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3 Processes defined by Markov chains

3.1 Discrete time

To begin with consider a DTMC (Jk) with states of life E . We define two
sequences: for i ∈ E

I ik =

{

1 if at instant k state of life is i
0 othewise

and i 6= j

I ijk =

{

1 if at instant k there is transition from i to j
0 otherwise

k = 0, 1, . . . Using indicator notations we can write precisely I ik = 1(Jk = i)
oraz I ijk = 1(Jk−1 = i,Jk = j).

Lemma 3.1 Suppose J0 = i0 and i 6= j. If
∑∞

k=0 |ck| < ∞, then

E [
∞
∑

k=0

ckI
i
k] =

∞
∑

k=0

ckP
i0i(0, k) ,

and

E [
∞
∑

k=1

ckI
ij
k ] =

∞
∑

k=1

ckP
i0i(0, k − 1)P ij(k − 1, k).

One defines a counting sequence of transitions from i to j (i 6= j) up to time
k by:

N ij
k =

k
∑

l=1

I ijl .

3.2 Continuous time

We restrict ourselves to time interval [0, n]. Consider now a CTMC J (t) and
for i 6= j we denote by 0 ≤ τ ijl ≤ n (l = 1, 2, . . .) the consecutive moments of
transitions from i to j. The counting process of transitions is

N ij(t) =
∞
∑

l=1

1(τ ijl ≤ t), 0 ≤ t ≤ n.
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Lemma 3.2 Let c(t) and µij(t) 0 ≤ t ≤ n are piecewise continuous (and
hence bounded). If J (0) = i0, then

E [

∫ n

0

c(t)1(J (t) = i) dt] =

∫ n

0

c(t)Pi0i(0, t) dt,

and

E [

∫ n

0

c(t)1(J (t) = i) dN ij(t)] =

∫ n

0

c(t)Pi0i(0, t)µ
ij(t) dt.

Proof Suppose for a moment that functions c(t) and µij(t) are continuous.
We define for ℓ = 1, 2, . . . a DTMC J ℓ

k = J (k
ℓ
), k = 0, 1, . . . with transition

matrices (P ij
ℓ )mi,j=0. The starting point is an observation that

∫ n

0

c(t)1(J (t) = i) dN ij(t) = lim
ℓ→∞

∑

0≤k≤nℓ

c(k/ℓ)1(J (k/ℓ) = i,J ((k+1)/ℓ) = j).

(3.39)
This is true since c(t) is continuous and realizations of J (t) has with proba-
bility one a finite number of separate jumps and because N ij(t) has a finite
number of separate jumps of size 1. Hence, using boundness of c and that
N ij(n) is a proper random variable we can prove that

E [

∫ n

0

c(t)1(J (t) = i) dN ij(t)]

= lim
ℓ→∞

E [
∑

0≤k≤nℓ

c(k/ℓ)1(J (k/ℓ) = i,J ((k + 1)/ℓ) = j)]

= lim
ℓ→∞

(
∑

0≤k≤nl

c(k/ℓ)P i0i(0, k/ℓ)P ij(k/ℓ, (k + 1)/ℓ).

We have P ij(k/ℓ, (k + 1)/ℓ) = 1
ℓ
µij(k/ℓ) + o(1/ℓ). Hence

lim
ℓ→∞

(
∑

0≤k≤nl

c(k/ℓ)P i0i(0, k/ℓ)P ij(k/ℓ, (k + 1)/ℓ)

= lim
ℓ→∞

1

ℓ

∑

0≤k≤nl

c(k/ℓ)P i0,i(0,
k

ℓ
)µij(k/ℓ).

Now from the definition of Riemann integral we have

lim
ℓ→∞

1

ℓ

∑

0≤k≤nl

c(k/ℓ)P i0 i(0,
k

ℓ
) µij(

k

ℓ
) =

∫ n

0

c(t)P i0,i(0, t)µij(t) dt.

and the proof is completed.
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4 Markovian theory of multi-state insurances

In the theory of mullti-state insurances we will use an extension of hpothesis
HHP and HA. Thus we say that hypotheisis HA-M holds if Px(k) = P(x+k),
where P = P0. Analogously we say that HHP-M holds if Px(t, t

′) = P(x +
t, x + t′) where P = P0 or µx(t) = µ(x + t), where µ = µ0. We begin with
actuarial notations, which are used in this section. Thus by tp

ij
x we denote

the probability abd life (x) being in state i after times t is in state j. In
notattion of the last section tp

ij
x = P ij(x, x+ t). In particular pijx denotes the

probability, that life (x) being in state i after one year is in state j. In this
section we suppose all needed hypothesis like HHP-M or HA-M are valid.

