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Remark Sometimes the force of decrement is called crude force of mortality.
In survival analysis there are used another notations than used in these notes.
Namely functions like qx are preceded by prefix a from all – at present of all

causes. In particular, for live (x)

• t(aq)x = tq
(τ)
x – probability of death within t years,

• t(aq)
(j)
x = tq

(j)
x – probability of death within t years due to decrement

j,

• (al)x = l
(τ)
x – the number of survived age x from the cohort of of (al)0

lives,

• t(ad)
(j)
x = td

(j)
x ,

• (aµ)[x]+t = − 1
(al)x

· d(al)x
dx

,

• (aµ)
(j)
[x]+t

= − 1
(al)x

· d(al)
(j)
x

dx
.

For the associated models we have

• qjx lub qjx – probability of death in year [x, x + 1) in the associated

model for decrement j (in these notes q
′(j)
x ),

• ljx lub ljx - the number of survived age x from the cohort of (al)0 live

in the associated model for decrement j (in these notes l
′(j)
x .

Exercises; on line lecture 3

1. Prove formulas (1.1), (1.2), (1.4), (1.3).

2 Model of competing risks

Vector (Tx, Jx) can be represented by the so called model of competing risks.
Remark however that the presented molde is not a unique representation,
unless associated decrements are independent, which will be assumed in this
subsection.

Consider the joint density fx(t, j) of vector (Tx, Jx) for a live (x) and

force of decrements µ
(j)
x (t), (j = 1, . . . ,m). Define an associated model for
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decrement j. It is a single decrement model with with lifetime T
′(j)
x having

distribution given by

Pr(T
′(j)
x > t) = e−

∫ t

0 µ
(j)
x (t) ds t ≥ 0. (2.13)

For each separate decrement j, T
′(j) is defined by (2.13) and we assume

that T
′(j) (j = 1, . . . ,m) are independent. By j0 = minargj(aj) we denote

the index j0 in sequence (aj) such that aj0 ≤ aj for all j.

Define (Tx, Jx) by

Tx = min
j=1,...,m

T
′(j)
x , (2.14)

Jx = minarg
j=1,...,m

T
′(j)
x . (2.15)

We will show that if T
′(j)
x are defined as in (2.13) and T

′(1)
x , . . . , T

′(m)
x are

independent, then (Tx, Jx) has the joint density fx(t, j). Such the represen-
tation of (Tx, Jx) is said to be given by competing risks.

Remark It turns out that without the assumption on the independence of

T
′(j)
x ’s, it is also possible to find joint distribution of T

′(1)
x , . . . , T

′(m)
x such that

the joint density of (Tx, Jx) defined by (2.14) and (2.15) is fx(t, j). However
we do not pursue this way further on.

Distribution of T
′(j)
x and its survival function have traditional actuarial

notation:

tp
′(j)
x = Pr(T

′(j)
x > t) = 1− tq

′(j)
x .

Notice that tp
′(j)
x need not converge to zero for t → ∞, which means T

′(j)
x

may assume∞ with a positive probability (please give an example). Quantity

tq
′(j)
x is calle sometimes 2 independent rate of decrement due to cause j (or

net probability of exit from the status caused by decrement j).

To show that (Tx, Jx) defined by (2.14) and (2.15) has density fx(t, j) we
need the following lemma.

2absolutnym wskanikiem wychodzenia ze statusu z przyczyny (ryzyka) j lub te praw-
dopodobiestwem netto wyjcia ze statusu z przyczyny (ryzyka) j.
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Lemma 2.1 Let (Tx, Jx) be defined with help (2.14)–(2.15). Then

Pr(Tx ≤ t, Jx = j) =

∫ t

0

f
′(j)
x (s)

∏

ℓ 6=j

sp
′(ℓ)
x ds,

where f
′(j)
x (t) = − d

dt tp
′(j)
x is the density function of T

′(j).

The proof will be demonstrated for case m = 2, 3 later on.

Proposition 2.2 Random vector (Tx, Jx) defined by (2.14)–(2.15) has joint

density function fx(t, j)) =
d
dt
Pr(Tx ≤ t, Jx = j)

Proof From Lemma 2.1 and (2.13) we have

Pr(Tx ≤ t, Jx = j) =

∫ t

0

µ
(j)
[x]+s

e
−

∫ s

0 µ
(j)
[x]+v

dv
e
−

∫ s

0

∑
ℓ 6=j µ

(ℓ)
[x]+v

dv ds

=

∫ t

0

µ(j)
x (s) sp

(τ)
x ds .

