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Abstract. We introduce the notion of asymptotic homological dimension asdimh of a metric

space (invariant under quasiisometry), and show that dim ∂∞Γ+1 ≤ asdimh Γ ≤ asdim+Γ for
a (word-) hyperbolic group Γ (asdim+ is the large scale dimension defined by M. Gromov).

We show also that asdimh Γ ≤ 2 for a certain class of hyperbolic groups (introduced by

M. Gromov) that we call strongly isoperimetric groups.

0. Introduction

It has proved to be useful to look at infinite groups as geometric objects, especially

to study their asymptotic (or large scale) properties, i.e. those which are invariant with

respect to quasiisometries. In his recent paper [6] M. Gromov introduces several such

properties and invariants, among them the large scale dimension asdim+ (see definition A.2

of Appendix). Another such invariant for hyperbolic groups (in this paper by hyperbolic we

shall mean word-hyperbolic in the sense of Gromov, see [7]) is the topological dimension

dim ∂∞Γ of ideal boundary of a group Γ. In [6] Gromov conjectured that the equality

asdim+Γ = dim ∂∞Γ+1 holds for any hyperbolic group Γ. In this paper we shall establish

(in remark A.7 of the Appendix) the inequality asdim+Γ ≥ dim ∂∞Γ + 1.

In section 9 of the same paper [6] M. Gromov describes an interesting class of hyperbolic

groups, that we call here strongly isoperimetric groups (see definition 5.1). Gromov states

without proof that dim ∂∞Γ ≤ 1 for those groups. We prove it here rigorously (see remark

5.8).

In this paper, we use a method, which follows the idea of the homological dimension

due to P. Alexandrov (see [1]). In section 1 we introduce the notion of asymptotic homo-

logical dimension asdimh of a metric space. We prove that it is a quasiisometry invariant

(proposition 1.6), and show the inequality asdimh ≤ asdim+ (Appendix).

The main results of this paper are the following.



Theorem 4.1. For any hyperbolic group Γ asdimhΓ ≥ dim ∂∞Γ + 1.

Theorem 5.7. If Γ is a strongly isoperimetric (hyperbolic) group, then asdimhΓ ≤ 2.

To obtain these results, we use the properties of horospheres and parabolic-gradient-

geodesic projections in hyperbolic groups (section 2), and relate the asymptotic homological

dimension of a horosphere with that of a group itself (section 3).

The paper was written during my stay at Universite de Paris-Sud in Orsay, supported

by TEMPUS grant. I would like to thank professor Pierre Pansu for his hospitality and

many helpful discussions.

1. Asymptotic homological dimension

To define asymptotic homological dimension asdimh, we need the (notion of) ϵ-homo-

logy Hϵ
∗ for a metric space X. If not stated explicitely otherwise, through all the paper we

shall use as coefficients for homology the group TT = IR/ZZ.

Definition 1.1. If ϵ > 0 is a real number, a q-dimensional ϵ-simplex in a metric space X

is a (q+1)-tuple (x0, x1, . . . , xq) of elements of X satisfying d(xi, xj) ≤ ϵ for 0 ≤ i 6= j ≤ q.

Then we define ϵ-chains with coefficients in TT , a boundary operator ∂, and ϵ-homology

Hϵ
∗ in an obvious manner.

We define the support supp u of an ϵ-chain u, to be the set of all vertices of its simplices

(with nonzero coefficients).

We will say that an ϵ-cycle is ϵ-homologically trivial (respectively nontrivial) in X if its

ϵ-homology class in Hϵ
∗X is zero (respectively nonzero). By ϵ-filling of an ϵ-cycle z we will

mean an ϵ-chain w such that ∂w = z.

Definition 1.2. Let X be a metric space and p be a positive integer. We say that

asdimhX ≤ p if for each r > 0 there exists α > 0, depending only on X and r, such
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that for q ≥ p any q-dimensional r-cycle ϕ which is r-homologically trivial in X, is also

α-homologically trivial in its support supp ϕ.

We say that asdimhX = p, if p is the minimal number such that asdimhX ≤ p.

Recall the definition of quasiisometry:

Definition 1.4. Let (X, dX) and (Y, dY ) be metric spaces, and F : X → Y a mapping

(not necessarily continuous). F is called a (C,R,L)-quasiisometry, for some constants

C ≥ 1, R ≥ 0, L ≥ 0, if the following conditions are satisfied:

(i) 1
C · dX(x1, x2)−R ≤ dY (F (x1), F (x2)) ≤ C · dX(x1, x2) +R for all x1, x2 ∈ X;

(ii) for each y ∈ Y there exists x ∈ X such that dY (y, F (x)) ≤ L.

F is a quasiisometry, if it is a (C,R,L)-quasiisometry for some C, R and L.

Remark 1.5.