4.1 Discrete models; Thiele recursion for reserves.

Consider first a discrete model for a life (x) described by a DTMC J[x]+k.

We suppose that hypothesis HA-M holds, that is pij[x]+t
= pijx+t. Thus we

have states Jx+k (k = 0, 1, . . .). We consider a general insurance model for
life (x) with states of life E (together with one absorbing state 0). Thus we
have

• states 0, 1, . . . ,m, where 0 means death,

• termination time n,

• if there is a transition at moment k+1 (that is Jx+k = i 6= Jx+k+1 = j,
then at time k + 1 there is paid benefit bijk+1; we set biik = 0,

• if Jx+k = i, then it is paid annuity cik > 0,

• if Jx+k = i, then it is paid premium Πi
k > 0,

• if at the end Jx+n = i, then it is paid endowment bin,

• discount factor is v.

We also set

H i
k =

{

cik − Πi
k 0 ≤ k < n

bin n = k

Let us make some comments. An index k (e.g. in cik), means that the payment
is at k. Since at the same moment k one can register an annuity and premium
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(annuities are often paid at the end of fiscal year but premium always at the
beginning), therefore the resulted quantity H i

k has sense. Notice however
that Πi

n = 0. We now write down the future loss:

kL =
∑

j′ 6=j

n−k−1
∑

ℓ=0

vℓ+1bjj
′

k+ℓ+11(J[x]+k+ℓ = j,J[x]+k+ℓ+1 = j′)

+
∑

j∈E

n−k
∑

ℓ=0

vℓHj
k+ℓ1(J[x]+k+ℓ = j).

(Prospective) reserve at k we define as

kV
i = E [kL|Jx(k) = i], k = 0, 1, . . . , n.

Theorem 4.1

kV
i =

∑

j 6=j′

n−k−1
∑

ℓ=0

vℓ+1bjj
′

k+ℓ+1 ℓp
ij
x+k pjj

′

x+k+ℓ

+
∑

j∈E

n−k
∑

ℓ=0

vℓHj
k+ℓ ℓp

ij
x+k, k = 0, 1, . . . , n. (4.40)

Furthermore we have Thiele recursion

kV
i −H i

k = v
∑

j∈E

pijx+k(k+1V
j + bijk+1), (4.41)

for 0 ≤ k < n and nV
j = bjn for j ∈ E.

We show a simple but tedious proof at the end of this subsection.

Example 4.2 [One life, one risk model revisited] Consider a general endow-
ment model from Section III.2.2 for life (x) with termination at n. Benefit
function is bk, premium Πk, k = 0, 1, . . . and endowment b∗n which is pait if at
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n, the insured is still alive. wypacan jeli ubezpieczony przeyje n lat. We sup-
pose that hypothesis HA holds. In the framework of multi-state insuracnes,
we have two states, E = {0, 1}. Then

kV
1 +Π1

k = v(p11x+k(k+1V
1 + b11k+1) + p10x+k(k+1V

0 + b10k+1))

kV
0 +Π0

k = v(p00x+k(k+1V
0 + b00k+1) + p01x+k(k+1V

1 + b01k+1)).

Clearly we have p11x+k = px+k, p10x+k = qx+k, b
11
k = 0, b10k = bk, p00x+k = 1,

p01x+k = 0, Π1
k = Πk, Π0

k = 0 and with boundary konditions: nV
1 = b∗n,

nV
0 = 0. Then the above recurrence is reduced to

kV +Π1
k = v(px+k k+1V

1 + qx+k(k+1V
0 + bk+1)

kV
0 = v k+1V

0

Using the boundary condition we obtain kV
0 = 0, for k = 0, . . . , n and then

k+1V +Πk = v(px+k k+1V + qx+kbk+1),

where k+1V = k+1V
1 and the boundary condition is nV = b∗n. This exactly

Thiele recurrence (III.2.5) derived earlier in Chapter III.