Now using (1.3) we see that the joint density

d

dt
Pr(Tx ≤ t, Jx = j)

is fx(t, j).

From the above facts we see that variables T
(j)
x (j = 1, . . . , n) compete.

The winning determines the exit time from the status and the decrement.
We have the following simple property.

Proposition 2.3

tp
(τ)
x =

m
∏

j=1

tp
′(j)
x , (2.16)

tq
′(j)
x ≥ tq

(j)
x . (2.17)

Proof We prove only (2.17) leaving (2.16) to the reader. Thus

tp
′(j)
x ≥ tp

(τ)
x , t ≥ 0
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and hence

tq
′(j)
x =

∫ t

0
sp

′(j)
x µ

(j)
[x]+s

ds ≥

∫ t

0
sp

(τ)
x µ

(j)
[x]+s

ds = tq
(j)
x .

For associated model for decrement j we can formulate hypothesis HHP
and HA, and they are denoted by HHP

′(j) i HA
′(j) and if they are true for

all j = 1, . . . , n, then we write HHP
′

i HA
′

respectively. Similarly we can
define interpolation hypothesis HU

′(j) and HCFM
′(j) and if they are true for

all j = 1, . . . ,m, then we write HU
′

and HCFM
′

respectively.

2.1 Case m = 2, 3.

Consider now the case with two and three risks, for which we derive useful
formulas. To avoid working with non-proper distribtutions we assume that

∫ ∞

0

µ(j)
x (s) ds = ∞, j = 1, . . . ,m, (2.18)

holds.
For m = 2, suppose that we have two independent associated models:

T
′(j)
x is associated future lifetime with intensity µx(t)

(j), (j = 1, 2). We
postulate that our exit time from the status “alive” is

Tx = min(T
′(1)
x , T

′(2)
x ), (2.19)

Jx =

{

1 jeli T
′(1)
x < T

′(2)
x ,

2 jeli T
′(2)
x ≤ T

′(1)
x .

(2.20)

Hence we have tp
′(j)
x = exp(−

∫ t

0
µx(s)

(j) ds) dla j = 1, 2.
In the sequel we will need a special case of Lemma 2.1. If independent

random variables X and Y have density function fX(t) and survival function
SY respectively, then by the total probability formula

Pr(X ≤ t,X < Y ) =

∫ ∞

0

Pr(X ≤ t,X < Y |X = x) fX(x)dx

=

∫ t

0

Pr(t < Y |X = x) fX(x)dx

=

∫ t

0

(SY (x)) fX(x)dx .
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Using the assumption of independence

tq
(1)
x = Pr(T

′(1)
x ≤ t, T

′(1)
x < T

′(2)
x )

=

∫ t

0
sp

′(1)
x µ(1)

x (s) sp
′(2)
x ds , (2.21)

tq
(2)
x = Pr(T

′(2)
x ≤ t, T

′(2)
x ≤ T

′(1)
x )

=

∫ t

0
sp

′(2)
x µ(2)

x (s) sp
′(1)
x ds , (2.22)

and from the inclusion-exclusion formula (i.e. formulas (VI.2.7) with m = 2)

tq
(τ)
x = Pr(T

′(1)
x ≤ t or T

′(2)
x ≤ t)

= tq
′(1)
x + tq

′(2)
x − tq

′(1)
x tq

′(2)
x . (2.23)

We now suppose that HU
′(τ) holds, ie.., for j = 1, 2 we have HU

′(j)

n+uq
′(j)
x = (1− u) nq

′(j)
x + u n+1q

′(j)
x , 0 ≤ u < 1 . (2.24)

In the proof of the following proposition we will use, assuming HU, that

tpxµx(t) = px

and that

tqx = tqx

applied to the associated model. For the proof see table in Chapter 1, in
which we have µx(t) =

qx
1−tqx

.

Proposition 2.4 Assuming HU
′(τ)

q(1)x = q
′(1)
x (1−

1

2
q
′(2)
x ), (2.25)

q(2)x = q
′(2)
x (1−

1

2
q
′(1)
x ) . (2.26)

Proof Recall that because of HU
′(τ), we have for j = 1, 2 and 0 ≤ t < 1

tp
′(j)
x µ(j)

x (t) = p
′(j)
x .
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and

tq
′(j)
x = t q

′(j)
x .