(a) Note that if F : X → Y is a (C,R,L)-quasiisometry, then there exists a (C,RC +

2LC + 2L,RC)-quasiisometry E : Y → X;

(b) if F : X → Y and E : Y → Z are both (C,R,L)-quasiisometries, then the

composition E ◦ F : X → Z is a (C2, CR+R,CL+ L+R)-quasiisometry;

(c) from (a) and (b) it follows that the relation of quasiisometry is the equivalence

relation between metric spaces.

Proposition 1.6. The asymptotic homological dimension asdimh is a quasiisometry in-

variant of a metric space.

Before giving a proof of this proposition, we need one more definition and an easy

technical lemma, which we state without proof.

Definition 1.7. Let z be an ϵ-chain in a metric space X and let f : supp z → X be a
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function mapping vertices of z into points of X so that d(v, f(v)) < ϵ′ for some ϵ′ > 0 and

for all vertices v ∈ supp z. Then we call f an ϵ′-deformation of ϵ-chain z. We denote by

f∗z the image chain of z by the mapping f .

Lemma 1.8. (cf. [1] p. 118, lemma 4). The image f∗z of an ϵ-chain z by an ϵ′-deformation

f : supp z → X, is an (ϵ + 2ϵ′)-chain. Moreover, if z is an ϵ-cycle, then f∗z is (ϵ + 2ϵ′)-

homologous to z; in fact f∗z = z + ∂u, where the vertices of u are only those of z or

f∗z.

Proof of proposition 1.6.

Assume that F : X → Y is a (C,R,L)-quasiisometry, and that asdimhX = p. We shall

prove that asdimh Y ≤ p.

Choose any q ≥ p, and any q-dimensional r-cycle ϕ, which is r-homologically trivial in

Y , with r-filling ψ. We shall find a constant α (independent on q and ϕ) such that ϕ can

be α-filled in its support supp ϕ.

Construct a mapping E : Y → X as follows. If y ∈ ImF , put E(y) = x for some

x such that F (x) = y. If y /∈ ImF , choose y1 ∈ ImF such that dY (y, y1) ≤ L, and

put E(y) = E(y1). Then E is a (C, 2LC + RC + 2L,RC)-quasiisometry referred to in

remark 1.5.(a). It follows that E∗ϕ is an r′-cycle in X, and E∗ψ is its r′-filling, where

r′ = Cr+2LC+RC+2L. Thus, there is α′ > 0 and an α′-cycle u with supp u ⊂ suppE∗ϕ,

which is an α′-filling of E∗ϕ.

Returning to Y by the mapping F , we get that F∗u is a (Cα′ +R)-filling of (Cr′ +R)-

cycle (F ◦E)∗ϕ in its support supp (F ◦E)∗ϕ. Note, that since (F ◦E)|ImF = id, we have

dY (F ◦ E(y), y) ≤ B for each y ∈ Y , where B = 3C2L + C2R + 2CL + R + L, and thus

(F ◦E)|supp ϕ is a B-deformation. By lemma 1.8, this enables to construct, using also F∗u,

a B′-filling w of ϕ, with suppw ⊂ supp ϕ ∪ supp (F ◦E)∗ϕ, where B
′ = max(B,Cα′ +R).

Now, since (F ◦ E)|supp ϕ is a B-deformation, we can choose another B-deformation
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f : supp (F ◦E)∗ϕ∪ supp ϕ→ supp ϕ so that f |supp ϕ = id. Then f∗w is a (B′+2B)-filling

of ϕ and supp f∗w ⊂ supp ϕ. Thus the proposition follows by puttig α = B′ + 2B.

Remark 1.9. Asymptotic homological dimension asdimh is an invariant of a hyperbolic

group Γ, since the word metrics on Γ for different finite generating sets S are quasiisometric.

2. Horospheres and parabolic–gradient–geodesic

projections in hyperbolic groups.

The object of our study is a δ-hyperbolic group Γ with a word metric d defined with

respect to a fixed finite generating set S, and a Cayley graph G(Γ, S) with respect to

this metric; we fix this notation. All paths p that we consider, including geodesics, are

polygonal curves in G(Γ, S) parametrized by arc length so that p(k) ∈ Γ ⊂ G(Γ, S) for

k ∈ ZZ.

Consider the ideal boundary ∂∞Γ of a group Γ, as it is defined in section 7 of [5]. Note

that since the Cayley graph G(Γ, S) is a proper geodesic metric space, then according to

[5] 5.25, any point of ideal boundary can be joined by a geodesic in G(Γ, S) to any element

of Γ, as well as to any other point of ∂∞Γ (compare also [2] Chapitre 2, Proposition 2.1).

Lemma 2.1. Let γ be a geodesic joining two points a, b of ideal boundary ∂∞Γ, and g ∈ Γ

any element. Then there exists N ∈ ZZ such that for any n > N we have d(g, γ(n)) + 1 =

d(g, γ(n+ 1)).

Proof: Note that the triangle inequality d(g, γ(n)) + 1 ≥ d(g, γ(n + 1)) holds for each

n ∈ ZZ.

