural death (1) and accidental death (2).
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Remark Sometimes the force of decrement is called crude force of mortality.
In survival analysis there are used another notations than used in these notes.
Namely functions like qx are preceded by prefix a from all – at present of all
causes. In particular, for live (x)

• t(aq)x = tq
(τ)
x – probability of death within t years,

• t(aq)
(j)
x = tq

(j)
x – probability of death within t years due to decrement

j,

• (al)x = l
(τ)
x – the number of survived age x from the cohort of of (al)0

lives,

• t(ad)
(j)
x = td

(j)
x ,

• (aµ)[x]+t = − 1
(al)x

· d(al)x
dx

,

• (aµ)
(j)
[x]+t

= − 1
(al)x

· d(al)
(j)
x

dx
.

For the associated models we have

• qjx lub qjx – probability of death in year [x, x + 1) in the associated

model for decrement j (in these notes q
′(j)
x ),

• ljx lub ljx - the number of survived age x from the cohort of (al)0 live

in the associated model for decrement j (in these notes l
′(j)
x .

Exercises; on line lecture 3

1. Prove formulas (1.1), (1.2), (1.4), (1.3).

2 Model of competing risks

Vector (Tx, Jx) can be represented by the so called model of competing risks.
Remark however that this is not a unique representation, unless associated
decrementss are independent and from now on this will be assumed.

The starting point is distribution fx(t, j) in the model with few decre-
ments considered in Section 1.