Now

q(1)x =

∫ 1

0
sp

′(1)
x µ(1)

x (s) sp
′(2)
x ds

=

∫ 1

0
sp

′(1)
x µ(1)

x (s)(1− sq
′(2)
x ) ds

=

∫ 1

0

q
′(1)
x (1− s q

′(2)
x )ds

= q
′(1)
x (1−

1

2
q
′(2)
x ).

Similarly we show the second equation.

For m = 3 we can make an analogous reasoning with

Tx = min(T
′(1)
x , T

′(2)
x , T

′(3)
x ),

and

Jx =



















1 jeli T
′(1)
x < min(T

′(2)
x , T

′(3)
x )

2 jeli T
′(2)
x ≤ min(T

′(1)
x , T

′(3)
x )

3 jeli T
′(3)
x ≤ min(T

′(1)
x , T

′(2)
x ),

where T
(′1)
x , T

′(2)
x i T

′(3)
x are independent random variables, with mortality

rates µ
(1)
x (t), µ

(2)
x (t), µ

(3)
x (t), respectively. Remark that in view of the continu-

ity of distributions of T
′(1)
x , T

′(2)
x , T

′(3)
x in definition Jx we do not have to worry

what is going on when T
′(i)
x = T

′(j)
x . We will need a formula corresponding

to (2.21): since

Pr(s < min(T
′(2)
x , T

′(3)
x )) = sp

′(2)
x sp

′(3)
x

we have

tq
(1)
x = Pr(T

′(1)
x ≤ t, T

′(1)
x < min(T

′(2)
x , T

′(3)
x ))

=

∫ t

0
sp

′(1)
x µ(1)

x (s) sp
′(2)
x sp

′(3)
x ds . (2.27)
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Proposition 2.5 Under hypothesis HU
′(τ)

q(1)x = q
′(1)
x (1−

1

2
( q

′(2)
x + q

′(3)
x ) +

1

3
q
′(2)
x q

′(3)
x ) . (2.28)

q(2)x = q
′(2)
x (1−

1

2
( q

′(1)
x + q

′(3)
x ) +

1

3
q
′(1)
x q

′(3)
x ) (2.29)

q(3)x = q
′(3)
x (1−

1

2
( q

′(1)
x + q

′(2)
x ) +

1

3
q
′(1)
x q

′(2)
x ) . (2.30)

Proof Using formula (2.27) we have

q(1)x =

∫ t

0
sp

′(1)
x µ(1)

x (s) sp
′(2)
x sp

′(3)
x ds

=

∫ 1

0

q
′(1)
x (1− s q

′(2)
x )(1− s q

′(3)
x ) ds

= q
′(1)
x (1−

1

2
( q

′(2)
x ).+ q

′(3)
x ) +

1

3
q
′(2)
x q

′(3)
x ) .

Analogously we show the second and third equation.

Remark One can solve system of equations (2.25),(2.28) lub (2.28)–(2.30)

and get probabilities q
′(j)
x . Similarly for higher m’s. However this could

be more interest in medical statisctics than in actuarila applications. For
instance, one considers a hypothetical population with respect de one specific
disease. In 1875 William Farr asked: what could be an effect on the expected
life length if one could eliminate this specific disease. In our setting this would
be We caan eliminatiion of one risk. However in calculations of assurances
we need simple all probabilities q

(j)
x .

We now demonstrate the application of the theory to construct multi-
decrement life tables.

Example 2.6 We will construct a two decremental life table with two decre-
ments: natural death (1) and accidental death (2). We suppose that due
to decrement (1) the cohort dies out according to TTZ-PL97m. A fragment

is attached in Table 2.1 i µ
(2)
20+t = 0.009, dla 0 ≤ t ≤ 10. This means that

q
′(2)
x = 1 − e−0.009 = 0.0089596. Next we calculate q

(j)
x using equations

(2.25),(2.26). We propose the reader to complete table 2.1.
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Table 2.1: Fragment of two decrement table.