Suppose that the sharp inequality d(g, γ(n))+1 > d(g, γ(n+1)) holds for infinitely many

n with n → +∞. Then it follows that limn→+∞ n− d(g, γ(n)) = +∞, which violates the
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triangle inequality d(γ(n), γ(0))− d(g, γ(n)) ≤ d(g, γ(0)), giving a contradiction.

Definition 2.2 (compare [3] 3.3). Let γ be a geodesic in Γ. We define a family of sets

{Hγ(k) : k ∈ ZZ} by

Hγ(k) = {g ∈ Γ : lim
n→+∞

[n− d(g, γ(n))] = k}.

These are well defined by lemma 2.1, and will be called horospheres in Γ with respect to

a geodesic γ. If limn→+∞ γ(n) = a ∈ ∂∞Γ, we say that horospheres {Hγ(k) : k ∈ ZZ} are

centered at a.

Remark 2.3. The following properties of horospheres are clear according to lemma 2.1

and its proof:

(a) Hγ(k1) ∩Hγ(k2) = ∅ for k1 6= k2;

(b) Γ =
∪

k∈ZZ Hγ(k);

(c) any curve joining some points of Hγ(k1) and Hγ(k2) intersects Hγ(k) for any k1 <

k < k2.

Definition 2.4 (compare [3] 3.4.1). We say that a path p in Γ is a gradient path with

respect to a horosphere system {Hγ(k) : k ∈ ZZ}, if there is a constant m ∈ ZZ such that

n− k = m whenever p(n) ∈ Hγ(k).

Remark 2.5. Note that, by remark 2.3.(c), each gradient path is a geodesic segment

(compare also [3] 4.4.2).

Remark 2.6. Note that, by lemma 2.1, for any g ∈ Γ there is N ∈ ZZ such that the

curve ϕ = [g, γ(N)] ∪ γ|[N,+∞), for any geodesic segment [g, γ(N)], is a gradient geodesic

joining g ∈ Γ with the center a of the horosphere system.
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Proposition 2.7. Let x ∈ ∂∞Γ\{a}, where a is a center of a horosphere system {Hγ(k) :

k ∈ ZZ}. Then there exists a gradient (with respect to this system) geodesic ϕx joining x

to a.

Proof: Let η be any geodesic joining x to a, parametrized so that limn→+∞ η(n) = a.

A short and rough argument is as follows:

Consider a metric ρ on a Cayley graph G(Γ, S), equivalent to the original word metric (i.e.

inducing the same topology on the graph), such that ∂∞Γ∪G(Γ, S) is a compact completion

of (G(Γ, S), ρ) (cf. [2], chapter 11). Then the family {ϕn : n ∈ IN} of gradient rays joining

η(−n) to a (see remark 2.5) is a relatively compact family of continuous mappings from

the closed unit interval I to ∂∞Γ ∪ G(Γ, S). Thus there is a subsequence nk of natural

numbers such that ϕnk
is pointwise convergent to a limit curve ϕx, which is easily verified

to be a gradient geodesic joining x to a.

We give also a more elementary and detailed argument:

As previously, consider a family {ϕn : n ∈ IN} of gradient rays from η(−n) to a, and

parametrize them in such a way that ϕn(k) ∈ Hγ(k). By [3] 1.3.4, each point ϕn(k) remains

at distance bounded by 4δ from η, and thus an easy argument shows that d(ϕn(k), ϕm(k)) ≤

16δ for any k in the domain of ϕn and ϕm.

We start the inductive construction of ϕx:

Step 1. Note that, since the set {ϕn(0) : n ∈ ZZ such that 0 is in the domain of ϕn} ⊂

Hγ(0) is bounded and thus finite, there is an element v0 in it, and an infinite subsequence

(i0n)n∈IN of negative integers such that v0 = ϕi0n(0) for n ∈ IN .

Step 2 (general inductive step). Having constructed points vj for |j| ≤ m, and a

subsequence (imn )n∈IN of negative integers, we choose points vm+1 ∈ Hγ(m + 1) and

v−m−1 ∈ Hγ(−m − 1), and a subsequence (im+1
n )n∈IN of imn , such that vj = ϕim+1

n
(j)

for all |j| ≤ m+ 1 and all n ∈ IN .
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By above inductive procedure, we get a family {vj : j ∈ ZZ} of points. We finish the

proof by putting ϕx =
∪

j∈ZZ [vj , vj+1] and noting that ϕx is a gradient geodesic joining x to

a, becouse any its subsegment [v−m, vm] is gradient by construction, and limn→+∞ vn = a

and limn→−∞ vn = x.

Remark 2.8. Note that the behaviour of gradient geodesics with respect to a horosphere

system is closely analogous to the behaviour of geodesic rays starting at some fixed point

g0 ∈ Γ with respect to sphere system {S(g0, n) : n ∈ IN}.

Definition 2.9. Let {Hγ(n) : n ∈ ZZ} be a system of horospheres centered at point

a ∈ ∂∞Γ. For each x ∈ ∂∞Γ \ {a} choose a gradient geodesic ϕx joining x to a, and

parametrize it so that ϕx(n) ∈ Hγ(n) for n ∈ ZZ. Then define a parabolic–gradient–geodesic

projection Pn : ∂∞Γ \ {a} → Hγ(n) by Pn(x) = ϕx(n).

