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Abstract. In this paper we study a natural generalization of Platonic solids:
2-dimensional simply connected polygonal complexes with flag transitive group of
combinatorial automorphisms. Our results give an almost complete description
of such symmetric complexes with constant valency 3.

We show that many of the symmetric complexes have nondiscrete automor-
phism groups. Clearly buildings are in this class, and some other examples were
previously constructed in [Be2]. These automorphism groups resemble p-adic Lie
groups and their further study should be worthwile.

1. Introduction.
A polygonal complex is a 2-dimensional polyhedral cell complex. We shall refer to 0-,

1- and 2-cells of a polygonal complex as vertices, edges and faces respectively. A polygonal
complex X is trivalent if each of its edges is adjacent to exactly three faces.

We say that a polygonal complex X is symmetric, if the group Aut(X) of all of
its combinatorial automorphisms acts transitively on flags in X, i.e. on incident triples
(vertex, edge, face). Obvious examples of symmetric polygonal complexes (not trivalent!)
are the (boundaries of) Platonic solids.

Given a vertex v in a polygonal complex X, the link of X at v, denoted L(v,X), is a
graph whose vertices and edges represent respectively the edges and faces adjacent to v in
X, where the incidence relation is induced from that in X.

Each symmetric polygonal complex X determines a natural number k ≥ 3 and a
regular graph L such that all faces of X are k-gonal and all links at vertices are isomorphic
to L. Recall that a graph L is regular if the group Aut(L) of all of its automorphisms acts
transitively on oriented edges in L. We say that X is nonpositively curved, if the following
inequality holds:

(NPC) g(L) ≥ 2k

k − 2
,

where g(L), the girth of graph L, is the minimal number of edges in a nontrivial circuit in
L. The inequality (NPC) is related to the CAT(0) condition of Alexandrov, see Section 4
of [Gro]; it is also related to small cancellation conditions from combinatorial group theory.

In this paper we classify and construct trivalent symmetric polygonal complexes that
are nonpositively curved and simply connected.

1 The author was partially supported by the Polish Committee of Scientific Research
grant 1262/P03/95/08.
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Examples of symmetric polygonal complexes have already appeared in the literature.
Some of them can be obtained by the construction of M. Davis using Coxeter groups
(see [Be1] and [Hag]) and by construction of A. Haefliger using complexes of groups (see
[Hae]). Unexpectedly, in some cases more than one simply connected symmetric polygonal
complex with given local data k and L exists. This phenomenon was discovered by J. Tits
for the case of Bruhat-Tits buildings of type Ã2, and by F. Haglund for some other cases,
see [Tit] and [Hag].

In the above context it is natural to consider the following class of objects. A (k, L)-
complex is a simply connected polygonal complex X such that all faces of X are k-gons
and all links at vertices of X are isomorphic to the graph L. If L is regular and the pair
(k, L) satisfies the (NPC) condition, then examples of (k, L)-complexes can be constructed
inductively, using a method described by W. Ballmann and M. Brin in Section 1 of [BB],
see also Section 2 below. This construction however says nothing about symmetry of
the resulting complexes. If L is isomorphic to the 1-skeleton of a Platonic solid, then
uncountably many nonisomorphic (k, L)-complexes exist, as proved in [BB] and [Hag]. It
is clear that most of those complexes are far from being symmetric. In this paper we show
that this phenomenon is much more general.

Polygonal complexes are a source of interesting groups. We say that a group Γ of
automorphisms of a symmetric polygonal complex X is rigid, if its elements are determined
by the restriction to the star of any vertex; it is weakly rigid, if it is not rigid, but its
elements are determined by the restriction the star of the star of any vertex. Recall that
the star of a subcomplex consists of all (closed) cells that intersect this subcomplex. If
the links at the vertices of X are finite, then it follows from rigidity (or weak rigidity)
of Γ that vertex stabilisers of Γ are finite, that Γ is finitely generated and that it acts
properly discontinuously on X. A group Γ is flexible, if for any finite subcomplex P ⊂ X
there exists an automorphism F in Γ such that F |P = idP and F ̸= idX . In such a case
stabilisers of vertices are uncountable, and the compact-open topology on Γ is nondiscrete.
In this paper we show that all three phenomena of rigidity, weak rigidity and flexibility
occur among automorphism groups of the symmetric complexes that we construct.

Before formulating the Main Theorem of the paper it is necessary to recall briefly
some notions and facts from the theory of regular trivalent graphs. A graph L is called
trivalent if each of its vertices is adjacent to exactly three edges. In particular, the links
at all vertices of a trivalent polygonal complex are trivalent. Given a natural number s,
an s-arc in a graph is a sequence (v0, v1, . . . , vs) of its vertices such that

(i) (vi, vi+1) is an edge for i = 0, . . . , s− 1;

(ii) vi ̸= vi+2 for i = 0, . . . , s− 2.

