Geometric constructions and elements of Galois' theory List 5

Field extensions, their degrees; non-algebraic number π

Warm-up exercises.

1. Given two numbers $2-\sqrt[3]{2}+3 \sqrt[3]{4}$ and $\sqrt[3]{4}-7 \sqrt[3]{2}+5$ from the field $Q(\sqrt[3]{2})$, express their sum, difference, product and quotient in a form $q_{0}+q_{1} \sqrt[3]{2}+q_{2}(\sqrt[3]{2})^{2}$, where q_{0}, q_{1}, q_{2} are rational.
2. Decide what is the degree and find any basis for the extension $Q \subset Q(\sqrt[5]{2})$, assuming we know that $\sqrt[5]{2}$ is an algebraic number of degree 5 .
3. Let $F_{1}=Q(\sqrt{3})$ and $F_{2}=F_{1}(\sqrt{5})$. Find the degree and a basis for the extension $Q \subset F_{2}$.

Exercises.

1. Express the numbers $\frac{1}{\sqrt[3]{2}-1}$ and $\frac{1}{\sqrt[3]{2}-\sqrt[3]{4}+1}$ from the field $Q(\sqrt[3]{2})$ in the form

$$
q_{0}+q_{1} \sqrt[3]{2}+q_{2} \sqrt[3]{4}, \quad \text { with } q_{0}, q_{1}, q_{2} \in Q
$$

2. Let u be a root of the polynomial $x^{3}-x^{2}-1$, and let $a=2+u-3 u^{2}, b=1-u+u^{2}$. Express the numbers $a \cdot b$ oraz $1 / a$ in the form $q_{0}+q_{1} u+q_{2} u^{2}$, with q_{0}, q_{1}, q_{2} rational.
3. Niech $F_{1}=Q(\sqrt{2}), F_{2}=F_{1}(\sqrt{3})$ i $F_{3}=F_{2}(\sqrt{\sqrt{2}+\sqrt{3}})$. Znajdź stopień i bazẹ rozszerzenia $Q \subset F_{3}$.
4. Verify that the extension $Q(1+\sqrt{5})$ of the field Q of rationals coincides with the extension $Q(\sqrt{5})$.
5. Prove that each extension of degree 2 of any number field F is a quadratic extension. HINT: consider any basis for this extension of the form $\{1, a\}$; express a^{2} as a linear combination of elements of this basis (with non-explicit coefficients from F); use this to show that a is a root of some quadratic equation with coefficients in F; express a using the well known formula for roots of a quadratic equation; make final conclusions.
6. Show that if u is an algebraic number of degree k, and if a is a distinct from u root of the minimal polynomial of u, then a is also an algebraic number of degree k.
7. Using the fact that the number $\sqrt[3]{2}$ is not constructible, show that the number $2 \sqrt[3]{4}+\sqrt[3]{2}+1$ is also not constructible. Show also (without finding the minimal polynomial of b) that b is of degree 3 (the same degree as $\sqrt[3]{2}$). HINT: for non-constructibility of b you can use two arguments; first, assume a contrario that b IS constructible, and observe that then $\sqrt[3]{2}$ is a root of a quadratic equation $2 x^{2}+x+1=b$ with constructible coefficients, so it is given be a formula for solutions of this equation; second argument is more abstact, and uses the fact that $b \in Q(\sqrt[3]{2})$ and b is not rational, so we have $Q \subset Q(b) \subset Q(\sqrt[3]{2})$, and we can deduce the degree of the extension $Q \subset Q(b)$.

Exercise based on the fact that π is a non-algebraic number.

8. Is it possible, by using compass and straightedge, to construct a circle whose area equals:
(a) the area of a given square (inverse of the quadrature of a circle); HINT: assume that the side of the given square is a unit;
(b) half of the area of a given circle;
(c) sum of the areas of two given circles;
(d) the difference af aread of a given square and the circle inscribed in this square?
9. Is it possible, by using compass and straightedge, to construct:
(a) the circle whose perimeter is equal to a given segment;
(b) the circle whose perimeter equals the sum of perimeters of three given circles;
(c) the semicircle whose perimeter is equal to a given segment;
(d) the semicircle whose perimeter is equal to the perimeter of a given circle?
