
Chapter V

Multi-state insurances

Up to now we dealt with one state which was called a status–alive), from
which we passed to some states, called status–death caused by a “decre-
ment”. Thus at the exit of the status, the insurance ended and the payout
dependent on the state defined by the risk. In many cases, situation can be
more complicated. We now give few examples, the first one deals with cases
considered in former chapters. Suppose we consider a life aged of (x) and at
time t his/her state of life is Jx(t) = J (t), where J (t) evolves among states.

Example 0.1 Consider the case with one life and one risk. Let T = Tx

be the future lifetime. We have two states “ALIVE”- 1 and ”DEAD”- 0.
Sometimes we will abbreviate “ALIVE” by A and “DEAD” by D. Then

Jx(t) =

{

ALIVE−−1 if Tx ≤ t,
DEAD−−0 if Tx > t.

(0.1)

This model we call “ALIVE–DEAD”, in short AD. Similarly when K = Kx

is curtate future lifetime of life aged (x), we define a discrete time process

J[x]+k =

{

0 if Kx < k,
1 if Kx ≥ k ,

(0.2)

k = 1, . . .. We have to fix J[x]+0 = 1 since at the beginning (x) is alive.
If (x) dies in the first year of the policy, then J[x]+1 = 0. 1 Consider now
one life and few decrements. That is we have (Tx, Jx) as it was in Chapter

1W tym przykadzie Eabs = {0}, Etra = {1}. Na przykad ubezpieczenia/renty rozpatry-
wane w rozdziaach od 2 do 3 s zwizane z przejciem procesu J (t) ze stanu 1 do stanu 0 lub
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IV defined by mortality rates µ(j)(t) (j = 1, . . . , k). Then we introduce the
process Jx(t) przyjmujcy wartoci 01, ..., 0k,1 gdzie

Jx(t) =























ALIVE− 1 if Tx > t
D1 − 01 if Tx ≤ t, Jx = 1
D2 − 02 if Tx ≤ t, Jx = 2

. . . . . .
Dk − 0k if Tx ≤ t, Jx = m

(0.3)

2

We can make the following classification of states: absorbing ones (thatis
if the process enters an absorbing state, then it stays in this state for ever) and
the set of such the states we denote by Eabs, and transient denoted by Etra. In
examples above states D andD1, . . . , Dk are absorbing and A is transient. For
mathematical convenience we number states by 01, . . . , 0k, 1, . . . , l. Unless
otherwise stated, state 0 is the only absorbing one. The space of states we
denote by E = Eabs ∪ Etra.

In multistate insurances we can have payout dependent on being in a
state in a form of an annuity, and by transition between states in form of
lump payment. As usual time t runs over [0, n]. We notice that J (t) is a
stochastic process, correspondingly Jk a sequence of random variables. From
now on we are supposing that realizations of J (t) are piecewise constant with
finite number of jumps in [0, n] and at jump moment right continuous with
lefthand limits.

Example 0.2 We now consider models with three states. We have two vari-
ants: “HEALTHY”, “DISABLED” and “DEAD” in the permanent disability
model or “HEALTHY”, “SICK” and “DEAD” in the disability income insur-
ance model. In the first case a policy provides some of the following benefits:
an annuity while disabled, a lump sum on becoming permanently disabled, a
lump sum on death, and premium paid in a form of an annuity while healthy.

od stanu 1 do 01, . . . , 0k. Natomiast co si dzieje dalej w wczeniejszych rozdziaach ju nas
nie interesowao. Ten model bdziemy nazywa ycie – mier. Jednake istniej polisy, z ktrych
wypaca si wiadczenia po mierci ubezpieczonego; patrz zadanie 7.3 gdzie rozpatruje si tzw.
ubezpieczenie zaopatrzenia rodzinnego [family income insurance].

