Geometric constructions and elements of Galois' theory

List 2

Number fields and quadratic extensions.

1. (a) Let $p=(2 / 3)+\sqrt{3 / 5}$ and $q=1-(1 / 2) \sqrt{3 / 5}$. Express the numbers $p+q, p-q$, $p q$ and p / q in the form $a+b \sqrt{3 / 5}$, where $a, b \in Q$.
(b) Prove that $\sqrt{3 / 5}$ is not a rational number, and that the set $\mathbf{Q}(3 / 5)$ consisting of all numbers of form $a+b \sqrt{3 / 5}$, where a and b are rational, is a field.
(c) Show that the expression of any number x from the field $\mathbf{Q}(3 / 5)$ in the form $a+b \sqrt{3 / 5}$ for some rational a and b is unique.
2. Show that the square roots of the nuumbers $5, \sqrt{3}$ and $2+\sqrt{3}$ do not belong to the field $Q(\sqrt{3})$.
3. Denote by F the field $Q(\sqrt{3})$, and by k the number $2+\sqrt{3}$.
(a) Let $p=1-\sqrt{3}-(1+2 \sqrt{3}) \sqrt{k}$ and $q=2+\sqrt{3}+(1+\sqrt{3}) \sqrt{k}$, so that we have $p, q \in F(\sqrt{k})$. Express their sum, difference, product and quotient in the form i $a+b \sqrt{k}$, where a and b belong to F.
(b) Does the number $\sqrt{3}+\sqrt{6+3 \sqrt{3}}$ belong to the field $F(\sqrt{k})$?
4. Let $F_{1}=\mathbf{Q}(\sqrt{3})$ and $F_{2}=F_{1}(\sqrt{2+\sqrt{3}})$ be quadratic extensions. Find the general form for numbers from the field F_{2}. Do the same for $F_{1}=\mathbf{Q}(\sqrt{3})$ and $F_{2}=F_{1}(\sqrt{\sqrt{3}})$.
5. Let F be a field consisting of all numbers $p+q \sqrt[4]{2}$, where p and q both have forms $a+b \sqrt{2}$ for some rational a and b. Express in the same manner the number

$$
\frac{1}{\sqrt{2}+\sqrt[4]{2}+\sqrt{2} \sqrt[4]{2}}
$$

which belongs to this field.
6. Finf sequences of quadratic extensions for the following constructible numbers (so that the sequence starts with the field of rational numbers and terminates with a field which contains the given number):

$$
\frac{1}{\sqrt{2 / 3}+1}, \frac{\sqrt{2}+\sqrt{3}}{1+\sqrt{6}}, \sqrt{2}-\sqrt{2+\sqrt{2}}, 2-\sqrt{3}+\sqrt[4]{3}
$$

7. Prove that the field \mathbf{K} of all constructible numbers does not have any quadratic extension.
8. Prove that $\sqrt[3]{2}$ is an irrational number. What about roots of higher degree?
9. Give a proof of the following theorem of an ancient Greek mathematitian Theaetetus (pol. Teajtet) from 4th century BC: For a natural number n, its square root \sqrt{n} is rational if and only if n is a square of a natural number. Is something similar true for roots of higher degree?
10. Check if one can always construct a segment whose length is a. an arithmetic, b. a geometric, c. a harmonic, d. a quadratic mean of the lenghts a, b, c of three given segments.
11. We are given a segment a and a twice longer segment d. Is it possible to construct geometrically segments b and c such that the lengths a, b, c, d form a geometric progression?