x q
′(1)
x q

′(2)
x q

(1)
x q

(2)
x l

(τ)
x d

(1)
x d

(2)
x

20 0.00136 0.0089596 0.0013539 0.0089535 10000 13.539 89.535

21 0.00136 0.0089596 9896.9

22 0.00136 0.0089596

23 0.00134 0.0089596

24 0.00138 0.0089596

25 0.00144 0.0089596

Example 2.7 Suppose we consider a population of women in a workplace
of age in age interval [50,60). There are possible four causes of exiting: (1)
- death, (2) - volontary dismissal, (3) - retirement. We will not take under
account the fourth (4) - firing. For decrement (1) we assume mortality like
in TTZ-PL97k, due to decrement (2) the exits are with constant intensity
µ(2) = 0.03. On the other side the retiremment scheme is as follows. At age
55 there exit 20%, and furthermore µ

(3)
55.5 = 0.08, µ

(3)
56.5 = 0.07, µ

(3)
57.5 = 0.03,

µ
(3)
58.5 = 0.02 µ

(3)
59.5 = 0.01. At x = 60 all the left workers retire. Suppose that

in this work place there are 1000 employees; that is suppose that l50 = 1000.

We first calculate probabilites for associated models. Assuming the hy-

pothesis HCFM(3), for x = 55, . . . , 60 we have d
′(1)
x = l

′(τ)
50 qx where qx is

from Table TTZ-PL97k, d
′(2)
x = l

′(τ)
x (1 − exp(−0.03)) oraz d

′(3)
x = l

′(τ)
x (1 −

exp(−µx+0.5)). Hence we compute probabilities q
′(j)
x . We next calculate

q
(j)
x from formulas (2.28)–(2.30) and sequentially q

(j)
55 , l

(τ)
56 , itd. Then for

x = 50, . . . , 54 we have q
′(1)
x = qx where qx is from Table TTZ-PL97k,

q
′(2)
x = (1 − exp(−0.03)) and q

′(3)
x = e−µx+0.5 . We are now ready to work

out q
(j)
x for ages x = 50, . . . , 54 from formulas (2.25),(2.26) and next se-

quentially d
(j)
x = l

(τ)
x q

(j)
x . That is we compute d

(1)
50 and d

(2)
50 z d(j) = l

(τ)
50 q

(j)
50 ,

from which we work out lτ51 = l
(τ)
50 − d

(1)
50 − d

(2)
50 , etc. This gives l

(τ)
55− =

l50−
∑4

l=0(d
(1)
x+l+d

(2)
x+l+d

(3)
x+l). Notices that due to our specifications function

l
(τ)
x is discontinuous at x = 55 because at the beginning of year 55, 20% of
women retires ; l

(τ)
55 = 0.8l

(τ)
55−.

Exercise to e-wyklad4
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1. In the following fragment of the decremental table for both sexes TSZ-
PL99 for x = 50, . . . , 54 fill in the missing columns.

x l
(τ)
x d

(1)
x d

(2)
x q

(1)
x q

(2)
x q

(τ)
x

50 91708 661 85
51 90961 656 85
52 90221 650 84
53 89487 645 83
54 88759 640 83
55 88037 991 80

Use this table to compute kp
(τ)
50 , for k = 2, 3, 4, 2q

(1)
52 , 2|q

(1)
52 . What is lτ56?

2. Complete table 2.1 from Example 2.6.

3. (*) Consider a life in interval [x, x + 1) with possible exits for status
alive by two modes: normal death (decrement 1) and accidental death
exactly at time x+k with probability ν

′(2), where 0 < k < 1 (decrement

2). Write the formula for q
(j)
x for j = 1, 2. Warning. The theory

developed in this chapter cannot be used becasue the second decrement
is not absolute continuous.

4. (**; Scott, page 259). Military personel attend a training camp for an
intensive course which involve three weeks of continual exercises. Each
soldier can be eliminated from the camp because of injury or “failed”
by one of the instructors and sent back to his base. For the associated
model the weakly rates of decrement are given:

week hospitalized failed
1 0.078 0.132
2 0.102 0.092
3 0.058 0.043

Of group of 1000 soldiers who start the course, calculate the number
who will successfully complete the course, the number who will be
hospitalized and the number who will be failed. Assume the uniform
distribution over each week of hospitalization and failure. Anyone sent
to hospital or failde leaves the camp immedialelly and does not return.
There are no other modes of decrement. Hint. Consider “age” as time
(in weeks) since entry the camp. The final result should be 588.