Any group G of automorphisms of a graph clearly acts on the set of all s-arcs in it for
any s. We say that G is s-arc-transitive if its action on the set of s-arcs in the graph is
transitive; it is s-regular if this action is simply transitive (i.e. transitive and with trivial
stabilisers). Graph L is called s-regular if the group Aut(L) of all of its automorphisms is
s-regular. It was proved by W. Tutte [Tut] that any finite, connected, trivalent and regular
graph is s-regular for some s ∈ {1, 2, 3, 4, 5}. In their later work [DM] D. Djokovič and
G. Miller distinguished the subcases of s′- and s′′-regularity for s = 2 and s = 4, taking
the properties of edge stabilisers into account. They proved that each finite, connected,
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trivalent and regular graph is s-regular for some s ∈ {1, 2′, 2′′, 3, 4′, 4′′, 5}.
Examples of s-regular graphs for s ∈ {2′, 3, 4′, 5} were given by W. Tutte in [Tut].

The first example of a 1-regular graph was found by R. Frucht in [Fru]. Examples of 2′′-
and 4′′-regular graphs have been constructed quite recently by M. Conder and P. Lorimer
(see [CL]), and they have 6.652.800 and 29!/48 vertices respectively! Infinite families of
s-regular graphs are known to exist for s ∈ {2′, 3, 4′, 5}, see [Big] and [Cox]. The book
[Bou], the R. M. Foster census of trivalent symmetric graphs, contains all known examples
with up to 512 vertices.

Main Theorem.
Let L be a finite, connected, trivalent and regular graph, k ≥ 3 a natural number,

and assume that the pair (k, L) satisfies nonpositive curvature condition (NPC).
(1) If L is s-regular with s ∈ {3, 4′, 4′′, 5} and if k ≥ 4, then there exists a unique (k, L)-

complex X, it is symmetric, and the group Aut(X) is flexible.
(2) If one of the following conditions is satisfied:

(i) L is s-regular with s ∈ {1, 2′},
(ii) L is 2′′-regular and k is even,
then there are two distinct symmetric (k, L)-complexes, and in each case the group
Aut(X) is rigid.

(3) If L is 2′′-regular and k is odd, then no (k, L)-complex is symmetric.
(4) If L is 3-regular and k = 3, then there are at least as many distinct (k, L)-complexes

as Aut(L)-invariant elements in the cohomology group H1(L,Z2). In each such case,
the group Aut(X) is weakly rigid.

(5) If L is 5-regular and k = 3, then there are two distinct symmetric (k, L)-complexes,
and for each of them the group Aut(X) is flexible.

Remark. The methods of this paper are not sufficient to handle completely the cases when
L is 3- or 4-regular and k = 3. In the 4-regular case, even the existence of symmetric (3, L)-
complexes is not clear. In the 3-regular case, symmetric (3, L)-complexes are not classified
completely. We should point out however that in the former case the group Aut(X) of all
automorphisms of any symmetric (3, L)-complex is flexible, while in the latter case it is
weakly rigid. This follows from the proof of the uniqueness part of Proposition 6.1 below.

As a by-product of the methods developed to prove the Main Theorem we get the
following.

Corollary. Let L ba an s-regular graph and k ≥ 3 be a natural number, and assume that
the pair (k, L) satisfies condition (NPC). If s ∈ {1, 2′, 2′′}, or if s ∈ {3, 4′, 4′′, 5} and k = 3,
then there exist uncountably many pairwise nonisomorphic (k, L)-complexes.

Structure of the paper. In Section 2 we recall the general inductive construction of
(k, L)-complexes, emphasising the role of label systems — combinatorial data which rule
steps of the construction. In Section 3 we introduce characteristic functions of label systems
and apply them in Section 4 to construct combinatorial invariants of small subcomplexes
in (k, L)-complexes. In Section 5 we study conditions for label systems expressed in terms
of the invariants of Section 4, and in Section 6 we show that these conditions determine
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(k, L)-complexes uniquely. In Section 7 we apply the results of the previous sections to
prove Main Theorem and Corollary.

Acknowledgments. This paper is a part of my PhD thesis defended in June 1994 at
the University of Wroc law. I would like to thank my advisor Tadeusz Januszkiewicz for
the inspiration and numerous discussions. The final version was written during my visit
in Max Planck Institut in Bonn in 1996, where I found perfect working conditions and a
unique scientific atmosphere.

2. Inductive construction of (k, L)-complexes.

For the rest of this paper we assume that k and L satisfy the assertions of the Main
Theorem.

In this section we sketch the inductive construction of (k, L)-complexes — a special
case of a more general construction described in Section 1 of [BB]. We emphasise the
features of this construction which are important for our purposes.

2.1. (k, L)-complexes with convex boundary.

