DIFFERENTIAL TOPOLOGY - EXERCISES LIST 4. Transversality

Preliminary exercises.

- 1. Let V_1, V_2 be some linear subspaces in a vector space \mathbb{R}^n , and view them as submanifolds. Show that $V_1 \not \cup V_2$ if and only if $V_1 + V_2 = \mathbb{R}^n$.
- 2. Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map, and let V be a linear subspace in \mathbb{R}^m . Show that $F \not \upharpoonright V$ if and only if $F(\mathbb{R}^n) + V = \mathbb{R}^m$.
- 3. Which of the following pairs of linear subspaces cross transversely:
 - (1) the plane Oxy and the plane span[(0,1,1), (1,-1,0)] in \mathbb{R}^3 ;
 - (2) the plane span[(1,3,0), (2,-1,0)] and the axis Ox in \mathbb{R}^3 ;
 - (3) $R^n \times \{0\}$ and the diagonal $\Delta = \{(x, x) : x \in R^n\}$ in $R^n \times R^n$;
 - (4) the diagonal Δ and the "skew diagonal" $\{(x, -x) : x \in \mathbb{R}^n\}$ in $\mathbb{R}^n \times \mathbb{R}^n$;
 - (5) the subspaces of symmetric and skew-symmetric matrices in the space of all matrices $M_{n \times n}(R)$;
 - (6) the subspace of symmetric (respectively, skew-symmetric) matrices, and the subspace of matrices with vanishing trace in the space $M_{n \times n}(R)$ of all matrices?
- 4. Let $f : R \to R$ be a smooth real function, and let $W \subset J^1(R, R)$ be the submanifold consisting of all such jets $j^1g(x)$ for which the function g has vanishing first derivative at x, for all $x \in R$. Justify that the condition $j^1f \not \models W$ is equivalent to the fact that for each critical point x of f(i.e. each point at which the derivative of f vanishes) f has a non-vanishing second derivative.
- 5. Let W be a submanifold in $\mathbb{R}^{n+k} = \mathbb{R}^n \times \mathbb{R}^k$. Show that for a dense set of points $x \in \mathbb{R}^n$ we have $W \not\models (\{x\} \times \mathbb{R}^k)$. State and verify a similar observation concerning a smooth map $f: X \to \mathbb{R}^{n+k}$ from a manifold X.

Exercises.

- 6. Check that $y_0 \in Y$ is a regular value of a smooth map $f: X \to Y$ if and only if the graph of the map f, viewed as a submanifold in $X \times Y$, is transversal to the submanifold $X \times \{y_0\}$.
- 7. Justify the following generalization of the observation from the previous exercise: a smooth map $f: X \to Y$ is transversal to a submanifold $W \subset Y$ if and only if the graph of f is transversal in $X \times Y$ to the submanifold $X \times W$ (and moreover, if and only if $j^k f \not (p_k^Y)^{-1}(W)$, for any $k \geq 1$, where $p_k^Y: J^k(X, Y) \to Y$ is the natural projection).
- 8. We say that a fixed point p of a smooth map $f: X \to X$ is non-degenerate if the differential $df_p: T_pX \to T_pX$ has no fixed point other than 0 (i.e. no non-zero eigenvector).
 - (A) Show that any non-degenerate fixed point is isolated in the set of all fixed points of a smooth map $f: X \to X$.
 - (B) Express the fact of having only non-degenerate fixed points (by a smooth map $f: X \to X$) in terms of an appropriate transversality condition.
- 9. We say that smooth maps $f : X_1 \to Y$ and $g : X_2 \to Y$ such that f(a) = p = g(b) are transversal at (a, b) if $df_a(T_aX_1) + dg_b(T_bX_2) = T_pY$. Show that $f \not \models g$ at (a, b) if and only if the map $f \times g : X_1 \times X_2 \to Y \times Y$, $f \times g(x_1, x_2) = (f(x_1), g(x_2))$, is transversal to the diagonal $\Delta Y \subset Y \times Y$, $\Delta Y = \{(y, y) \in Y \times Y : y \in Y\}$, at (a, b).
- 10. Recall that the curvature of a regular curve $\gamma : R \to R^3$ at a point t is non-zero if and only if the vecors of the first and the second derivatives of γ at t are linearly independent. Express the property that the curvature of a regular curve γ does not vanish (i.e. it is non-zero at every point t) as some transversality condition (or a combination of few transversality conditions) in appropriate manifolds of jets.