Proof of Theorem 4.1. Using that

E [1(Jx(k + ℓ) = j,Jx(k + ℓ+ 1) = j′)|Jx(k) = i] = ℓp
ij
x+k pjj

′

x+k+ℓ

E [1(Jx(k + ℓ) = j)|Jx(k) = i] = ℓp
ij
x+k

we have

kV
i = E [

∑

j 6=j′

n−k−1
∑

ℓ=0

vℓ+1bjj
′

k+ℓ+11(Jx(k + ℓ) = j, Jx(k + ℓ+ 1) = j′)|Jx(k) = i]

+ E [
∑

j∈E

n−k
∑

ℓ=0

vℓHj
k+ℓ1(Jx(k + ℓ) = j)||Jx(k) = i]

=
∑

j 6=j′

n−k−1
∑

ℓ=0

vℓ+1bjj
′

k+ℓ+1 ℓp
ij
x+k pjj

′

x+k+ℓ +
∑

j∈E

n−k
∑

ℓ=0

vℓHj
k+ℓ ℓp

ij
x+k
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To demonstrate the recurrence we write

kV
i =

∑

j,j′∈E:j′ 6=j

n−k−1
∑

ℓ=0

vℓ+1bjj
′

k+ℓ+1 ℓp
ij
x+k pjj

′

x+k+ℓ

+
∑

j∈E

n−k
∑

ℓ=0

vℓHj
k+ℓ ℓp

ij
x+k

= v
∑

j,j′∈E:j′ 6=j

(bjj
′

k+11(j = i)pjj
′

x+k +
n−k−1
∑

ℓ=1

vℓbjj
′

k+ℓ+1 ℓp
ij
x+k p

jj′

x+k+ℓ)

+
∑

j∈E

(Hj
k1(j = i) + v

n−k
∑

ℓ=1

vℓ−1Hj
k+ℓ ℓp

ij
x+k).

Next we use Chapmana-Kolmogorowa equation for ℓ = 1, 2, . . .

ℓp
ij
x+k =

∑

i′∈E

pii
′

x+k l−1p
i′j
x+k+1,

and substitution ℓ′ = ℓ− 1. Hence we have

v
∑

i′∈E

bii
′

k+1 p
ii′

x+k + v
∑

i′∈E

pii
′

x+k

∑

j,j′∈E:j′ 6=j

n−k−2
∑

ℓ′=0

vℓ
′+1bjj

′

k+1+ℓ′+1 ℓ′+1p
i′j
x+k+1 p

jj′

x+k+1+ℓ′

+H i
k + v

∑

i′∈E

px+kii
′
∑

j∈E

n−k−1
∑

ℓ′=0

vℓ
′

Hj
k+1+ℓ′ l′p

i′j
x+k+1

= H i
k + v

∑

i′∈E

pii
′

x+k(b
ii′

k+1 + k+1V
i′).

4.2 Continuous model

Suppose that for new born person states of life are described by a CTMC
J (t) with matrix transition intensity function µ(t), the assuming HHP-M,
we have that for life (x) state of lifes are described by a CTMC, J (x + t)
with with matrix transition intensity function µ(x+ t). Recall that

hp
ij
x+t − 1(i = j) = hµij

x+t + o(h),
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provided t is a continuity point of µij(x + t). We consider now a general
endowment for life (x) for time n such that

• states are 0, 1, . . . ,m, where 0 (death) is an absorbing state,

• if there is a transition at t from i to j, then benefit bij(t) is paid;
we assume bii(t) = 0,

• if J (x+ t) = i, then the annuity is paid with rate ci(t),

• if J (x+ t) = i, then the premium is paid with rate Πi(t),

• at n we have J (x+ t) = i, then endowment is paid bi(n) (clearly
b0(n) = 0),

• force of interest is δ.

In the sequel we suppose that functions ci(t), Πi(t), bij(t) and µ(x+ t)
are piecewises continuous. Similarly as in the discrete case we set
H i(t) = ci(t)− Πi(t).

As usual we first write the future loss

tL =
∑

j 6=j′

∫ n

t

vs−tbjj
′

(s) 1(Jx(s) = j) dN jj′(s)

+
∑

j∈E

vn−tbj(n)1(Jx(n) = j)

+
∑

j∈E

∫ n

t

vsHj(s)1(Jx(s) = j). (4.42)

Then (prospective) reserve at k is

tV̄
i = E [ tL|J (x+ t) = i], 0 ≤ t ≤ n.

We now show the reserves tV̄
i fulfill the system of differential equation

(called Thiele’s system of d.e.)
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Theorem 4.3 For 0 ≤ t ≤ n and i = 0, . . . ,m

tV̄
i =

∑

j,j′∈E

∫ n

t

vs−t
s−tp

ij
x+tb

jj′(s)µjj′(x+ s) ds

+
∑

j∈E

∫ n

t

vs−t
s−tp

ij
x+tH

j(s) ds

+
∑

j∈E

vn−t
n−tp

ij
x+tb

j(n) . (4.43)

Furthermore reserves kV̄
i, i ∈ E, 0 ≤ t ≤ n fulfill

d

dt
tV̄

i = −H i(t) + δ tV̄
i −

∑

i′ 6=i

µii′(x+ t)( tV̄
i′ − tV̄

i + bii
′

(t)) (4.44)

for 0 ≤ t ≤ n and nV̄
j = bj(n), for j = 0, 1 . . . ,m.

