Geometric constructions and elements of Galois' theory

List 11. Galois groups of field extensions and of polynomials

Automorphisms of number fields

1. Show that the number $i \sqrt{2}$ is a square root of some rational number, and consider the quadratic extension $Q(i \sqrt{2})=\{a+b i \sqrt{2}: a, b \in Q\}$ cia/la Q. Verify that the map $\sigma: Q(i \sqrt{2}) \rightarrow Q(i \sqrt{2})$ given by the formula $\sigma(a+b i \sqrt{2})=a-b i \sqrt{2}$ is an automorphism of the field $Q(i \sqrt{2})$.
2. Find all automorohisms of the field $Q(\sqrt[4]{2})$. HINT: first investigate which numbers can appear as images of the number $\sqrt[4]{2}$ through an automorphism of the field $Q(\sqrt[4]{2})$ (there are only 2 potential candidates); then write formulas for all potential automorphisms, in the form $\psi(a+b \sqrt[4]{2}+c \sqrt[4]{4}+d \sqrt[4]{8})=\ldots$; verify that each of the so obtained formulas indeed describes an automorphism (i.e. verify that $\psi(x+y)=\psi(x)+\psi(y)$ oraz $\psi(x \cdot y)=\psi(x) \cdot \psi(y)$ for any $x, y \in Q(\sqrt[4]{2}))$.
3. Justify that the only automorphism of the field $Q(\sqrt[3]{2})$ is the identity, so that the group $\operatorname{Gal}(Q(\sqrt[3]{2}) / Q)$ is trivial (consists of one element). HINT: first show that $\sqrt[3]{2}$ is fixed by any automorphism σ of the field $Q(\sqrt[3]{2})$, and then refer to the general form of an element in this field.
4. (a) A complex number $z_{0}=a+b i$ is a root of a polynomial f with rational coefficients. Prove that then the conjugate number $\bar{z}_{0}=a-b i$ is also the root of this polynomial. HINT: use the fact that $\overline{z+z^{\prime}}=\bar{z}+\overline{z^{\prime}}, \bar{z}^{n}=\overline{z^{n}}$ and that $\bar{a}=a$ for $a \in Q$.
(b) Prove that for any polynomial $f \in Q[x]$ the complex conjugation $\psi(z)=\bar{z}$ is an automorphism of the splitting field Q_{f} of the polynomial f.

