
Exercises - Combinatorial Group Theory
List 2.

Ping-pong Lemma, Banach–Tarski paradox, and Magnus representation.

Applications of ping-pong lemma

1. State and prove a version of ping-pong lemma for three elements of a group.
2. Show that, if parameter d is large enough, the following two maps of R2, y a, b ∈

GL(2, R), genrate a free group: a =

(
d 0
0 1

)
, b = tat−1, where t is the rotation

through the angle π/4 around the origin of the coordinate system. Hint: Use the
geometric form of the maps a and b and argue geometrically

3. (Schottky groups) A group G acts by bijections on a set X, and Y1, Y2, Y3, Y4 are
some pairwise disjoint subsets of X. Suppose that a, b are such elements of G that:
(1) a maps the complement of Y1 into Y2,
(2) b maps the complement of Y3 into Y4.
Show that the subgroup of G generated by {a, b} is free with respect to this set. Hint:
show first that a−1 maps the complement of Y2 into Y1, and then apply appropriately
the ping-pong lemma.

4. (Axial automorphisms of trees) An automorphism γ of a tree T is axial if there is
a bi-infinite polygonal path A ⊂ T (called the axis of γ) preserved by γ and such that
γ acts on A “translating” it by certain non-zero amount of segments (this number of
segments is then called the translation number of γ, and we denote it d(γ)).
(a) Show that any two axial automorphisms of a tree T having disjoint axes generate

a free group.
(b) Let γ, δ be axial automorphisms of a tree T , and suppose that the intersection of

their axes is a bounded polygonal path consisting of l edges of T . Prove that if the
translation numbers of γ and δ are greater than l then these elements generate a
free subgroup of the automorphism group of T .

Approaching Banach–Tarski paradox

5. (Embedding of F2 into SO(3)) Let θ = arccos(1/3). Prove that the rotations A
and B through the angle θ around the axes Oz i Ox, respectively, generate a free
subgroup of rank 2 in the group SO(3).
Hints: (1) every nontrivial element of the free group F{a,b}, up to conjugation, is
re[presented by a reduced word terminating with the letter a. (2) By induction with
respect to the word length show that, if we express the rotations A,B in terms of ap-
propriate 3×3 matrices, then for any reduced word over the alphabet {A,B,A−1, B−1}
terminating with A and having the length n, the corresponding matrix from SO(3)
has the first column of form 1

3n · (a, b
√
2, c)T , where a, b, c are some integers, and b is

not divisible by 3 (in particular, b ̸= 0).
6. (Paradoxical decomposition of a free group) Find a decomposition of the pree

group f rank 2 into four subsets, F2 = A⊔B⊔C⊔D, such that some left translations of
A and B (and similarly some left translations of C and D) also give a decomposition
of F2. More precisely, there are elments g, h ∈ F2 such that the following two disjoint
unions are decompositions of F2: F2 = A ⊔ gB = C ⊔ hD.
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Few preparations not related to free groups.
Sets X,Y are piecewise congruent if we can decompose them into finitely many pieces,
X = X1 ⊔ . . . ⊔Xn oraz Y = Y1 ⊔ . . . ⊔ Yn, such that for each i the pieces Xi and Yi
are congruent.

Exercise A. Piecewise congruence is an equivalence relation.
Exercise B. The circle S1 on the plane is piecewise congruent to the circle S1 \ {p}
with one point removed.
Exercise C. [can be resolved using Exercise 2] The sphere S2 in the 3-space is piecewise
congruent with the complement S2 \ C of its any countable subset C.

7. (Paradoxical decomposition of the sphere S2) Show that the sphere S2 and the
disjoint union S2 ⊔ S2 of its two copies are piecewise congruent.
Hints: (1) Let C be the set of intersections of the sphere S2 (viewed as srtandardly
embedded in R3) with axes of all rotations corresponding to nontrivial elements of the
group F{A,B}, under its embedding into SO(3) as in Exercise 5; then F{A,B} acts on
the complement S2 \ C freely, i.e. all orbits of this action are in 1–1 correspondence
with the group. (2) Paradoxical decomposition of the group F2 as in Exercise 6 induces
then piecewise congruence of S2 \ C with the disjoint union of two copies of S2 \ C.

Magnus representation and its consequences

Let QS be the ring of formal power series with respect to noncommuting variables
ξs : s ∈ S, with integer coefficients, and let US be the multiplicative group of units (i.e.
invertible elements) in this ring. Copnsider the map ψ : S → US given by s 7→ 1 + ξs for
all s ∈ S.

8. Prove that the homomorphism ψ̄ : FS → US which extends ψ is a monomorphism
(equivalently, the set 1+ ξs : s ∈ S forms a basisi of a free subgroup in the group US).

Consider the ideal ∆ := (ξs : s ∈ S) ⊂ QS , i.e. the ideal generated by all monomials ξs. For
each natural n consider the power ∆n of the ideal ∆, i.e. the ideal consisting of all power
series in which the coefficients of all monomials of degree less than n vanish. Consider also

the lower central series of the group FS , i.e. the sequence of normal subgroups F
(k)
S ▹ FS

given recursively by: F
(1)
S = FS , F

(k+1)
S = [F

(k)
S , FS ].

9. Prove that for the commutator subgroup F
(2)
S of the group FS we have ψ̄(F

(2)
S ) =

ψ̄(FS) ∩ [1 + ∆2].

10. Prove that for each natural n we have ψ̄(F
(n)
S ) ⊂ 1+∆n. Deduce that

∩
n F

(n)
S = {1}.

11. (Residual nilpotency of free groups) Prove that a nonabelian free group FS is

not nilpotent (i.e. for each n the subgroup F
(n)
S is nontrivial). Show also that FS

is residually nilpotent, i.e. for each g ∈ FS \ {1} there is a nilpotent group P and a
homomorphism h : FS → P which maps g to a nontrivial element h(g) ̸= 1 in P .
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