2Eabs = {01, ...0k}.
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Transitions in such the model are depicted in Figure 0.2. We leave to
the reader to describe possible benefits for the disability income insurance
model.3

HEALTHY – 2 DISABLED – 1 DEAD – 0

µ20

µ21 µ10

✲ ✲

❄

Figure 0.1: The permanent disability insurance.

In the next diagram on Figure 0.2 we allow transition back from “SICK”
to “HEALTHY”.

HEALTHY – 2 SICK – 1 DEAD – 0
✲

✛
✲

❄

Figure 0.2: The disability income insurance model

In the next example we come back to the so called reversionary annuity.
This is a good example to illustrate multi-state insurances, and details will
be given in the next chapter.

Example 0.3 Consider the insurance from Example IV.4.3. In the present
setting we do not assume the independence between lifes (x) and (y). We
distinguish four states “HUSBAND ALIVE & WIFE ALIVE” (**), “HUS-
BANDALIVE &WIFE DEAD”– (∗, †) “HUSBANDDEAD&WIFE ALIVE”
– (†, ∗) and “HUSBAND DEAD & WIFE DEAD” – (∗, ∗).

Furtheron we will use the following nomenclature¿ For HEALTHY we will
use ACTIVE – A, for DISABLED we will write INVALID – I, and DEAD –
D. Therefore we call our models AID; we have AID with recovery or without
recovery.

3Convenient abbreviations: Healthy – Active – *, Disabled – Invalid – ♦, Dead - †
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1 Markovian evolution of life

It turns out that a natural mathematical tool to model an evolution of states
are Markov processes. Since this is a general theory we skip x in notation
of the sequence or process. Thus in discrete case, Jj (j = 0, 1, . . .) is a non-
homegenous Markov chain with finite state space (DTMC), and for J (t) we
use a nonhomogenous continuous time Markov chains (CTMC). These pro-
cesses characterize an important memoryless property. In general it means
that the conditional distribution of future evolution Ft< after time t, de-
pends only on the present state (F=t), and not on a sequence of events that
preceded it (F<t). That is

Pr(Ft<|F=t ∨ F<t).

For DTMCs the above will be precisely stated in Proposition 1.2.

1.1 States evolves as a Markov chain

To begin with we recall a notion of a homogeneous Markov chain with state
space E = {0, 1, . . . ,m}. The basic notion is a stochastic matrix , which is a
matrix P = (P ij)mi,j=0, with nonegative elements, such that

∑m

j=0 P
ij = 1 for

all i ∈ E . We will use for convenience a matrix notations. If applied to a life
(x) with many states, we can use notation Px = (P ij

x )mi,j=0. Thus we denote
(i, j)-th element by (P)ij = P ij.

It is said that a sequence of E-valued random variables Xk, k = 0, 1, . . . is
a nonhomogeneous Markov chain defined by a family of transition matrices
P(k) = (P ij(k))∞ij=0, k = 0, 1, . . ., if for k = 1, 2, . . ., and jl ∈ E

Pr(J1 = j1, . . . ,Jk = jk|J0 = j0) = P j0j1(0)P j1j2(1) . . . P jk−1jk(k− 1). (1.4)

Remark In the case when P(0) = P(1) = . . ., we have a homogeneous
DTMC. This is a frequently considered case, however in the presented theory
is useless.

We make the following convention about order of indices of transition matri-
ces:

Without proofs we state two elementary facts:
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Proposition 1.1

Pr(Jk = j|J0 = i) =
∑

j1,...,jk−1∈E

P ij1(0) . . . P jk−1j(k − 1)

= (P(0)P(1) . . .P(k − 1))ij.

Proposition 1.2 A sequence of random variables is a DTMC defined by a
family of stochastic matrices P(k), k = 0, 1, . . . if and only if for all i, j, ik ∈ E
and k = 1, 2, . . .

