Exercises - Combinatorial Group Theory List 3. Presentations of groups.

Presentations

- 1. Prove that the "multiplicative table" of a finite group G yields a finite presentation of this group. More precisely, take as a set of generators the set of all elements of G, and as a set of relations all equations of form gh = k, over all triples g, h, k of elements of G for which the equality gh = k actually holds in G.
- 2. (a) Prove that $\langle a, b | [a, b] \rangle$ is a presentation of the group Z^2 .
 - (b) More generally, let $G_1 = \langle S_1 | R_1 \rangle$ and $G_2 = \langle S_2 | R_2 \rangle$. Prove that the product $G_1 \times G_2$ has a presentation $\langle S_1 \sqcup S_2 | R_1 \cup R_2 \cup \{ [s_1, s_2] : s_1 \in S_1, s_2 \in S_2 \} \rangle$
 - (c) Find a similar presentation as in part (b) for the semidirect product of the groups G_1 i G_2 induced by a homomorphism $\alpha : G_1 \to \operatorname{Aut}(G_2)$.
- 3. Show that the presentation $\langle S | \{ w^2 : w \text{ is any word over } S \cup S^{-1} \} \rangle$ describes the direct sum of |S| copies of the group Z_2 , i.e. the group of all functions $S \to Z_2$ with finite support and with the pointwise multiplication.
- 4. Show that the presentation $\langle a, b | a^{-1}ba = b^2, b^{-1}ab = a^2 \rangle$ describes the trivial group.

Applications of the universality of a group given by a presentation

- 5. Consider the group $G = \langle a, b, c, d | a^2, b^2, c^2, d^2, [a, b], [b, c], [c, d], [d, a] \rangle$. Prove that the element ac has infinite order in G, and the order of ab is 2.
- 6. Prove that the group $\langle a, b | a^2 b^2, (ab)^3 \rangle$ is nonabelian. Hint: find a homomorphism of this group onto the group of all symmetries of the equilateral triangle (equivalently, onto the symmetric group Sym(3)).
- 7. Consider the group $G = \langle a, t | t^{-1}at = a^2 \rangle$, called the *Baumslag-Solitar group*.
 - (a) Show that in this group the elements a, t have infinite order and do not commute.
 - (b) Show that the function given by $\psi(t) = t$, $\psi(a) = a^{-2}$ extends to a homomorphism $\psi: G \to G.$
 - (c) Show that the homomorphism ψ from part (b) is an automorphism of G. Hint: guess the form of a potential inverse homomorphism ψ^{-1} , by deriving the possible value of $\psi^{-1}(a)$.
- 8. Determine the ranks of the groups G given by the presentations below, calculating the number of homomorphisms $G \to Z_2$.
 - (a) $G = \langle a_1, b_1, \dots, a_g, \tilde{b}_g | [a_1, b_1] \cdot [a_2, \tilde{b}_2] \cdot \dots \cdot [a_g, b_g] \rangle, \quad g \ge 1.$ (b) $\langle a_1, \dots, a_k | a_1^2 \cdot a_2^2 \cdot \dots \cdot a_k^2 \rangle, \quad k \ge 1.$

(These groups are in fact the fundamental groups of (a) oriented and (b) non-orientable closed surfaces; they are briefly called the *surface groups*.)

- 9. Let G be a group having finite presentation with more generators than relations. Show that G has then a quotient isomorphic to the infinite cyclic group. Find an example of an infinite finitely generated group which does not have such a quotient.
- 10. Prove that the group $G = \langle b, t | t^{-1}b^2t = b^3 \rangle$ is non-hopfian (ti.e. it admits a surjective homomorphism $\theta: G \to G$ with nontrivial kernel). To do it, show that:
 - (a) the assignments $\theta(t) = t$ and $\theta(b) = b^2$ induce a homomorphism $G \to G$;
 - (b) this homomorphism is surjective;
 - (c) commutator $[t^{-1}bt, b]$ is a nontrivial element of G, and its image under θ is trivial.

Tietze transformations

- 11. Apply carefully Tietze transformations in order to modify the presentation $\langle a, b, c | c^{-1}ac = b, c^{-1}bc = a, c^2 = 1 \rangle$ into the presentation $\langle a, c | c^2 = 1 \rangle$.
- 12. Show that the group $G = \langle a, b | ababa = 1 \rangle$ is the infinite cyclic group.
- 13. Let $G = \langle s_1, \ldots, s_m | r_1, \ldots, r_n \rangle$ be a finitely presented group.
 - (a) Let $\langle s_1, \ldots, s_m | \rho_1, \ldots \rangle$ be some another presentation of G, with the same generating set, and with infinite set of relations. Prove that then, for N sufficiently large, $\langle s_1, \ldots, s_m | \rho_1, \ldots, \rho_N \rangle$ is a finite presentation of G.
 - (b) Let $\langle t_1, \ldots, t_k | p_1, \ldots \rangle$ be some another p[resentation of G, with infinitely many relations. Show that there is N such that $\langle t_1, \ldots, t_k | p_1, \ldots, p_N \rangle$ is a finite presentation of this group. Hint: use Tietze transformations and part (a).

Quotients of groups given by a presentation

14. Determine the groups obtained as abelianizations of dihedral groups, of the Baumslag-Solitar group from exercise 7, and of surface groups from exercise 8.