Note that a projection Pn depends on a choice of gradient geodesics {ϕx : x ∈ ∂∞Γ\{a}}.

Let us state a proposition, which is a consequence of corollary 1.3.5 of [3], and which

expresses the intuitive fact that the bigger n is, the more contracting Pn is:

Proposition 2.10. If n > m are integers, δ is a hyperbolicity constant for Γ, and x, y ∈

∂∞Γ \ {a}, then

d(Pn(x), Pn(y)) ≤ d(Pm(x), Pm(y)) + 16δ.

A somewhat deeper approach to the same intuition is included in the following:

Proposition 2.11. (cf. [5] chapter 8). There is a metric da on ∂∞Γ\{a} (which restricts

to the natural topology on the ideal boundary) satisfying the following properties.

Let C ≥ 16δ be any constant; then if x, y ∈ ∂∞Γ, we have

(1) ∀ϵ > 0 ∃N(ϵ) ∈ ZZ ∀n ≥ N(ϵ) da(x, y) < ϵ⇒ d(Pn(y), Pn(x)) ≤ C, and the function

N(ϵ) satisfies limϵ→0N(ϵ) = −∞;
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(2) ∀N ∈ ZZ ∃ϵ(N) > 0 ∀n ≤ N d(Pn(x), Pn(y)) ≤ C ⇒ d(x, y) < ϵ(N) and moreover

limN→−∞ ϵ(N) = 0.

The metrics of this kind constructed in chapter 8 of [5] are called Busemann’s metrics.

We define also a version of parabolic-gradient-geodesic projection between two horo-

spheres of the same system, and state its key property.

Definition 2.12. Let {Hγ(i) : i ∈ ZZ} be a system of horospheres centered at a ∈ ∂∞Γ.

Given n ∈ ZZ, for each g ∈ Hγ(n) choose a gradient geodesic ray ϕg joining g to a, and

parametrize it so that ϕg(i) ∈ Hγ(i) for i ≥ n. If k ≥ n, define Pn,k : Hγ(n) → Hγ(k) by

Pn,k(g) = ϕg(k).

Note that a projection Pn,k depends on a choice of gradient geodesics {ϕg : g ∈ Hγ(n)}.

The direct analogue of proposition 2.10 is the following:

Proposition 2.13. If m ≥ k ≥ n and x, y ∈ Hγ(n), then

d(Pn,m(x), Pn,m(y)) ≤ d(Pn,k(x), Pn,k(y)) + 16δ.

3. Dimension asdimh of horospheres in a hyperbolic group.

In this section we give a proof of the following:

Theorem 3.1. If H is a horosphere in a hyperbolic group Γ, then

asdimh Γ ≥ asdimhH + 1.

Proof: Let p = asdimhH. Then there is a constant r > 0 such that for any α > 0 there

is a (p − 1)-dimensional r-cycle ϕα with an r-filling ψα in H, which cannot be α-filled in

its support supp ϕα.
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We may assume that H = Hγ(0) for some geodesic γ. Using a family of parabolic-

gradient-geodesic projections P0,k : Hγ(0) → Hγ(k) for k > 0 (see definition 2.12), we

shall construct for any α > 0, out of ϕα and ψα, a p-dimensional (r + 16δ + 2)-cycle cα

and its (r+ 16δ + 2)-filling uα in Γ, and then prove that c5α is α-homologically nontrivial

in its support supp c5α. This will finish the proof by implying that asdimh Γ ≥ p+ 1.

Construction of the cycle cα and its filling uα.

Given k ≥ 0 let ϕα,k = (P0,k)∗ϕα and let ψα,k = (P0,k)∗ψα, and note that, by proposition

2.13, ϕα,k is an (r+16δ)-cycle and ψα,k is an (r+16δ)-filling of it, for any k ≥ 0. Since for

each k ≥ 0 chains ϕα,k+1 and ψα,k+1 are the images of ϕα,k and ψα,k by 1-deformations,

let cα,k and uα,k be the (r+16δ+2)-chains of lemma 1.8, such that ∂cα,k = ϕα,k+1−ϕα,k,

and ∂uα,k = ψα,k+1 − ψα,k + cα,k. We finish the construction by choosing integer l > α

and putting

cα = ψα,l − ψα,0 +
∑l

i=1 cα,i and uα =
∑l

i=1 uα,i.

Cycle c5α is α-homologically nontrivial in its support.