Pr(Jk = j|J0 = j0,J1 = j1, . . . ,Jk−1 = i)

= Pr(Jk = j|Jk−1 = i) = P ij(k − 1). (1.5)

provided
Pr(J0 = j0,J1 = j1, . . . ,Jk−1 = i) > 0 . (1.6)

For k < k′ we define

P(k, k′) = P(k)P(k + 1) . . .P(k′ − 1).

Notice that Pr(Jk′ = j|Jk = i) = (P(k)P(k + 1) . . .P(k′ − 1))ij.

In the continuous time there is a corresponding notion to P(k, k′), which
plays the role in definitions.

Example 1.3 We show that sequence of random variables J[x]+k, k =
0, 1, . . . defined by (0.2) in Example 0.1 is a DTMC and explain the role of
hypothesis HA. Notice that only sequences j0, . . . , jk−2, i which are nonin-
creasing are of interest, because otherwise the condition (1.6) is not fulfilled.
Thus, in the case i = 1

P 11
x (k − 1) = Pr(J[x]+k = 1|Jx = 1, . . . ,J[x]+k−1 = 1)

= Pr(J[x]+k = 1|J[x]+k−1 = 1) = p[x]+k−1 ,

and

P 10
x (k − 1) = Pr(J[x]+k = 0|Jx(0) = 1, . . . ,J[x]+k−1 = 1)

= Pr(J[x]+k = 0|J[x]+k−1 = 1) = q[x]+k−1 .
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In case when i = 0

P 01
x (k − 1) = Pr(Jx(k) = 1|Jx(0) = 1, . . . ,Jx(k − 1) = 0)

= Pr(J[x]+k = 1|J[x]+k−1 = 0) = 0

and

P 00
x (k − 1) = Pr(J[x]+k = 0|Jx = 1, . . . ,J[x]+k−1 = 1)

= Pr(J[x]+k = 1|J[x]+k−1 = 0) = 1.

Hence we have

P(k − 1) =

(

1 0
q[x]+k−1 p[x]+k−1

)

.

Notice that if HA holds, then Px(k) = P(x+ k), where P(0) = P0(0).

2 Continuous time Markov chains

2.1 Definition and basic properties

We say that J (t), t ≥ 0 is a CTMC with state space E , if for any sequence
of instances 0 = t0 < t1 < . . ., sequence of random variables Xk = J (tk),
k = 0, 1, . . . is a DTMC. We often consider CTMC’s with time parameter
0 ≤ t ≤ n and in the definition above we must write then 0 ≤ t0 < t1 <
. . . ≤ n.

Consider a family of stochastic matrices P(t, t′) = (P ij(t, t′))i,j∈E ,
where 0 ≤ t ≤ t′, fulfilling

• P(t, t) = I for all t ≥ 0,

• for all 0 ≤ t ≤ s ≤ t′,

P(t, t′) = P(t, s)P(s, t′) . (2.7)

Such the family of matrices P(t, t′), 0 ≤ t ≤ t′ is said to be transition
matrix function and (2.7) is called the Chapman–Kolmogorov equation.
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Remark If P(0, y) = P(t, t + y), for all t, y ≥ 0, then the DTMC is called
homogeneous. These are unrealistic chains for life insurance and therefore
from now on by DTMC we mean a nonhomogeneous one.

Proposition 2.1 Stochastic process J (t), t ≥ 0 is a CTMC if and
only if there exists a transition matrix function P(t, t′), 0 ≤ t ≤ t′ such
that

Pr(J (t1) = i1, . . . ,J (tk) = ik|J (t0) = i0)

= P i0i1(t0, t1)P
i1i2(t1, t2) . . . P

ik−1ik(tk−1, tk) , (2.8)

for k = 0, 1, . . . , i0, i1, . . . , ik ∈ E , 0 ≤ t0 ≤ . . . ≤ tk.

We leave to the reader to prove this proposition. An equivalent form,
which gives also an idea what is a Markov property, that is the lack of the
memory of the past is stated in the following proposition. More precisely a
process is a CTMC, if for any t > 0, its evolution after time t conditioned
on the evolution prior t, depends only on the state of the process at t. A
mathematical formulation of this sentence is left as Exercise 7.1.

