DIFFERENTIAL TOPOLOGY - EXERCISES

LIST 1. Measure zero sets in manifolds and Sard's Theorem

- 1. Show that for any space curve $\gamma : (a, b) \to R^3$ of class C^2 which is regular (i.e. $\forall t \in (a, b) \ \gamma'(t) \neq 0$) there is a plane $P \subset R^3$ such that the orthogonal projection of γ on P is still regular.
- 2. Show that if m < p then any C^1 map of a manifold M^m to the sphere S^p is homotopic to a constant map (i.e. it can be continuously deformed into a constant map). HINT: show that any map as above omits some point $x \in S^p$, and use stereographic projection $\sigma: S^p \setminus \{x\} \to R^p$.
- 3. Find a function $f: R \to R$ such that its set of critical values is Q (rationals).
- 4. Deduce from Sard's Theorem that if $f: M \to N$ is smooth and dim $M < \dim N$ then f(M) has measure 0.
- 5. Consider an *n*-dimensional manifold X, a natural number m > 2n + 1, and given a vector $v \in \mathbb{R}^m \setminus \{0\}$ let π_v be the orthogonal projection in \mathbb{R}^m onto a linear subspace (a hyperplane) $Ort(v) \subset \mathbb{R}^m$ consisting of all vectors orthogonal to v.
 - (A) Show that if $f: X \to R^m$ is a injective C^1 map then there is $v \in R^m \setminus \{0\}$ such that the composition map $\pi_v \circ f: X \to Ort(v)$ is still injective. Hint: consider an auxiliary map $h: \{(p,q) \in X \times X : p \neq q\} \to RP^{m-1}$ given by $h(p,q) = [f(p) - f(q)] \in RP^{m-1}$.
 - (B) Show that if $f: X \to R^m$ is an immersion of class C^2 then there is $v \in R^m \setminus \{0\}$ such that the composition map $\pi_v \circ f: X \to Ort(v)$ is still an immersion. Hint: define and use an appropriate auxiliary map

 $g: TX \setminus \{\text{zero tangent vectors in } TX\} \to RP^{m-1}$

induced by an immersion f.

- 6. It is known that each manifold can be smoothly embedded in \mathbb{R}^N , for sufficiently large N.
 - (A) Use this fact, and part (A) of the previous exercise, to show that each compact n-dimensional manifold can be smoothly embedded into R^{2n+1} .
 - (B) Show that each *n*-dimensional manifold admits an immersion inoto \mathbb{R}^{2n} .
- 7. A contour of the projection of a surface $P \subset R^3$ onto the plane $\{z = 0\}$ is the set of the images (through the above projection) of all those points $x \in P$ for which the tangent plane $T_x P$ contains the vector $\frac{\partial}{\partial z}$. Show that the contour of any smooth surface $P \subset R^3$ is a zero measure subset of the plane $\{z = 0\}$.
- 8. Given a smooth curve $\gamma : R \to R^2$, consider a parametrized family of curves $\gamma_u : u \in R^2$ given by $\gamma_u(t) = \gamma(t) + u \cdot t$. Prove that arbitrarily close to (0,0) there exist $u \in R^2$ such that the curves γ_u are regular.
- 9. Given a smooth function $f: R \to R$, consider a parametrized family of functions $f_u: u = (u_1, u_2) \in R^2$ given by $f_u(t) = f(t) + u_1 \cdot t + u_2 \cdot t^2$. Show that arbitrarily close to (0, 0) there is $u \in R^2$ such that f_u is a so called *Morse function*, i.e. a function such that for any t with $f'_u(t) = 0$ we have $f''_u(t) \neq 0$.
- 10. Show that there is no smooth function $f: \mathbb{R}^n \to \mathbb{R}^n$ such that the set $f^{-1}(a)$ is uncountable for each $a \in \mathbb{R}^n$.
- 11. (A) Show that any closed set $A \subset \mathbb{R}^n$ is the zero set of some smooth function $f : \mathbb{R}^n \to \mathbb{R}$.
 - (B) Use (A) and Sard's Theorem to show that for any closed $A \subset \mathbb{R}^n$ there exist open subsets $U_1 \supset U_2 \supset U_3 \supset \ldots$ such that for each $j \ge 1$ the boundary of U_j in \mathbb{R}^n is a smooth (n-1)-submanifold and $A = \bigcap_{j=1}^{\infty} U_j$.