Geometric constructions and elements of Galois' theory

List 10. Splitting fields of polynomials

1. Check that the splitting field of a quadratic polynomial $a x^{2}+b x+c \in Q[x]$ is the field $Q(\sqrt{\Delta})$, where $\Delta=b^{2}-4 a c$.
2. Verify that the field $Q(\sqrt{-3})$ is the splitting field of the polynomial $x^{3}-1$.
3. Although any two essentially distinct irreducible polynomials from $Q[x]$ always have disjoint sets of roots, it may happen that they have the same splitting fields. Find an example of such two irreducible polynomials of degree 2 , for both of which the field $Q(\sqrt{3})$ is their splitting field.
4. Verify that for any $a, b, c \in Q$ the splitting fields of the polynomials $a x^{2}+b x+c$ and $c x^{2}+b x+a$ are the same. And what about the polynomials $a_{n} x^{n}+\ldots+a_{0}$ and $a_{0} x^{n}+\ldots+a_{n}$ of arbitrary degree n ?
5. Justify that the field $Q(\sqrt[4]{5})$ is not the splitting field of the polynomial $x^{4}-5$. Find and list all roots of this polynomial, and describe explicitely its splitting field.