Galois groups

5. (a) Verify that the splitting field Q_{f} of the polynomial $f(x)=\left(x^{2}-2\right)\left(x^{2}-3\right)=$ $x^{4}-5 x^{2}+6$ is the field $Q(\sqrt{2}, \sqrt{3})=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}: a, b, c, d \in Q\}$.
(b) Find and describe all automorphisms of the above field Q_{f}, i.e. all automorphisms from the Galois group $\operatorname{Gal}\left(Q_{f} / Q\right)$. HINT: first show that for any automorphism $\psi \in \operatorname{Gal}\left(Q_{f} / Q\right)$ we have $\psi(\sqrt{2})= \pm \sqrt{2}$ and $\psi(\sqrt{3})= \pm \sqrt{3}$; use this fact in writing formulas for all potential automorphisms, in the form $\psi(a+b \sqrt{2}+c \sqrt{3}+$ $\sqrt{6})=\ldots$ (4 potential possibilities); check that each of the so obtained formulas indeed yields an automorphism (i.e. verify that $\psi(x+y)=\psi(x)+\psi(y)$ and $\psi(x \cdot y)=\psi(x) \cdot \psi(y))$.
(c) Enumerate the roots of the polynomial f with numbers $1,2,3,4$ and find the permutations from the group S_{4} which correspond to permutations of roots induced by the automorphisms described in part (b).
(d) Check that the group $\operatorname{Gal}\left(Q_{f} / Q\right)$ is abelian. Check also that this group is (isomorphic to) the Klein four-group. .
6 . Let ε_{5} be the principal degree 5 root of 1 .
(a) Justify that each number from the field $Q\left(\varepsilon_{5}\right)$ can be expressed uniquely in the form $a+b \varepsilon_{5}+c \varepsilon_{5}^{2}+d \varepsilon_{5}^{3}+e \varepsilon_{5}^{4}$, where $a, b, c, d, e \in Q$.
(2) Deduce that the field $Q\left(\varepsilon_{5}\right)$ is the splitting field of the polynomial $x^{5}-1$.
(3) Describe an automorphism σ of the field $Q\left(\varepsilon_{5}\right)$ such that $\sigma\left(\varepsilon_{5}\right)=\varepsilon_{5}^{2}$. HINT: calculate $\sigma\left(\varepsilon_{5}^{k}\right)$ for $k=0,1,2,3,4$, then write a general formula for σ, and finally verify that this formula describes an actual automorphism.
(4) Describe the permutration of the roots $1, \varepsilon_{5}, \varepsilon_{5}^{2}, \varepsilon_{5}^{3}, \varepsilon_{5}^{4}$ of the polynomial $x^{5}-1$ induced by the automorphism σ.
(5) Find all other automorphisms of the field $Q\left(\varepsilon_{5}\right)$ (there are four of them, includind the identical one). Justify that these four automorphisms form the Galois group $\operatorname{Gal}\left(Q\left(\varepsilon_{5}\right) / Q\right)$. Describe this group as the group of permutations of the roots of the polynomial $x^{5}-1$, by finding the permutations induced by all these automorphisms.
(6) Check that the group $\operatorname{Gal}\left(Q\left(\varepsilon_{5}\right) / Q\right)$ is abelian, and that it is (isomorphic to) the cyclic group Z_{4} (sometimes denoted also as C_{4}).
6. Verify that the splitting field of the polynomial $f(x)=\left(x^{2}-x-1\right)\left(x^{2}+x-1\right)=$ $x^{4}-3 x+1$ is the field $Q_{f}=Q(\sqrt{5})$. Show that the Galois group $\operatorname{Gal}\left(Q_{f} / Q\right)$ consists of precisely two automorphisms, and find the permutations from the group S_{4} corresponding to the permutations of the roots of f induced by these automorphisms.
7. Show that if a polynomial $W \in Q[x]$ is the product of two essentially distinct (i.e. not proportional) irreducible polynomials U and V, then
(a) the sets of roots of the polynomials U and V are disjoint, and their union is the set of all roots of the polynomial W;
(b) Galois group of the polynomial W permutes separately the roots of U and V.
8. [polynomial with non-abelian Galois group.]
(a) Let ε_{3} be the principal degree 3 root of 1, i.e. $\varepsilon_{3}=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. Check that $\varepsilon_{3}^{2}+\varepsilon_{3}+1=0$ and deduce that ε_{3} is an algebraic number of degree 2.
(b) Justify that the set of roots of the polynomial $f(x)=x^{3}-2$ consists of the three the numbers $\sqrt[3]{2}, \varepsilon_{3} \sqrt[3]{2}$ and $\varepsilon_{3}^{2} \sqrt[3]{2}$.
(c) Prove that the splitting field Q_{f} of the polynomial $f=x^{3}-2$ is the field $Q\left(\sqrt[3]{2}, \varepsilon_{3}\right)$, and that the set $1, \sqrt[3]{2}, \sqrt[3]{4}, \varepsilon_{3}, \varepsilon_{3} \sqrt[3]{2}, \varepsilon_{3} \sqrt[3]{4}$ is a basis for the field extension $Q \subset$ Q_{f}.
(d) Verify that for any automorphism $\psi \in \operatorname{Gal}\left(Q_{f} / Q\right)$ we have $\psi\left(\varepsilon_{3}\right) \in\left\{\varepsilon_{3}, \varepsilon_{3}^{2}\right\}$ and $\psi(\sqrt[3]{2}) \in\left\{\sqrt[3]{2}, \varepsilon_{3} \sqrt[3]{2}, \varepsilon_{3}^{2} \sqrt[3]{2}\right\}$
(e) Show that the complex numbers conjugation is an automorphism of Q_{f}, and that it induces the transposition of the roots $\varepsilon_{3} \sqrt[3]{2}$ and $\varepsilon_{3}^{2} \sqrt[3]{2}$ (leaving the root $\sqrt[3]{2}$ fixed).
(f) Check that the assignments $\sqrt[3]{2} \mapsto \varepsilon_{3} \sqrt[3]{2}$ and $\varepsilon_{3} \mapsto \varepsilon_{3}$ extend to an automorphism of Q_{f}, and that this automorphism induces z cyclic permutation

$$
\sqrt[3]{2} \rightarrow \varepsilon_{3} \sqrt[3]{2} \rightarrow \varepsilon_{3}^{2} \sqrt[3]{2} \rightarrow \sqrt[3]{2}
$$

of the roots of f.
(g) Check that the permutations of roots induced by the automorphisms described in parts (f) and (g) do not commute. Deduce thathe group $\operatorname{Gal}\left(Q_{f} / Q\right)$ is nonabelian.
(h) Prove that the group $\operatorname{Gal}\left(Q_{f} / Q\right)$ induces the full group S_{3} as the group of induced permutations of the roots of f.