We shall prove the existence of the following homomorphisms of homology groups (see

definition 1.1):

excision homomorphism

e : Hα
n (supp c5α, TT ) → Hα

n (suppψ5α, suppψ5α ∩ N̄2α(supp ϕ5α);TT );

boundary homomorphism

∆ : Hα
n (suppψ5α, suppψ5α ∩ N̄2α(supp ϕ5α);TT ) → Hα

n−1(N̄2α(supp ϕ5α), TT );

2α-deformation homomorphism

f∗ : Hα
n−1(N̄2α(supp ϕ5α), TT ) → H5α

n−1(supp ϕ5α, TT );

where N̄2α(supp ϕ5α) = {g ∈ Hγ(0) : d(g, supp ϕ5α) ≤ 2α}, and f : N̄2α(supp ϕ5α) →
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supp ϕ5α is any 2α-deformation such that f |supp ϕ5α = id.

Define an excision homomorphism e as follows:

for any α-cycle z with supp z ⊂ supp c5α, let ze be an α-chain consisting of those sim-

plices of z (with coefficients in TT ) which have some (at least one) vertices in suppψ5α \

N̄2α(supp ϕ5α).

Claim. The other vertices of such simplices (if there are any) are contained in suppψ5α∩

N̄2α(supp ϕ5α).

Proof of claim:

Suppose not. Then there is an α-simplex with vertices v1 ∈ suppψ5α \ N̄2α(supp ϕ5α)

and v2 ∈ supp c5α \ suppψ5α. Then, by construction of c5α, there is a point g ∈ supp ϕ5α

such that v2 = P0,k(g). Since d(v1, v2) ≤ α and d(v1, g) > 2α, by the triangle inequality

we get k = d(v2, g) > α. But since v1 ∈ Hγ(0) and v2 ∈ Hγ(k), this implies by remark

2.3.(c) that d(v1, v2) > α, giving a contradiction. Thus the claim follows.

Note that from the claim it follows that supp ∂ze ⊂ suppψ5α∩N̄2α(supp ϕ5α), and that ze

is a relative α-cycle in (suppψ5α, suppψ5α ∩ N̄2α(supp ϕ5α)). We then define e([z]) = [ze],

where [w] denotes the homology class of cycle w.

Since by relative α-cycle z in (X,Y ) we mean an α-chain in X, for which the boundary

∂z has support contained in Y , we define the boundary homomorphism ∆ as induced by

the mapping z 7→ ∂z on the chain level.

The 2α-deformation homomorphism f∗ is well defined according to lemma 1.8.

Having constructed well defined homomorphisms e, ∆ and f∗, notice that e([c5α]) =

[ψ5α], and therefore f∗ ◦ ∆ ◦ e([c5α]) = [ϕ5α]. Since, by assumption, [ϕ5α] 6= 0 in

H5α
p−1(supp ϕ5α, TT ), it follows that [c5α] 6= 0 in Hα

p (supp c5α, TT ), which finishes the proof

of theorem 3.1.
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4. Relation with topological dimension of ideal boundary

In this section we proof the following:

Theorem 4.1. For any hyperbolic group Γ dim ∂∞Γ + 1 ≤ asdimh Γ.

The structural relationship between dimensions dim and asdimh stems from the follow-

ing result. Here, as always, we consider homology with coefficients TT = IR/ZZ.

Theorem 4.2. (Alexandrov, [1] 4.2.2).

Let X be a compact metric space with topological dimension dimX = p. Then there

exists a closed subset Φ ⊂ X, and an ϵ0 > 0 such that for each η > 0 there exists an

η-cycle z of dimension p − 1, which is ϵ0-homologically nontrivial in Φ, although it is

η-homologically trivial in X.

Remark 4.3. It follows from theorem 4.2 that if X is a compact metric space and

dimX = p, then there exists a closed subset Φ ⊂ X, and ϵ0 > 0 such that for each η > 0

there exists η-chain w of dimension p, being a relative η-cycle ϵ0-homologically nontrivial

in (X,Φ), with z = ∂w being an η-cycle ϵ0-homologically nontrivial in Φ.

Let us recall a technical result from the book of Alexandrov:

Lemma 4.4. ([1] theorem 8, p. 124).

Given a compact metric space X and its closed subset Φ, for each ϵ0 > 0 there exists

σ > 0 such that for any ρ > 0 each relative σ-cycle w in (X,Φ) is ϵ0-homologous with

some relative ρ-cycle wρ.

The last preparatory result is the following
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Lemma 4.5. Given a metric space Φ and ϵ′ = 1
3ϵ0 > 0, let z be an ϵ′-cycle ϵ0-homologically

nontrivial in Φ, and z′ the image of its any ϵ′-deformation in Φ. Then z′ is an ϵ0-cycle

which is ϵ0-homologically nontrivial in Φ.

Proof: Suppose on the contrary that z′ is ϵ0-homologically trivial in Φ. Since, by lemma

1.8, z′ is 3ϵ′-homologous to z and 3ϵ′ = ϵ0, it follows that z is ϵ0-homologically trivial in

Φ, giving a contradiction.

Proof of theorem 4.1: Let dim ∂∞Γ = p. Let X ⊂ ∂∞Γ be a closed proper subset

such that dimX = dim ∂∞Γ = p, and let a ∈ ∂∞Γ \X. Let {Hγ(n) : n ∈ ZZ} be a system

of horospheres centered at a.

