Algebraic Topology 2. Exercises. List 4.

CW-complexes, cellular homology, simplicial homology

- 1. Verify that for any CW-complex X the pair (X^n, X^{n-1}) is a good pair of spaces.
- 2. Provide details of the (inductive) argument for showing that any compact subset of a CW-complex X is contained ion some finite subcomplex of X.
- 3. Check that if the image of the characteristic map φ_{α} for a cell e_{α}^{n+1} is disjoint with the (interior of) a cell e_{β}^{n} then the incidence coefficient vanishes, i.e. $i_{\alpha,\beta} = 0$.
- 4. For a given finite CW-complex X the cellular boundary map $\partial^{CW} : C_{n+1}^{CW} X \to C_n^{CW} X$ is the "linear" map given by the matrix with integer coefficients $i_{\alpha,\beta}$ (incidence coefficients for pairs of (n + 1)- and *n*-cells). Check how is this matrix modified if one canges
 - (a) the orientation of one of the (n + 1)-cells,
 - (b) the orientation of one of the *n*-cells.
- 5. Given a cellular map $f:(X,A)\to (Y,B)$ between CW-pairs, describe (in terms of the associated
- 6. Given a contrar map f : (A, A) → (I, D) between CW-pairs, describe (in terms of the associated degrees f_{α,β}) the induced chain homomorphism f_# : C^{CW}_{*}(X, A) → C^{CW}_{*}(Y, B).
 6. Recall that we have identifications C^{CW}_nX = H_n(Xⁿ, Xⁿ⁻¹), and that under these identifications the cellular boundary map ∂^{CW}_{n+1} : C^{CW}_{n+1}X → C^{CW}_nX is given as the composition j_n∂_{n+1} of the maps ∂_{n+1} : H_{n+1}(Xⁿ⁺¹, Xⁿ) → H_nXⁿ and j_n : H_nXⁿ → H_n(Xⁿ, Xⁿ⁻¹).
 (a) Show that vthe map ∂^{CW}_{n+1}, viewed as a homomorphism H_{n+1}(Xⁿ⁺¹, Xⁿ) → H_n(Xⁿ, Xⁿ⁻¹), coincides with the boundary map in the large event sectors as followed by Vⁿ⁺¹ Vⁿ, Vⁿ⁻¹).
 - coincides with the boundary map in the long exact sequence of the triple (X^{n+1}, X^n, X^{n-1}) .
 - (b) Using part (a) and naturality of exact sequences of triples, show that for any cellular map $f: X \to Y$ the cellular induced homomorphisms $f_{\#}^{CW}: C_n^{CW}X \to C_n^{CW}Y$ commute with the cellular boundary homomorphisms ∂^{CW} (i.e. they form a morphism of cellular chain complexes).
- 7. Consider a closed connected *n*-dimensional manifold M with a fixed triangulation. Suppose that this manifold is orientable, i.e. the *n*-simplices of its triangulation can be oriented *consistently*. which means that for any (n-1)-simplex τ of this triangulation the orientations induced from the orientations of the two *n*-simplices containing τ are opposite.
 - (a) Using simplicial homology, show that $H_n M = Z$.
 - (b) Suppose M is closed, connected, *n*-dimensional, triangulated and non-orientable. Show that then $H_n M = 0$.
- 8. Let K(3,3,3) be a 2-dimensional simplicial complex described as follows. Consider sets A, B, Cconsisting of 3 elements. Identify the vertex set of K(3,3,3) with the disjoint union $A \sqcup B \sqcup C$, and the set of 2-simplices with the family of all such subsets $T \subset A \sqcup B \sqcup C$ which have precisely one element in each of A, B and C. Compute the simplicial homology of K(3,3,3).

Cellular homology and Euler characteristic

Exercises 15–16 and 20–24 from pages 156–156 of Hatcher's book "Algebraic Topology".

Mayer-Vietoris sequences

Exercises 28–29 and 31–33 from pages 157–158 of Hatcher's book "Algebraic Topology".

9. Give an elementary derivation for the Mayer-Vietoris sequence in simplicial homology for a simplicial complex X decomposed as the union of subcomplexes A and B.