Exercises - Combinatorial Group Theory List $2\frac{1}{2}$

Applications of Nielsen theory (and of its consequences)

- 1. Prove that the set a^2 , ab, ba freely generates a subgroup in the free group $F_{\{a,b\}}$. Hint: check wether this tuple of elements is N-reduced (reduced in the sense of Nielsen), and if not, modify it by means of elementary Nielsen transformations.
- 2. Let $h : F_n \to F_m$ be any **surjective** homomorphism between free groups of finite rank. Show that there exists a basis Y in F_n , being the disjoint union $Y = Y_1 \cup Y_2$, such that:
 - (i) h restricted to the subgroup generated by Y_1 is an isomorphism onto F_m , and

(ii) h restricted to the subgroup generated by Y_2 is trivial.

Hint: for any basis X in F_n consider the tuple h(X) in F_m Nielsen transformations which modify this tuple into a tuple (u_1, \ldots, u_n) , in which the subtuple (u_1, \ldots, u_m) is a basis of F_m , and where $u_j = 1$ for j > m.

3. Around 1930 Hopf has posed the problem of existence of a finitely generated group G whose proper quotient G/H is isomorphic to G. Groups G with no proper quotient isomorphic to G are called since then *hopfian*. Prove that free groups of finite rank are hopfian. Hint: show that each surjective homomorphism $h : F_n \to F_n$ is an isomorphism; to do it, consider the tuple U = h(X) consisting of the images of elements from the standard basis X of F_n .

COMMENT: the first *non-hopfian* groups have been discovered in the 1950-ties by Higman i Neumann.

- 4. Consider the free group F_S , $S = \{a, b\}$, and let c = [a, b] be the commutator of its standard generators. Prove that any automorphism of the group F_S maps c either to c or to c^{-1} or to a conjugate of one of these two elements. Hint: use the generators of of the automorphism group $\operatorname{Aut}(F_S)$ and cyclically reduced representatives of the conjugacy classes.
- 5. Let a, b be such elements of a free group F, that some of their powers a^m, b^n , for $m, n \neq 0$, commute. Prove that then a and b are powers of the same element $c \in F$. Hint: use the fact that subgroups of a free group are free.