For any α > 0 we shall find nα ∈ ZZ, and an r-cycle ϕα with r = 16δ, which is r-

homologically trivial in Hγ(nα), but α-homologically nontrivial in its support supp ϕα.

Since, by the proof of theorem 3.1, it is possible to construct out of the cycle ϕ5α an r′-

cycle cα which is r′-homologically trivial in Γ, but α-homologically nontrivial in its support

supp cα, where r
′ = r + 16δ + 2, this will finish the proof of theorem.

Let da be the Busemann’s metric of proposition 2.11 restricted to the set X ⊂ ∂∞Γ\{a}.

According to remark 4.3, since dimX = p, there exists a closed subset Φ ⊂ X and an ϵ0 > 0

such that for each η > 0 there exists an η-chain wη of dimension p, being a relative η-cycle

ϵ0-homologically nontrivial in (X,Φ), with z = ∂wη being ϵ0-homologically nontrivial in

Φ. Fix σ as in lemma 4.4 applied to Φ ⊂ X and ϵ0, take η = σ and fix an η-chain wη as

above.

Construction of r-cycle ϕα and its r-filling ψα.

Fix any α > 0. Let ϵ with 0 < ϵ < ϵ0 be so small, that the number N(ϵ) of proposition

2.11.(1) for C = r is so small, that putting C = α in proposition 2.11.(2), we get ϵ(N(ϵ)) <

ϵ′, where ϵ′ = ϵ0/3. Then put nα = N(ϵ).

By lemma 4.4, for ρ = min(ϵ, ϵ′), there exists a relative ρ-cycle wρ ϵ0-homologous to wη

in (X,Φ). Note that then wρ is ϵ0-homologically nontrivial in (X,Φ), and that zρ = ∂wρ

13



is a ρ-cycle ϵ0-homologically nontrivial in Φ.

Now put ϕα = (Pnα
)∗zρ and ψα = (Pnα

)∗wρ, where Pnα
: ∂∞Γ \ {a} → Hγ(nα) is the

parabolic-gradient-geodesic projection of section 2. By the choice of nα and ρ, recalling

that r = 16δ, it follows that ϕα is an r-cycle and ψα its r-filling in Hγ(nα).

Claim. Cycle ϕα is α-homologically nontrivial in its support.

Suppose on the contrary that wα is an α-filling of ϕα in its support. Consider a function

f : suppψα → Φ such that Pnα ◦ f(v) = v. Then, since nα is small enough, f∗ϕα is

an ϵ′-cycle with ϵ′-filling f∗ψα in Φ. But according to lemma 4.5, since f∗ϕα is also an

ϵ′-deformation image of zρ, it is ϵ0-homologically nontrivial in Φ, which contradicts the

existence of the ϵ′-filling f∗ψα, and the claim follows.

This finishes the proof of theorem.

5. Dimension of strongly isoperimetric groups.

In chapter 9 of [6] M. Gromov shows that most (in a precise statistical sense) of groups

with presentations of a certain type are hyperbolic, and moreover strongly isoperimetric

in the following sense:

Definition 5.1. A group Γ is called strongly isoperimetric, if it admits a finite presen-

tation Γ =< S|R >, for which there is a constant C > 0 such that for any reduced word

w0 on the alphabet S∪S−1 representing the unit element e ∈ Γ, and for any reduced Dehn

diagram P of w0, one has

|P | ≤ C · |w0|

where |w0| denotes the length of w0 and |P | denotes the number of cells in P (corresponding

to conjugates of cyclically reduced relators of R).

See [10] for the definition of Dehn diagram (compare also [8] III.9 where it is called

simple diagram).
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Example 5.2. Groups satisfying several types of small cancellation conditions are

strongly isoperimetric (see [10] 2.6 for more details).

Remark 5.3. Note that strongly isoperimetric groups are hyperbolic (cf. [7] 1.43 or [9]

Theorem 2.5).

The main result of this section will be based on the properties of the following 2-

dimensional piecewise Euclidean complex:

Definition 5.4. Given a group with presentation Γ =< S|R >, a Dehn complex

C(Γ;S,R) is a cellular complex that arises in the following way. Let p be a polygonal

closed path in a Cayley graph G(Γ, S) of one of the following forms:

(1) p corresponds to a cyclically reduced relator of R;

(2) p is the image of some path of form (1) by automorphism of the Cayley graph

determined by some element of Γ (Γ acts by automorphisms on G(Γ, S)).

For each such path we attach to the Cayley graph a Euclidean 2-cell so that its polygonal

boundary is glued to G(Γ, S) according to the parametrization of a path (paths that differ

by cyclic reparametrizations are identified).

Lemma 5.5. If Γ is a strongly isoperimetric group with respect to a finite presentation

Γ =< S|R >, then the homology group H2[C(Γ;S,R)] of its Dehn complex vanishes for

any coefficients.