In the following example we analyse process Jx(t) defined in the model
ALIVE–DEAD for life (x). We will need here and later the following defi-
nition. It is said that a function f : [0, n] → R fulfills condtion piecewise-
continuous (abbreviated as PC), if for each n′ < n, function f is continuous
in [0, n′] apart from a finite number of point, and bounded. It can converges
to infinity only at the end of the interval at n (finite or infinite).

Example 2.2 Suppose T = T0 is the future lifetime of a new born person
and define J (t) as in (0.1) of Example 0.1. Assume the the hypothesis HHP

is valid, that is µx(t) = µ(x + t), and that Pr(T > t) = exp
(

−
∫ t

0
µ(s) ds

)

.

We show that J (t) is a CTMC. Namely for k ≥ 1, i0, i1, . . . , in ∈ {0, 1} i
t0 < t1 < . . . < tk,

Pr(J (tk) = ik | J (tk−1) = ik−1, . . . ,J (t1) = i1,J (t0) = i0)

= Pr(J (tk) = ik | J (tk−1) = ik−1) , (2.9)

provided Pr(J (tn−1) = in−1, . . . ,J (t1) = i1,J (t0) = i0) > 0 (this means
that j0, j‘, . . . is a nonincreasing sequence of ones and zeros). Next

Pr(J (tn) = in | J (tn−1) = in−1) =

{

tk−tk−1
ptk−1

ik = 1

tk−tk−1
qtk−1

ik = 0
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Hence

P(t, t′) =

(

1 0

t′−tqt t′−tpt

)

.

Consider now

t′−tqt = PAD(t, t′) = Pr(T0 ≤ t′ | T0 > t) (2.10)

= 1− exp
(

−

∫ t′

t

µ(s) ds
)

. (2.11)

for t ≤ t′. Hence

t′−tqt =

∫ t′

t

µ(s) ds+ o(

∫ t′

t

µ(s) ds).

Suppose now that the mortality rate µ(t) fulfills condition PC. (we do not
exclud infinity at the end of [0, n]). Let 0 < t < n be such that µ(t−) =
µ(t+). Then, for t′ ↓ t

∫ t′

t

µ(s) ds = µ(t+) + o(t′ − t)

and for t′ ↑ t
∫ t

t′
µ(s) ds = µ(t−) + o(t− t′).

Similarly we can demonstrate PDD(t, t′) = PDA(t, t′) = 0. Hence

lim
t′↓

P(t, t′)− I

t′ − t
= µ(t) =

(

0 0
µ(t) −µ(t)

)

,

for all t being a continuity point of µ(t). For other points we simply set µ = 0.
Notice the row corresponding to absorbing state 0 has all zero entries.

In this example we see, that if the distribution F of T has atoms, then
we have problems with definition of intensity matrix µ.
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We now introduce conditions when the transition matrix function ex-
ists:

[Z1] Function P(t, t′) is continuous in t′ for all t and is continuous in
t for all t′, ie. limt′↓0 P(0, t′) = I and

lim
t′↓t

P(t, t′) = lim
t′↑t

P(t′, t) = I . (2.12)

[Z2] Outside a finite set N ⊂ [0, n], there exists

µ(t) = lim
t′↓t

P(t, t′)− I

t′ − t
= lim

t′↑t

P(t′, t)− I

t− t′
, t /∈ N . (2.13)

For completeness, we define at points t ∈ N values of µ(t) such
that µij are right continuous with lefthand limits.

[Z3] Entries of µ(t) fulfill condition PC.

Proposition 2.3 For i 6= j, µij(t) ≥ 0, µii(t) ≤ 0 and for i ∈ E oraz t ≥ 0,

∑

j∈E

µij(t) = 0 (2.14)

for all t. Moreover, if i ∈ Eabs is absorbing, then µij(t) = 0, j ∈ E.

