
Geometric constructions and elements of Galois’ theory
List 9

Groups of permutations and solvable groups

Groups of permutations
1. Prove carefully that the map h : Sn → C2 given by

h(σ) =

{
id gdy σ jest permutacj/a parzyst/a
(12) gdy σ jest permutacj/a nieparzyst/a

is a homomorphism of groups.

2. Justify that the following groups (a) S3, (b) Sn for n > 3, (c) A4, (d) An for n > 4,
are not abelian.

3. Prove that a cycle of length k in a permutation group Sn is an even permutatioin if
and only if k is odd.

4. Describe the group A4 as a group of symmetries of the regular 3-simplex (i.e. describe
the symmetries of the 3-simplex corresponding to all permutations from A4). Do the
same for the group A3 and the symmetries of a regular triangle.

5. Describe the group of all symmetries of a rhombus, viewed as a subgroup in the group
S4 of all permutations of its vertex set.

6. Viewing the symmetry group of a regular hexagon as a subgroup in the permutation
group S6 (via permutations of the vertices), decompose into combinations of cycles
all the symmetries from this group.

7. Verify that the cyclic subgroup Cn < Sn, consisting of the powers

σk : k = 0, 1, . . . , n− 1

of the cycle σ = (12 . . . n), acts transitively on the set 1, . . . , n.

8. Find a nontrivial subgroup H < S5 such that its order |H| is not divisible by 5.
Check that H does not act transitively on the set 1, 2, 3, 4, , 5. Find as many of such
subgroups as possible, of pairwise distinct orders not divisible by 5.

9. Show that for any n ≥ 3 the subgroup An < Sn consisting of all even permutations
of the set 1, 2, . . . , n acts transitively on this set. Verify directly (not by referring to
a lemma discussed during a lecture) that the order of An is divisible by n.

Solvability of groups

10. Show that the group of all symmetries of a regular triangular prism (which has a
regular triangle as its base) is nonabelian, and yet solvable. HINT: consider a nat-
ural map from this group to the group of permutations of the set of two triangular
faces of this prism; check that this map is a homomorphism; find the kernel of this
homomorphism; use this homomorphism to show that the group is solvable.

11. Consider the group Q, called the quaternion group. consisting of 8 elements
1,−1, i,−i, j,−j, k,−k.

The operation of product is given by the following rules, together with assosiativity:
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• 1 is the neutral element of this group,
• (−1) · x = x · (−1) = −x for any x ∈ Q, where we use the convention that
−(−a) = a for a = 1, i, j, k,

• i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j.
(1) Calculate (−1)2, ji, i · (−j), j · (−i), i · (−i), (−j) · (−j) and (−j) · (−i).
(2) Verify that the group Q is not abelian.
(3) Check that the map h : Q → C2 = ({−1, 1}, ·) given by h(1) = h(−1) = h(i) =

h(−i) = 1 oraz h(j) = h(−j) = h(k) = h(−k) = −1 is a group homomorphism.
(4) Verify that the kernel of the homomorphism h from (3) is an abelian group, and

conclude that Q is solvable.
(5) [special exercise] Show that the group Q is not isomorphic to the group of all

symmetries of the square, even though both these groups have the same order 8,
and are both non-abelian and solvable. HINT: compare the numbers of elements
of order 2 in these groups.

12. Prove in the following steps that the group K of all 48 symmetries of the cube is
solvable.
(a) Consider the map h1 : K → C2 = ({−1, 1}, ·), which associates the element

1 ∈ C2 to all those symmetries of the cube which preserve the orientation of
the space (i.e. to all rotations and to the trivial symmetry from K), and which
associates the element −1 ∈ C2 to all other symmetries of the cube (i.e. to mirror
symmetries with respect to various planes, to the central symmetry with respect
to the center of the cube, and to all remaining symmetries). Check that this map
is a homomorphism.

(b) Consider the colouring of the vertices in the cube into white and black so that any
two vertices contained in an edge of this cube have distinct colours. Show that
each symmetry of the cube either preserves all colours of the vertices, or reverses
them all. Consider then the map h2 : ker(h1)→ C2 which associates the number 1
to those symmetries which preserve the colours, and which associates −1 to those
symmetries which reverse colours. Justify that h2 is a homomorphism. Make a
list of all 12 symmetries which belong to the kernel ker(h2) of this homomorphism.

(c) Consider the homomorphism h3 : ker(h2) → S3, which to any symmetry of the
cube associates the permutation of the set of 3 directions parallel to the edges of
the cube, according to how this symmetry changes the directions of the edges.
Check that the image of this homomorphism in fact coincides with the subgroup
A3 in S3, so that it is a homomorphism into an abelian group A3. List all
4 symmetries belonging to the kernel ker(h3), and check that this kernel is an
abelian group.

(d) Summarize the steps (a), (b) and (c) into a final argument cioncluding that K is
solvable.
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