Proof: Since C(Γ;S,R) is a 2-dimensional simply connected complex (or 1-dimensional

if R is empty, but this case is obvious), then according to universal coefficients theorem it

is enough to show that H2[C(Γ;S,R)] vanishes for integer coefficients.

Suppose on the contrary that H2(C(Γ;S,R), ZZ) 6= 0. Realize a certain homology

nonzero element as a geometric cycle, that is an image of a cellular pseudomanifold M
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by a cellular nondegenerate mapping f : M → C(Γ;S,R) (compare [4] 1.3.7). Since we

consider the dimension 2, we may assumeM to be an orientable manifold; since C(Γ;S,R)

is simply connected, M may be assumed to be a 2-sphere. Furthermore, we may assume

that the realization f is reduced onM in the sense that no two distinct 2-cells ofM having

a common edge are mapped onto the same cell of C(Γ;S,R); otherwise we could reduce the

realization f in a finite number of steps, possibly changing the nonzero homology element

(we omit the elementary details).

We can then find two distinct vertices of M , at which not less than three cells meet,

and take arbitrarily big covering M ′ of M branched over these two points, being again a

2-sphere. Removing any 2-cell from M ′ we get a reduced Dehn diagram P violating the

inequality |P | ≤ C · |w0|, which gives a contradiction.

Remark 5.6. Note that for small cancellation groups the nonexistence of realization

f :M → C(Γ;S,R) modelled on a 2-sphere is a consequence of the Gauss-Bonnet theorem

(compare [10] 2.4 or [8] p. 246).

Theorem 5.7. If Γ is a strongly isoperimetric group, then asdimh Γ ≤ 2.

Proof: We shall show that for each r > 0 there is α > 0 such that each q-dimensional

r-cycle in Γ with q ≥ 2 is α-homologically trivial in its support.

Case q = 2. Let ϕ be a 2-dimensional r-cycle in Γ. Triangulate the complex C(Γ;S,R)

by subdividing each 2-cell into triangles, without introducing new vertices. We can subdi-

vide the cycle ϕ, to make it a simplicial cycle in C(Γ;S,R), as follows:

for any 1-simplex appearing in ϕ choose a geodesic segment joining its vertices; then to

each 2-simplex there corresponds a geodesic triangle in the Cayley graph G(Γ, S). Since

it is δ-thin, we can subdivide it into geodesic triangles with vertices in Γ and with lengths

of edges bounded by δ + 1. By the isoperimetric inequality, there is m > 0 such that each
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such triangle of the subdivision can be filled (after cyclic reduction) by no more than m

cells of C(Γ;S,R). After dividing the cells into triangles we get a subdivision ϕ̃ of ϕ, which

is a simplicial cycle in C(Γ;S,R).

Note that there is a constant C > 0, depending on δ, m and a maximal diameter of cells

in C(Γ;S,R) (assumed to be regular Euclidean n-gons), such that

(1) vertices of ϕ̃ are at distance bounded by C from vertices of ϕ;

(2) ϕ̃ is C-homologous to ϕ by a C-chain with support contained in supp ϕ ∪ supp ϕ̃.

From lemma 5.5 and the fact that dimC(Γ;S,R) = 2 it follows that ϕ̃ = 0 as a (δ + 1)-

chain, and thus ϕ can be C-filled in the C-neighbourhood of its support. Applying the

appropriate C-deformation we get a 3C-filling of ϕ in its support, and we finish the proof

of this case by putting α = 3C.

Case q > 2. Let ϕ be a q-dimensional r-cycle. We can subdivide a top dimensional

simplex σ of it in the following way: subdivide all 2-faces of σ as in the previous case; then

for a 3-face τ choose one its vertex, say v, and make a simplicial cone over the already

subdivided boundary ∂τ with v as a cone vertex; use the same procedure recursivly for all

faces of dimensions up to q. Denote by ϕ̃ a new cycle gotten from ϕ by subdivision of all

its simplices as above. Observe that if C is the constant of the previous case, then

(1) vertices of ϕ̃ are at distance bounded by C from those of ϕ;

(2) ϕ̃ is (r+C)-homologous with ϕ by a chain with support contained in supp ϕ∪supp ϕ̃.

Note also, that according to the previous case, if τ is a 3-face of ϕ and ρ = ∂τ , then

the subdivision ρ̃ of ρ gives a simplicial 2-cycle in C(Γ;S,R) which is equal to zero as an

(r+C)-cycle. This means that ϕ̃ = 0 as an (r+C)-cycle, so that ϕ is (r+C)-homologically

trivial in a C-neighbourhood of its support. After applying an appropriate C-deformation

we get that ϕ is (3C+ r)-homologically trivial in its support, which finishes the proof after

putting α = 3C + r.
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Remark 5.8. In section 9.B of [6] M. Gromov states without proof the following

property of strongly isoperimetric groups:

If Γ is strongly isoperimetric then dim ∂∞Γ ≤ 1.

Note that this fact is a direct consequence of theorems 4.1 and 5.1.

Appendix: Comparison with Gromov’s large scale dimension.