Next we set

µi(t) =
∑

j 6=i

µij(t).

Sometimes the following convention for the numeration seems to be con-
venient and will be used in the text:

µ(t) =











−µ0(t) µ0 1(t) . . . µ0m(t)
µ1 0(t) −µ1(t) . . . µ1m(t)

...
... . . .

...
µm0(t) µm 1(t) . . . −µm(t)
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Notice that in the language of Markov chain J (t) we have Pr(J (t+h) 6=
i|J (t) = i) = hµi(t) + o(h), provided t 6= N . Similarly fori 6= j we have
Pr(J (t+ h) = j|J (t) = i) = hµij(t) + o(h).

Matrix function µ(t), t ≥ 0 is said to be an transition intensities matrix
of CTMC J (t). Hypothesis HHJ means µx(t) = µ(x+ t).

4

Example 2.4 Makeham intensity matrix has entries for i 6= j µij(t) =
Aij +Bij(cij)t, where we postulate Bij ≥ 0, Aij ≥ −Bij i cij > 1.

Example 2.5 Consider process Jx(t) defined by 0.3,which describes state
of life (x) in the multi-decrement model. Notice that here we have absorbing
states D1, . . . ,Dm and one transiton state A. Notations and defintions of
(Tx, Jx) are from Chapter IV and we assume that hypothesis HHP-D holds.
Under some assumption on piecewise continuity of fx(t, j) we can show











µD1A
x (t) µD1D1

x (t) . . . µD1Dm

x (t)
...

...
...

...
µDmA
x (t) µDmD1

x (t) . . . µDmDm

x (t)
µAA(t) µAD1

x (t) . . . µADm

x (t)











=











0 0 . . . 0
...

...
...

...
0 0 . . . 0

−µ
(τ)
x (t) µ

(1)
x (t) . . . µ

(m)
x (t)











. (2.15)

Theorem 2.6 Let N be the discontinuity set of µ(t). For t 6= N there
exist partial derivatives ∂/(∂t)Pij(t, t′) and for t′ 6= N there exist partial
derivatives ∂/(∂t′)P(t, t′). Matrix function P(t, t′) 0 ≤ t ≤ t′ ≤ n fulfills:

4Zaoenia [Z.i] pozwalaj na udowodnienie w teorii procesow stochastycznych, ze realiza-
cje sa kawakami sta le, prawostronnie cige i z lewostronnymi granicami. do tego wrcimy w
podrozdziale 2.2
(A.ii) dla i 6= j

sup
a≤t≤b,h>0

P ij(t, t + h)

h
< ∞.
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[retrospective Kolmogorov differentional equation]

∂

∂t
P(t, t′) = −µ(t)P(t, t′) (2.16)

[prospective Kolmogorov differentional equation]

∂

∂t′
P(t, t′) = P(t, t′)µ(t′) (2.17)

and the boundary condition is P(t, t) = I for t ≥ 0.

Proof Suppose t ≤ t+ h ≤ t′

1

h
(P(t+ h, t′)−P(t, t′)

=
1

h
P(t+ h, t′)−P(t, t+ h)P(t+ h, t′)

=
1

h
(I−P(t, t+ h))P(t+ h, t′).

Corollary 2.7 Suppose that i is a state such that µij(t) = 0 for all
j 6= i. We have

P ii(t, t′) = exp(−

∫ t′

t

µi(s) ds).

Proof In this case from the retrospective Kolmogorov equation (2.36) we
obtain

∂

∂t
P ii(t, t′) = −µi(t)P ii(t, t′).

The proof is completed when solving this differential equation with initial
condition P ii(t, t) = 1.

