Geometric constructions and elements of Galois' theory List 7

Constructible complex numbers and construcitibility of regular polygons

Wam-up exercise

1. Prove that the following complex numbers are algebraic, by indicating for each of them a polynomial with integer coefficients for which this number is a root: $2+i, 1+i \sqrt{2}, \sqrt{2}+i$.

Zadania.

1. Show that, given a quadratic polynomial $W(x)=a x^{2}+b x+c$ with real coefficients a, b, c such that the discriminant $\Delta=b^{2}-4 a c$ is negative, then its roots are indeed given as $(-b \pm i \sqrt{-\Delta}) / 2 a$. Proof also that if the coefficients a, b, c are rational then both roots of W are constructible complex numbers.
2. Prove directly from the definition (not referring to the characterization in terms of complex quadratic extensions) that if z is a constructible complex number, then any of its roots of degree 4 is also constructible. HINT: express z in the trigonometric form, $z=r(\cos \theta+i \sin \theta)$, express also its roots of degree 4 in trigonometric form, and apply the definition of constructibility of a complex number which refers to the trigonimetric form.
3. Find all four complex roots of the polynomial $x^{4}+2 x^{2}+4$ and check that they are all constructible. HINT: solve first the induced quadratic equation with the unknown $y=x^{2}$; express solutions of this quadratic equation in trigonometric form, so that you can easily compute then their square roots.
4. Prove that for any polynomial $x^{4}+a x^{2}+b \in Q[x]$ its all complex roots are constructible complex numbers.
5. Describe the set of all algebraic numbers of degree 2 (find general form of such numbers).
6. Prove that if p is an odd prime number, and if $\varepsilon_{2 p}=\cos \frac{2 \pi}{2 p}+i \cdot \sin \frac{2 \pi}{2 p}$ is the principal root of degree $2 p$ of the number 1 , then the degree of $\varepsilon_{2 p}$ is $p-1$. Proceed along the following steps of the argument:
(a) $\varepsilon_{2 p}$ is the root of the polynoimial $x^{p}+1$;
(b) $\varepsilon_{2 p}$ is the root of the polynomial $Z(p)=\frac{x^{p}+1}{x+1}$;
(c) polynomial $Z(x)$ is irreducible, since the related polynomial

$$
\widetilde{Z}(x):=Z(x-1)=\frac{(x-1)^{p}+1}{(x-1)+1}=\frac{(x-1)^{p}+1}{x}
$$

is irreducuible;
(d) final conclusions.
7. Assuming we know how to construct the regular 17-gon, describe constructions of the regular 34 -gon, 51 -gon and 85 -gon.
8. For all natural numbers $3 \leq n \leq 100$, decide which regular n-gons are constructible, and which are not. Calculate the numbers of constructible and non-constructible regular n-gons with this restriction for n.
9. For which natural n is the number $\cos \frac{2 \pi}{n}$ constructible? And how about the number $\sin \frac{2 \pi}{n}$?
10. Verify whether the angles $12^{\circ}, 3^{\circ}, 5^{\circ}, 2^{\circ}$ are constructible or not. Is the angle 75° constructible? Which of the angles n°, where n is a natural number, are constructible, and which are not?

