
Geometric constructions and elements of Galois’ theory
List 11. Galois groups of field extensions and of polynomials

Automorphisms of number fields

1. Show that the number i
√
2 is a square root of some rational number, and consider

the quadratic extension Q(i
√
2) = {a + bi

√
2 : a, b ∈ Q} cia/la Q. Verify that the

map σ : Q(i
√
2) → Q(i

√
2) given by the formula σ(a + bi

√
2) = a − bi

√
2 is an

automorphism of the field Q(i
√
2).

2. Find all automorohisms of the field Q( 4
√
2). HINT: first investigate which numbers

can appear as images of the number 4
√
2 through an automorphism of the field Q( 4

√
2)

(there are only 2 potential candidates); then write formulas for all potential automor-
phisms, in the form ψ(a+b 4

√
2+c 4

√
4+d 4

√
8) = . . .; verify that each of the so obtained

formulas indeed describes an automorphism (i.e. verify that ψ(x+ y) = ψ(x) + ψ(y)
oraz ψ(x · y) = ψ(x) · ψ(y) for any x, y ∈ Q( 4

√
2)).

3. Justify that the only automorphism of the field Q( 3
√
2) is the identity, so that the

group Gal(Q( 3
√
2)/Q) is trivial (consists of one element). HINT: first show that 3

√
2 is

fixed by any automorphism σ of the field Q( 3
√
2), and then refer to the general form

of an element in this field.

4. (a) A complex number z0 = a + bi is a root of a polynomial f with rational coeffi-
cients. Prove that then the conjugate number z̄0 = a− bi is also the root of this
polynomial. HINT: use the fact that z + z′ = z̄ + z′, z̄n = zn and that ā = a for
a ∈ Q.

(b) Prove that for any polynomial f ∈ Q[x] the complex conjugation ψ(z) = z̄ is an
automorphism of the splitting field Qf of the polynomial f .

Galois groups

5. (a) Verify that the splitting field Qf of the polynomial f(x) = (x2 − 2)(x2 − 3) =
x4 − 5x2 + 6 is the field Q(

√
2,
√
3) = {a+ b

√
2 + c

√
3 + d

√
6 : a, b, c, d ∈ Q}.

(b) Find and describe all automorphisms of the above field Qf , i.e. all automorphisms
from the Galois group Gal(Qf/Q). HINT: first show that for any automorphism
ψ ∈ Gal(Qf/Q) we have ψ(

√
2) = ±

√
2 and ψ(

√
3) = ±

√
3; use this fact in

writing formulas for all potential automorphisms, in the form ψ(a+ b
√
2+ c

√
3+√

6) = . . . (4 potential possibilities); check that each of the so obtained formulas
indeed yields an automorphism (i.e. verify that ψ(x + y) = ψ(x) + ψ(y) and
ψ(x · y) = ψ(x) · ψ(y)).

(c) Enumerate the roots of the polynomial f with numbers 1, 2, 3, 4 and find the per-
mutations from the group S4 which correspond to permutations of roots induced
by the automorphisms described in part (b).

(d) Check that the group Gal(Qf/Q) is abelian. Check also that this group is (iso-
morphic to) the Klein four-group. .

6. Let ε5 be the principal degree 5 root of 1.
(a) Justify that each number from the field Q(ε5) can be expressed uniquely in the

form a+ bε5 + cε25 + dε35 + eε45, where a, b, c, d, e ∈ Q.
(2) Deduce that the field Q(ε5) is the splitting field of the polynomial x5 − 1.
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(3) Describe an automorphism σ of the field Q(ε5) such that σ(ε5) = ε25. HINT:
calculate σ(εk5) for k = 0, 1, 2, 3, 4, then write a general formula forσ, and finally
verify that this formula describes an actual automorphism.

(4) Describe the permutration of the roots 1, ε5, ε
2
5, ε

3
5, ε

4
5 of the polynomial x5 − 1

induced by the automorphism σ.
(5) Find all other automorphisms of the field Q(ε5) (there are four of them, includind

the identical one). Justify that these four automorphisms form the Galois group
Gal(Q(ε5)/Q). Describe this group as the group of permutations of the roots of
the polynomial x5−1, by finding the permutations induced by all these automor-
phisms.

(6) Check that the group Gal(Q(ε5)/Q) is abelian, and that it is (isomorphic to) the
cyclic group Z4 (sometimes denoted also as C4).

7. Verify that the splitting field of the polynomial f(x) = (x2 − x − 1)(x2 + x − 1) =
x4 − 3x + 1 is the field Qf = Q(

√
5). Show that the Galois group Gal(Qf/Q) con-

sists of precisely two automorphisms, and find the permutations from the group S4

corresponding to the permutations of the roots of f induced by these automorphisms.

8. Show that if a polynomial W ∈ Q[x] is the product of two essentially distinct (i.e. not
proportional) irreducible polynomials U and V , then
(a) the sets of roots of the polynomials U and V are disjoint, and their union is the

set of all roots of the polynomial W ;
(b) Galois group of the polynomial W permutes separately the roots of U and V .

9. [polynomial with non-abelian Galois group.]

(a) Let ε3 be the principal degree 3 root of 1, i.e. ε3 = cos 2π
3 + i sin 2π

3 = − 1
2 + i

√
3
2 .

Check that ε23 + ε3 + 1 = 0 and deduce that ε3 is an algebraic number of degree
2.

(b) Justify that the set of roots of the polynomial f(x) = x3 − 2 consists of the three
the numbers 3

√
2, ε3

3
√
2 and ε23

3
√
2.

(c) Prove that the splitting fieldQf of the polynomial f = x3−2 is the fieldQ( 3
√
2, ε3),

and that the set 1, 3
√
2, 3

√
4, ε3, ε3

3
√
2, ε3

3
√
4 is a basis for the field extension Q ⊂

Qf .
(d) Verify that for any automorphism ψ ∈ Gal(Qf/Q) we have ψ(ε3) ∈ {ε3, ε23} and

ψ( 3
√
2) ∈ { 3

√
2, ε3

3
√
2, ε23

3
√
2}.

(e) Show that the complex numbers conjugation is an automorphism of Qf , and that
it induces the transposition of the roots ε3

3
√
2 and ε23

3
√
2 (leaving the root 3

√
2

fixed).
(f) Check that the assignments 3

√
2 7→ ε3

3
√
2 and ε3 7→ ε3 extend to an automorphism

of Qf , and that this automorphism induces z cyclic permutation
3
√
2 → ε3

3
√
2 → ε23

3
√
2 → 3

√
2

of the roots of f .
(g) Check that the permutations of roots induced by the automorphisms described

in parts (f) and (g) do not commute. Deduce thathe group Gal(Qf/Q) is non-
abelian.

(h) Prove that the group Gal(Qf/Q) induces the full group S3 as the group of induced
permutations of the roots of f .
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