# Geometric constructions and elements of Galois' theory List 6 <br> Applications of Eisenstein's criterion 

## Warm-up exercises.

1. For which of the following polynomials one can deduce their irreducubility over the rational numbers by direct application of Eisenstein's criterion:

$$
x^{4}+6 x^{2}-18 x+12, \quad x^{4}+21 x^{3}-3 x^{2}+49, \quad x^{5}-10 x^{2}+50 ?
$$

## Exercises.

1. Find the minimal polynomial of the number $\sqrt[3]{2+\sqrt{6}}$. Deduce that this number is not constructible.
2. Find the degree of the algebraic number $\sqrt{3-\sqrt[4]{3}}$.
3. For which natural numbers $k$ and $n$ can one deduce, by direct application of Eienstein's criterion, that the number $\sqrt[n]{k}$ is an algebraic number of degree $n$ ?
4. Show that if a polynomial $W(x) \in Q[x]$ is irreducible over $Q$, and if $q$ is a rational number distinct from zero, then the polynomial $V(x):=W(x+q)$ is also irreducible over $Q$.
5. (a) Show that $\sqrt[5]{3} 6$ is an algebraic number of degree 5. HINT: consider the polynomial $V(x):=W(x+1)$, where $W(x)=x^{5}-36$.
(b) Using a similar method, show that the degrre of the number $\sqrt[5]{4}$ is 5 , and then deduce that this number is not constructible.
6. Prove that if $u$ is an algebraic number, and if $q \in Q$, then the degree of the number $u+q$ is equal to the degree of $u$. HINT: consider the minimal polynomial $W(x)$ of the number $u$, and the polynomial $V(x):=W(x-q)$.
7. Given a polynomial $W(x) \in Q[x]$ which is irreducible over $Q$, and a rational non-zero number $q$, show that the new polynomial $V(x)$ dscribed as $V(x):=W(q \cdot x)$ is also irreducuble over $Q$. Deduce from this, that for any algebraic nymber $u$ the degrees of the numbers $u$ and $q \cdot u$ are equal.
8. Show that the polynomial $W(x)=2 x^{4}-7$ is irreducible by considering the associated polynomial $V(x):=W\left(\frac{x}{2}\right)$ multiplied by such a factor, that its coefficients become integer. Likewise, show that the polynomial $9 x^{5}+5$ is irreducible over $Q$.
9. Determine the degree of the number $\sqrt[5]{3 / 2}$ in the following two ways:
(a) using the fact that $\sqrt[5]{3 / 2}=\frac{1}{2} \sqrt[5]{48}$ and applying exercise 7 ;
(b) using the mothod from exercise 8 .

Similarly, determine the degree of the number $\sqrt[4]{2 / 3}$.
10. For a given polynomial $W(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ define its palindrome $\widetilde{W}(x)$ as

$$
\widetilde{W}(x):=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}
$$

(a) Verify that $\widetilde{W}(x)=x^{\mathrm{st}(W)} \cdot W\left(\frac{1}{x}\right)=x^{n} \cdot W\left(\frac{1}{x}\right)$.
(b) Show that if a number $u \neq 0$ is a rooth of $W$, then the number $\frac{1}{u}$ is a root of $\widetilde{W}$.
(c) Justify that if $W(x)=U(x) \cdot V(x)$, then $\widetilde{W}(x)=\widetilde{U}(x) \cdot \widetilde{V}(x)$.
(d) Prove that if $W \in Q[x]$ is irreducible over $Q$ then $\widetilde{W}$ is also irreducible.
(e) Deduce that for any algebraic number $u \neq 0$ its inverse $\frac{1}{u}$ is also algebraic and its degree coincides with the degree of $u$.
(f) Determine the degree of the number $\sqrt[5]{9 / 5}$.
11. Knowing that $W(x)=x^{3}-15 x^{2}+12$ is the minimal polynomial of an algebraic number $u$, find miniamal polynomials of the numbers $u-2,3 u, 2 u+3, \frac{1}{u}, \frac{1}{u+1}, \frac{2}{2 u-1}, \frac{u-1}{u+1}$.