Example 2.8 For the model AD with mortality rate set µAD(t) = µ(t).
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The prospective Kolmogorov equation are

∂

∂t′
PAA(t, t′) = −PAA(t, t′)µ(t) (2.18)

∂

∂t′
PAD(t, t′) = PAA(t, t′)µ(t) (2.19)

∂

∂t′
PDA(t, t′) = −PDA(t, t′)µ(t) (2.20)

∂

∂t′
PDD(t, t′) = PDA(t, t′)µ(t′) . (2.21)

and the boundary conditions are

PAA(t, t) = 1 (2.22)

PAD(t, t) = 0 (2.23)

PDA(t, t) = 0 (2.24)

PDD(t, t) = 1. (2.25)

Solving the first equation we have

PAA(t, t′) = e−
∫
t
′

t
µ(s) ds.

Solving next the third equuation we have PDA(t, t′) = 0. Hence from the
fourth we have PDD(t, t′) = 1. We leave the reader to demonstrate that

PAD(t, t′) = 1− e−
∫
t
′

t
µ(s) ds.

Integrating out from t to t′ (2.36) and (2.37) respectively, we can prove:

Theorem 2.9 We have

P(t, t′) = I+

∫ t′

t

µ(s)P(s, t′) ds (2.26)

and

P(t, t′) = I+

∫ t′

t

P(t, s)µ(s) ds . (2.27)

for all 0 ≤ t < t′.

One can show that there exists only one transition matrix function P(t, t′)
solving (2.26) and (2.27) respectively.
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Theorem 2.10 For 0 ≤ t ≤ t′,

P(t, t′) = I+
∞
∑

n=1

∫ t′

t

∫ t′

s1

. . .

∫ t′

sn−1

µ(s1) . . .µ(sn) dsn . . . ds1 (2.28)

or

P(t, t′) = I+
∞
∑

n=1

∫ t′

t

∫ s1

t

. . .

∫ sn−1

t

µ(sn) . . .µ(s1) dsn . . . ds1 . (2.29)

Proof Equations (2.28), and (2.29) are classical Volterra integral equations
of type

x(t) = I+

∫ t′

t

x(s)A(s) ds (2.30)

and

x(t) = I+

∫ t′

t

A(s)x(s) ds. (2.31)

If we assume that A(s) are matrix function, such that
∫ t′

t
||A(s)|| ds < ∞,

then equations 2.30 and 2.31 are solved by the so called Pickard’s sum

x(t) = I+
∞
∑

j=1

Ij(x),

where

In(x) =

∫ t′

t

∫ t′

s1

. . .

∫ t′

sn−1

A(s1) . . .A(sn) dsn . . . ds1.

Note that changing the order of integration we obtain

In(x) =

∫ t′

t

A(s1)

∫ s1

t

. . .

∫ sn−1

t

A(sn) . . .A(sn) ds1 . . . dsn.

One must prove the convergence

∞
∑

j=1

Ij(x).

Details of the proofs for the convergence and the uniqueness can be found in
Baake and Schlagel . 5

5Michael Baake and Ulrike Schlagel The Peano-Baker Series arXiv:1011.1775v2
[math.CA] 6 Jan 2012
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Example 2.11 Consider the case when the matrix intensity function is con-
stant, i.e. µ(t) ≡ Λ. Then from equation (2.28) we obtain

P(t, t′) =
∞
∑

l=0

(Λ(t′ − t))l

l!
.

This so called the matrix exponential function. Thus

P(t, t′) = eΛ(t′−t).

The matrix exponential function has a property

eΛ(t′−t) = (eΛ)(t
′−t).

Hence for dla k = 0, . . . and 0 ≤ u ≤ 1 we have

P(k, k + u) = (P(k, k + u))u . (2.32)

Example 2.12 Suppose µ(t) = µ(⌊t⌋), for all t. This condition correponds
to classical HCFM hypothesis for one life and one risk; see Chapter I.2.1.
Then we have

P(x, x+ n+ u) = P(x, x+ n)(P(x+ n, x+ n+ 1))u . (2.33)

Furtheron

P(x, x+ n) = exp(−
n−1
∑

k=0

µ(x+ k)) . (2.34)

To demonstrate this fact, consider P(k, k+ u) for some k = 0, 1, . . .. Clearly
we have

P(x, x+ n+ u) = P(x, x+ n)(P(x+ n, x+ n+ u)) .

