Algebraic Topology 2. Exercises. List 4.

CW-complexes, cellular homology, simplicial homology

1. Verify that for any CW-complex X the pair (X^{n}, X^{n-1}) is a good pair of spaces.
2. Provide details of the (inductive) argument for showing that any compact suibset of a CW-complex X is contained ion some finite subcomplex of X.
3. Check that if the image of the characteristic map φ_{α} for a cell e_{α}^{n+1} is disjoint with the (interior of) a cell e_{β}^{n} then the incidence coefficient vanishes, i.e. $i_{\alpha, \beta}=0$.
4. For a given finite CW-complex X the cellular boundary map $\partial^{C W}: C_{n+1}^{C W} X \rightarrow C_{n}^{C W} X$ is the "linear" map given by the matrix with integer coefficients $i_{\alpha, \beta}$ (incidence coefficients for pairs of ($n+1$)- and n-cells). Check how is this matrix modified if one canges
(a) the orientation of one of the $(n+1)$-cells,
(b) the orientation of one of the n-cells.
5. Given a cellular map $f:(X, A) \rightarrow(Y, B)$ between CW-pairs, describe (in terms of the associated degrees $\left.f_{\alpha, \beta}\right)$ the induced chain homomorphism $f_{\#}: C_{\star}^{C W}(X, A) \rightarrow C_{\star}^{C W}(Y, B)$.
6. Recall that we have identifications $C_{n}^{C W} X=H_{n}\left(X^{n}, \stackrel{\star}{X}^{n-1}\right)$, and that under these identifications the cellular boundary map $\partial_{n+1}^{C W}: C_{n+1}^{C W} X \rightarrow C_{n}^{C W} X$ is given as the composition $j_{n} \partial_{n+1}$ of the maps $\partial_{n+1}: H_{n+1}\left(X^{n+1}, X^{n}\right) \rightarrow H_{n} X^{n}$ and $j_{n}: H_{n} X^{n} \rightarrow H_{n}\left(X^{n}, X^{n-1}\right)$.
(a) Show that vthe map $\partial_{n+1}^{C W}$, viewed as a homomorphism $H_{n+1}\left(X^{n+1}, X^{n}\right) \rightarrow H_{n}\left(X^{n}, X^{n-1}\right)$, coincides with the boundary map in the long exact sequence of the triple (X^{n+1}, X^{n}, X^{n-1}).
(b) Using part (a) and naturality of exact sequences of triples, show that for any cellular map $f: X \rightarrow Y$ the cellular induced homomorphisms $f_{\#}^{C W}: C_{n}^{C W} X \rightarrow C_{n}^{C W} Y$ commute with the cellular boundary homomorphisms $\partial^{C W}$ (i.e. they form a morphism of cellular chain complexes).
7. Consider a closed connected n-dimensional manifold M with a fixed triangulation. Suppose that this manifold is orientable, i.e. the n-simplices of its triangulation can be oriented consistently, which means that for any $(n-1)$-simplex τ of this triangulation the orientations induced from the orientations of the two n-simplices containing τ are opposite.
(a) Using simplicial homology, show that $H_{n} M=Z$.
(b) Suppose M is closed, connected, n-dimensional, triangulated and non-orientable. Show that then $H_{n} M=0$.
8. Let $K(3,3,3)$ be a 2 -dimensional simplicial complex described as follows. Consider sets A, B, C consisting of 3 elements. Identify the vertex set of $K(3,3,3)$ with the disjoint union $A \sqcup B \sqcup C$, and the set od 2-simplices with the family of all such subsets $T \subset A \sqcup B \sqcup C$ which have precisely one element in each of A, B and C. Compute the simplicial homology of $K(3,3,3)$.

Cellular homology and Euler characteristic

Exercises 15-16 and 20-24 from pages 156-156 of Hatcher's book "Algebraic Topology".

Mayer-Vietoris sequences

Exercises 28-29 and 31-33 from pages 157-158 of Hatcher's book "Algebraic Topology".
9. Give an elementary derivation for the Mayer-Vietoris sequence in simplicial homology for a simplicial complex X decomposed as the union of subcomplexes A and B.