We can rewrite the above Thiele system of differential equations in the
form

−H i(t) =
d

dt
tV̄

i − δ tV̄
i +

∑

i′ 6=i

µii′(x+ t)( tV̄
i′ − tV̄

i + bii
′

(t)).

The we have

• −H i(t) is premium/annuity,

• d tV̄
i

dt
− δ tV̄

i is saving premium,

•
∑

i′ 6=i µ
ii′(x+t)(bii

′

(t)+ tV̄
i′− tV̄

i) is risk premium (with is compenstate
risks related to changes of states).

Proof In the proof (4.43) we use formula (4.42) and results of Lemma 3.2.

The following matrix/vector notations will be convenient in the furhter
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considerations:

tpx = ( tp
ij
x )i,j∈E

B(s) = (bjj
′

(s)µjj′(x+ s))j,j′∈E

tV̄ = ( tV̄
0, . . . , tV̄

m)T ,

e = (1, . . . , 1)T ,

H(t) = (H0(t), . . . , Hm(t))T

b(n) = (b0(n), . . . , bm(n))T

From Chapman-Kolomogorov equation6

s−tpx+t = (tpx)
−1

spx .

Then (4.43) can be written as

tV̄ =

∫ n

t

vs−t
s−tpx+t B(s) dse

+

∫ n

t

vs−t
s−tpx+tH(s) dse

+vn−t
n−tpx+tb(n)

= (vt tpx)
−1

∫ n

t

vs spx B(s) ds e

+(vt tpx)
−1

∫ n

t

vsspxH(s) dse

= +(vt tpx)
−1

npxb(n)

We also write (2.17) in the present notations Kolmogorov prospective equa-
tions

d

dt
tpx = tpx µ(x+ t) .

We will need the following facts from matrix calculus.

Lemma 4.4 Suppose A(t),B(t) are matrices m × m with differentiable
elements. Then

d

dt
(A(t)B(t)) = (

d

dt
A(t))B(t) +A(t)(

d

dt
B(t)).

6We assume that tpx is non-singular.
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Furthermore assuming non-sigularity of A(t), we have A(t)−1A(t) = I.
Hence

d

dt
A(t)−1 = −A(t)−1(

d

dt
A(t))A(t)−1.

We are now ready to demonstrate Thiele’s system of differential equations
4.3.
Proof Differentiating

tV̄ = (vttpx)
−1(

∫ n

t

vsspxB(s) ds e+

∫ n

t

vsH(s) ds+ vnnpxb(n)),

and recalling that dv−t/ dt = δv−t we have

d

dt
tV̄ = (δv−t(tpx)

−1 − v−t(tpx)
−1(

d

dt
tpx)(tpx)

−1)

×(

∫ n

t

vsspxB(s) ds e+

∫ n

t

vsH(s) ds+ vnnpxb(n))

+v−t(tpx)
−1(−vttpxB(t) e− vttpxH(t))

= δtV̄ − µx+t tV̄ −B(t)e−H(t) .

5 Examples of disability and sickness insur-

ances

5.1 Discrete time

Multi-state theory turns out to be usefull in pricing some forms of disabil-
ity and sickness insurances. The starting point can be modell AID with
transitions depicted on diagram 0.2.

Times are slotted into intervals, let say one year. Here states of life are
seen only at instances 0, 1, . . .. Suppose we life (x) buys an insurance. We
suppose that states Jx,Jx+1,Jx+2, . . . form a DTMC with known transition
matrices.

Example 5.1 [Disability insurance] When a person buys an insurance at
age x, he will, during the lifetime of his policy, that is [0, n], run through
different states. Rougly speaking, the policy will be active at inception of
the policy, the insured can die or become disabled, may re-enter into active
states, etc. As usual death is an absorbing state. Policy pays a benefit at the
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end of year in which (x) became disabled or it lastsin this state. However
the benefit is stopped after c consecutive years. Thus to describe this policy
we need the following states: A (active), D (death), I = 1, 2, . . . , c (number
of years being disabled). Let Pr(Jx+t+1 = j|Jx+t = i) = pijx+t and we assume
hypothesis HA-M. The non-zero transition probabilities are: clearly pDD

x = 1
and for A and i = 1, . . . , c− 1

pi,Ax – the probability to “reactivate” from state i (resp. to remain in A in
case of i = A),

pi,i+1
x – the probability to remain disabled (resp. to become entitled to

benefit in case i = 0),

pi,Dx – the death probability when being in state i,

and for i = c

pc,cx – the probability to remain disabled (resp. not to die, as we have
assumed that in state c, no recover will take place.

pc,Dx – the death probability when being in state c.

