Geometric constructions and elements of Galois' theory List 6

Applications of Eisenstein's criterion

Warm-up exercises.

1. For which of the following polynomials one can deduce their irreducubility over the rational numbers by direct application of Eisenstein's criterion:

 $x^{4} + 6x^{2} - 18x + 12$, $x^{4} + 21x^{3} - 3x^{2} + 49$, $x^{5} - 10x^{2} + 50$?

Exercises.

- 1. Find the minimal polynomial of the number $\sqrt[3]{2+\sqrt{6}}$. Deduce that this number is not constructible.
- 2. Find the degree of the algebraic number $\sqrt{3-\sqrt[4]{3}}$.
- 3. For which natural numbers k and n can one deduce, by direct application of Eienstein's criterion, that the number $\sqrt[n]{k}$ is an algebraic number of degree n?
- 4. Show that if a polynomial $W(x) \in Q[x]$ is irreducible over Q, and if q is a rational number distinct from zero, then the polynomial V(x) := W(x+q) is also irreducible over Q.
- 5. (a) Show that $\sqrt[5]{36}$ is an algebraic number of degree 5. HINT: consider the polynomial V(x) := W(x+1), where $W(x) = x^5 - 36$.
 - (b) Using a similar method, show that the degree of the number $\sqrt[5]{4}$ is 5, and then deduce that this number is not constructible.
- 6. Prove that if u is an algebraic number, and if $q \in Q$, then the degree of the number u + q is equal to the degree of u. HINT: consider the minimal polynomial W(x) of the number u, and the polynomial V(x) := W(x - q).
- 7. Given a polynomial $W(x) \in Q[x]$ which is irreducible over Q, and a rational non-zero number q, show that the new polynomial V(x) dscribed as $V(x) := W(q \cdot x)$ is also irreducible over Q. Deduce from this, that for any algebraic number u the degrees of the numbers u and $q \cdot u$ are equal.
- 8. Show that the polynomial $W(x) = 2x^4 7$ is irreducible by considering the associated polynomial $V(x) := W(\frac{x}{2})$ multiplied by such a factor, that its coefficients become integer. Likewise, show that the polynomial $9x^5 + 5$ is irreducible over Q.
- 9. Determine the degree of the number $\sqrt[5]{3/2}$ in the following two ways:
 - (a) using the fact that $\sqrt[5]{3/2} = \frac{1}{2}\sqrt[5]{48}$ and applying exercise 7;
 - (b) using the mothod from exercise 8.

Similarly, determine the degree of the number $\sqrt[4]{2/3}$.

10. For a given polynomial $W(x) = a_n x^n + \ldots + a_1 x + a_0$ define its *palindrome* W(x) as

$$\widetilde{W}(x) := a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n.$$

- (a) Verify that $\widetilde{W}(x) = x^{\operatorname{st}(W)} \cdot W(\frac{1}{x}) = x^n \cdot W(\frac{1}{x}).$
- (b) Show that if a number $u \neq 0$ is a rooth of W, then the number $\frac{1}{u}$ is a root of W.
- (c) Justify that if $W(x) = U(x) \cdot V(x)$, then $\widetilde{W}(x) = \widetilde{U}(x) \cdot \widetilde{V}(x)$.
- (d) Prove that if $W \in Q[x]$ is irreducible over Q then W is also irreducible.
- (e) Deduce that for any algebraic number $u \neq 0$ its inverse $\frac{1}{u}$ is also algebraic and its degree coincides with the degree of u.
- (f) Determine the degree of the number $\sqrt[5]{9/5}$. 11. Knowing that $W(x) = x^3 15x^2 + 12$ is the minimal polynomial of an algebraic number u, find miniamal polynomials of the numbers u-2, 3u, 2u+3, $\frac{1}{u}$, $\frac{1}{u+1}$, $\frac{2}{2u-1}$, $\frac{u-1}{u+1}$.
 - 1