Using example 2.11 we obtain formula (2.33). We leave to the reader to
demonstrate formula (2.34).

2.2 What can we say about evolution

Consider a CTMC J (t) with intensity matrix µ(t). We will show an al-
gorythm for an evolution of J (t) when t ≥ 0. Assume state space is
E = {0, 1, . . . ,m} and J (0) = i0. In actuarial practice the initial state
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is state ’HEALTHY’ or ’Active’. We consider the theory from Chapter IV on
one life with few risks and say that the status is ’being in state i0. Forces of
decrement are µi00(t), . . . µi0m(t) (without µi0i0(t)), where i0 ∈ Etra. Denote
time to exit from the status because of risk J0 by T0. Random vector (T0, J0)
has the density function f0(t, i1) = µi0i1(t) exp[−

∫ t

0
µi0(s) ds].

Suppose now J (t) = i. Since the process is a CTMC, the past before t
is not important. The status now is i and time to exit from the status is Tt,i

and let Jt,i denotes the corresponding decrement, that is instant of the next
jump after t is t+ Tt,i and the process jumps to Jt,i = j. Again we can write

the density function of (Tt,i, Jt,i) f0(t, i1) = µij(t) exp[−
∫ t

0
µi(s) ds].

A standard notaton in the multi-state theory is

P ii(t, t′) = Pr(process is in state i in interval [t, t′]|J (t) = i).

Thus P ii(0, t) = Pr(T0 > t). Notice that unless µij(t) = 0 for i 6= j we
have P ii(0, t) 6= P ii(0, t).

Using these facts we can design a simulation algorthm to generate a tra-
jectory of J (t). Thus if a jump is at instant t, then we draw the next jump
according the density function

µi(s) exp[−

∫ t+s

t

µi(v) dv], s > 0. (2.35)

or the tail distribution function

Pr(Tt,i > s) = exp[−

∫ t+s

t

µi(v) dv], s > 0.

Thus if U is a uniformly distributed r.v. on [0, 1], then the moment of the
next jump is the solution of

− logU =

∫ t+s

t

µi(v) dv

with respect variable s. If the result is s, then we draw the state where the
process is jumping to j with probability

µij(t+ s)

µi(t+ s)
, j 6= i.

We have to remember, that between jumps the process is constant.
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Remark From the algorithm above we can see that because functions µij(t)
are locally bounded, there can be a finite number of jumps in finite intervals.

Exercises; on line lecture 6

1. Show that transition functions fulfill the following system of partial
diferential equation: for t /∈ N

∂

∂t
P ij(t, t′) = µi(t)P ii(t)−

∑

k 6=i

µik(t)P kj(t, t′), t 6= N (2.36)

and for t′ /∈ N

∂

∂t′
P ij(t, t′) = −P ij(t)µj(t) +

∑

k 6=i

P ik(t, t′)µkj(t′) t′ 6= N . (2.37)

2. Write the matrix transition intensities matrix for AID models (with re-
coveries and without). Write prospective and retrospective Kolmogorov
equations for AID without recoveries.

3. For a group of m lifes with independent lifetimes T1, . . . , Tm let J (t)
be the process counting the number of alives at time t, ie.

J (t) =



























m jeli 0 ≤ t < T(1)

m− 1 jeli T(1) ≤ t < T(2)
...

...
1 jeli T(m−1) ≤ t < T(m)

0 jeli T(m) ≤ t,

(2.38)

as usual (T(1), . . . , T(m)) denotes the order statistics of variables (T1, . . . , Tm).
Show that if (T1, . . . , Tm) are independent identically distributed with
mortality rate µ(t), then J (t) is a CTMC. Find the matrix of transition
intensities.


