Axioms of Euclidean Geometry after David Hilbert, 1899
 (slightly modified)

Primitive notions (or basic terms):

1. point,
2. line (i.e. straight line),
3. incidence relation (for pairs point-line), denoted with the symbol \in,
4. relation of order for points from any line p, denoted with the symbol $<_{p}$,
5. measure of segments, denoted m,
6. measure of angles, denoted with the symbol μ.

The other notions appearing in the statements of the axioms (such as segment, angle, half-line and half-plane) need to be defined, in terms of primitive notions. Here are their definitions:

- for distinct points A, B belonging (i.e. incident) to a line p, the interval $A B$ is a set consisting of points A and B and all points C such that $A<_{p} C<_{p} B$ or $B<_{p} C<_{p} A$;
- a half-line started at A is any set of form $\{A\} \cup\left\{X \in p: A<_{p} X\right\}$ or $\{A\} \cup\left\{X \in p: X<_{p} A\right\}$, where p is any line containing A;
- an angle is a collection of two half-lines with common starting point not contained in a common line;
- a half-plane bounded by a line p is any set of form $\{Y: Y \in p\} \cup\{C\} \cup\{X: C X \cap p=\emptyset\}$, where C is any point not lying on p.

Incidence axioms (i.e axioms concerning the relation of incidence)
I1. For any two distinct points A and B there is exactly one line p passing through A and B.
I2. Each line contains at least 2 distinct points.
I3. There exist three points which do not lie on a common line.

Axioms of order

P1. For points of any line p the relation $<_{p}$ is a linear order, i.e.:
(a) if $A<_{p} B$ then $A \neq B$;
(b) if $A \in p, B \in p$ and $A \neq B$, then precisely one of the conditions $A<_{p} B, B<_{p} A$ holds;
(c) if $A<_{p} B$ and $B<_{p} C$ then $A<_{p} C$.

P2. (Moritz Pasch' Axiom) For any non-collinear points A, B, C and any line p not passing through any of these points, if p intersects the segment $A B$ then it also intersects precisely one of the segments $B C$ and $A C$.

Axioms of measure of segments

M1. For any segment $A B$ its measure $m(A B)$ is a positive real number.
M2. For each half-line r started at a point A, and for any positive real number d there is a point $B \in r$ such that $m(A B)=d$.
M3. If $A<_{p} B<_{p} C$ then $m(A B)+m(B C)=m(A C)$.

Axioms of measure of angles

K1. For any angle $r s$ (composed of half-lines r and s having common starting point) the measure $\mu(r s)$ is a real number from the open interval $(0, \pi)$.
K2. For any line p and any half-plane Ω bounded by p, for any half-line r contained in p and any real number $\alpha \in(0, \pi)$, there is a half-line s contained in Ω which forms together with r an angle such that $\mu(r s)=\alpha$.
K3. Let A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ be two triples of non-collinear points. If $m(A B)=m\left(A^{\prime} B^{\prime}\right), m(A C)=$ $m\left(A^{\prime} C^{\prime}\right)$ and $\mu(B A C)=\mu\left(B^{\prime} A^{\prime} C^{\prime}\right)$ then $\mu(A B C)=\mu\left(A^{\prime} B^{\prime} C^{\prime}\right)$.

Parallel Axiom
R. If A is a point not lying on a line p, then there is exactly one line through A not intersecting p.