In [6] M. Gromov defines the large scale dimension asdim+ of a metric space (see

definition A.2 below). In this Appendix we prove the following:

Theorem A. Let X be a metric space. Then asdimhX ≤ asdim+X.

Definition A.1. Let {Aj : j ∈ J} be a family of subsets of a metric space X. Given

r > 0 we say that this family is r-neighbouring, if to each j ∈ J we can assign an element

vj ∈ Aj so that d(vj1 , vj2) ≤ r for any j1, j2 ∈ J .

Definition A.2. Given a metric space X, we say that asdim+X ≤ p if for any r >

0 there exist α > 0 and a covering {Ai : i ∈ I} of X by sets satisfying diamAi ≤

α, with r-multiplicity bounded by p + 1 (r-multiplicity is defined as max{card J : J ⊂

I such that a family {Aj : j ∈ J} is r-neighbouring}).

Definition A.3. An abstract r-nerve of a covering {Ai : i ∈ I} is a simplicial complex

K with the vertex set I defined as follows: a finite subset J ⊂ I spans an abstract simplex

of K if and only if the family {Aj : j ∈ J} is r-neighbouring.

Remark A.4. If a covering {Ai : i ∈ I} has r-multiplicity p + 1, its r-nerve K is a

p-dimensional simplicial complex.

Definition A.5. Let {Ai : i ∈ I} be a covering of a metric space X, and f : I → X be
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a function such that f(i) ∈ Ai. A geometric r-nerve of this covering with respect to f is

a simplicial complex Kf = f∗K, where K is the abstract nerve of this covering. We equip

Kf with a piecewise Euclidean metric induced by distances of vertices {f(i) : i ∈ I} with

respect to the metric in X.

Remark A.6. (a) The simplicial function f : K → Kf needn’t be an isomorphism,

since f needn’t be injective.

(b) If the covering {Ai : i ∈ I} has r-multiplicity p+ 1 then dimKf ≤ p.

(c) If diamAi ≤ α for i ∈ I, then Kf consists of (r + 2α)-simplices.

The theorem A is an evident consequence of the following:

Proposition. Assume that asdim+X = p. Then for each r > 0 there exists β > 0 such

that:

(1) each p-dimensional r-cycle which is r-homologically trivial in X is β-homologically

trivial in its support;

(2) for q > p, each q-dimensional r-cycle in X is β-homologically trivial in its support.

Proof of (2): Since asdim+X = p, for given r > 0 there exists a covering {Ai : i ∈ I} of

X, with diamAi ≤ α and r-multiplicity p+1. For q > p, let ϕ be any q-dimensional r-cycle

in X. Let g : supp ϕ → I be a function such that v ∈ Ag(v) for every v ∈ supp ϕ. Then

(f ◦g)∗ϕ is a simplicial cycle in Kf . Since dimKf ≤ p and q > p, we have Hq(Kf , TT ) = 0,

and so in fact (f ◦ g)∗ϕ = 0 as an (r + 2α)-cycle. But since f ◦ g is an α-deformation,

we get by lemma 1.8 that ϕ is (r + 2α)-homologically trivial in α-neighbourhood of its

support, and thus (r + 4α)-homologically trivial in supp ϕ. We complete the proof by

putting β = r + 4α.

Proof of (1): Given r > 0, consider a covering {Ai : i ∈ I} of X, with diamAi ≤ α

and r-multiplicity p + 1. Let ϕ be any p-dimensional r-cycle, and ψ its r-filling in X.
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Let I0 = {i ∈ I : Ai ∩ supp ϕ 6= ∅} and X0 =
∪

i∈I0
Ai. Let ψ0 be a r-chain consisting

of those simplices of ψ (with coefficients in TT ) which have at least one vertex in the set

N̄r(X0) = {x ∈ X : d(x,X0) ≤ r}. Note that the boundary ∂ψ0 can be decomposed into

the sum ∂ψ0 = ϕ+ λ of r-cycles having disjoint support.

Let K0 be a subcomplex of K consisting of those simplices (v1, . . . , vm) with vi ∈ I \ I0

for 1 ≤ i ≤ m, for which there is v0 ∈ I0 such that (v0, v1, . . . , vm) ∈ K. Note that, by

definition, dimK0 = p − 1. Let g : supp λ → I be a function such that v ∈ Ag(v) for

v ∈ supp λ. Realize that (f ◦ g)∗λ is a simplicial cycle in f(K0), but since dim f(K0) ≤

p − 1, it is equal to 0 as an (r + 2α)-cycle. Thus λ is (r + 2α)-homologically trivial in

α-neighbourhood of its support, which implies that ϕ is (r + 2α)-homologically trivial in

(r + 2α)-neighbourhood of its support, and so finally it is (3r + 6α)-homologically trivial

in supp ϕ.

The proof is completed by putting β = 3r + 6α.

Remark A.7. Note that theorem A together with theorem 4.1 give an inequality

dim ∂∞Γ + 1 ≤ asdim+Γ.
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