We can have the following payments. In the i-the year, ie. [i − 1, i),
premiums ΠB

i−1 are paid at the beginning of the year and disability benefit

at the end of year – bA,1
i and bl,l+1

i , where l = 1, . . . , c− 1 and death benefit
bl,Di .

Example 5.2 [ Hospital cash benefits with premium restitution]7 In this
example we consider a hospital cash plan for life (x0) with restitution of
premiums in case no claims have occured during a certain period. To price
this insurance, we build the following multi-state Markovian model in discrete
time. Duration of the policy is n years. Let Jx0

,Jx0+1,Jx0+2, . . . be states
in consecutive year of life (x0) (or age of the policy is x− x0). We have the
following states: I,1, . . . , r,D, where D denotes death (an absorbing state),
and I is sick (gets cash from the insurer) and 1, . . . , r are the number of
consecutive no claim years. Under this policy, if after r consecutive years
without claim, the whole premium (without interest) is paid back to life
(x0). We have given: qx – the probability of death of (x) in the present year,

7Hospital cash benefits with premium restitution; A simple application of Markovian

multi-state model. by Ernst Huber, Swiss Re.
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fx – frequence of hospitalisation of life (x). Denote transition probabilities
Jx+1 = j|Jx = i) = pij(x). We then have:



















∗ I 1 2 . . . r D
I fxpx (1− fx)px 0 . . . 0 qx
1 pxfx 0 (1− fx)px . . . 0 qx
...

...
... . . .

...
...

r fxpx (1− fx)px . . . . . . 0 qx
D 0 0 . . . . . . 0 1



















Level premium Π is collected at the beginning of fiscal year, benefit and back
premiums are paid at the end of the year.

5.2 Continuous time

We can show the following important property. If from a state i all transitions
are out and there are no into, then

P ii(t, t′) = P ii(t, t′) = e−
∫
t
′

t
µi(v) dv .

We leave the reader to show this propoery.

We consider now the permanent disability state insurance (AID) from
Example 0.2. Recall that we have three states: Healthy – ∗, Disabled – ♦

and Dead – †. Suppose that µ∗♦(t) = σ(t), µ♦∗(t) = ρ(t) = 0, µ∗†(t) = µ(t)
and µ♦†(t) = ν(t); see transition diagram in Fig. 0.2.

In this case we can have explicite formula for P(t, t′). Thus

P ∗∗(t, t′) = e−
∫
t
′

t
(µ(s)+σ(s)) ds (5.45)

P ♦♦(t, t′) = e−
∫
t
′

t
ν(s) ds (5.46)

P ∗♦(t, t′) =

∫ t′

t

σ(s)e−
∫
s

t
(µ(v)+σ(v)) dve−

∫
t
′

s
ν(v) dv ds (5.47)

P ⋄†(t, t′) = 1− e−
∫
t
′

t
ν(s) ds. (5.48)

We accept the hypothesis HHP-M µ∗♦(x + t) = µ(x + t) and σ(x + t) =
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µ∗†(x+ t) = µ♦†(t), then

P ∗∗(tt′) = exp
(

−

∫ t′

t

(µ(x+ s) + σ(x+ s)) ds
)

,

P ∗♦(tt′) = exp
(

−

∫ t′

t

σ(x+ s) ds
)(

1− exp
(

−

∫ t′

t

µ(x+ s) ds
))

,

P ♦♦(tt′) = exp
(

−

∫ t′

t

σ(x+ s) ds
)

.

We can show these formulas (5.45)– (5.48) in two ways either by substituting
to Kolmogorov equations, or in a direct way. Consider now P ∗♦(t, t′). Notice
that the exit from ⋆ state, can be modelled as the exit from status ∗ becasue
of decrement ⋄, while another decrement is †. Let T be the exit time and J is
the corresponding decrement. Then σ(s)e−

∫
s

t
(µ(v)+σ(v) dv, is density function

of T , when J = ⋄. Similarly e−
∫
t
′

s
ν(v) dv is the probability of stay at ⋄ in

interval (s, t′].

Exercises; on line lecture 7

1. Write transition matrix for the Markov chain from Example 5.1.

2. Continue Example 2.5, wherein it was proposed how to build the inten-
sity matrix for multi-decrement model. With the use of Theorem 4.3
derive Thiele differential equation for multi-decrement insuracne, that
is prove (IV.4.5) in Proposition IV.4.4