Let K be a polygonal complex with all faces k-gonal. A vertex w of K is called 1-free
if the link L(w,K) consists of a single edge; it is 2-free if L(w,K) is isomorphic to a star
of vertex in a 3-valent tree, i.e. it consists of three edges adjacent to a common vertex;
it is 3-free if L(w,K) is isomorphic to a star of edge in a 3-valent tree. An edge of K is
called free if it is adjacent to exactly one face of K, and it is interior if it is adjacent to
three faces of K. A vertex w is interior if the link L(w,K) is isomorphic to L.

K is a (k, L)-complex with convex boundary, if each its vertex is either interior or
m-free, for some m ∈ {1, 2} if k ≥ 4, and for some m ∈ {1, 2, 3} if k = 3. Note that
then each edge of K is either interior or free, and define the boundary ∂K of K to be the
subcomplex of K consisting of all its free edges.

2.2. Initial step of the construction.

Arrange a disjoint collection of k-gonal faces around an initial vertex v, by glueing
them along edges according to the pattern provided by L, so that the link of resulting
complex at v is isomorphic to L, and only the edges which are adjacent to v have been
glued. We will denote the complex obtained in this way by B1.

2.3. General inductive step.

Note that the complexB1 constructed above is a (k, L)-complex with convex boundary,
and therefore we can apply everything that follows below in this subsection to it, thus
initiating a process of induction.

Let K be a finite (k, L)-complex with convex boundary, and assume ∂K ̸= ∅. Denote

by K̃ the complex obtained from K by glueing two new k-gonal faces to each its free
edge, without performing any other glueings. For each free (i.e. not interior) vertex w

of K consider a label map λw : L(w, K̃) → L, which is by definition locally injective, i.e.
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injective on star of each vertex in L(w, K̃). Denoting by V∂K the set of the boundary
vertices of K, call a collection Λ = {λw : w ∈ V∂K} of such label maps a label system for
K.

Note that under the nonpositive curvature condition (NPC), the only cases when a
label map λw is not injective (globally) are:
(i) w is 2-free and g(L) ≤ 4;

(ii) w is 1-free and g(L) = 3.
A 3-free vertex w, by convexity, appears only when k = 3. But then it follows from (NPC)
that g(L) ≥ 6, which implies injectivity of λw. In any case, we have

(2.3.1) λw|L(w,K) is injective.

For each free vertex w of K consider a copy Bw1 of a complex isomorphic to B1 and
an isomorphism γw : L(vw, B

w
1 ) → L, where vw is the interior vertex of Bw1 . Consider the

composition map (γw)−1 ◦λw : L(w, K̃) → L(vw, B
w
1 ), and denote by ψw : st(w, K̃) → Bw1

the naturally induced map on stars of the corresponding vertices. Define a complex K =
K(Λ) by

(2.3.2) K(Λ) = K̃ ∪ψw1
Bw1

1 ∪ . . . ∪ψwr
Bwr

1 ,

where w1, . . . , wr are all the vertices of ∂K.
Note that, due to (2.3.1), K is naturally embedded in K. Moreover, all the vertices

of K become interior in K, while K is again a finite (k, L)-complex with nonempty convex
boundary.

To obtain a (k, L)-complex, start with the complex B1 of 2.2, and apply to it the
inductive step of the construction succesively infinitely many times. At each step it is
possible to contract K to K, by which the resulting complex X is contractible and in
particular simply connected. We omit further details related to the construction.

2.4. Reparametrizations in L.
A (k, L)-complex obtained by the inductive construction of 2.2 and 2.3 depends a priori

on the choices of label systems at corresponding steps of construction. In the next sections
we study this dependence in detail. In the lemma below we make the first observation in
this direction.

Let K be a (k, L)-complex with convex boundary. If w ∈ ∂K and λw, λ
′
w : L(w, K̃) →

L are label maps, we say that λ′w is obtained from λw by a reparametrization in L, if
λ′w = g ◦ λw for some g ∈ Aut(L).

2.4.1. Lemma. If Λ′ is obtained from a label system Λ for a (k, L)-complex K with
convex boundary by reparametrizations in L of its label maps, then the complexes K(Λ)
and K(Λ′) are isomorphic by an isomorphism extending the identity map idK .

The proof of above Lemma consists of straightforward manipulations with reparame-
trizations, and we omit it.

2.5. Lemma. Any (k, L)-complex X can be obtained by means of the inductive construc-
tion of 2.2 and 2.3, starting from any its vertex, if the label systems at succesive steps of
the construction are chosen appropriately.
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Proof: Consider a subcomplex K of X with convex boundary. We shall interpret the
star st(K,X) of K in X, as a complex K(Λ) obtained from K by a step described in 2.3,
with use of some label system Λ. Recall that the star st(K,X) is the subcomplex of X
consisting of all faces of K, and faces adjacent to the boundary vertices of K. We then
have the obvious map µ : K̃ → st(K,X), extending idK , well defined up to transpositions
at pairs of faces not contained in K, and adjacent to its boundary edges. For w ∈ V∂K, let
µw : L(w, K̃) → L(w, st(K,X)) be the induced map on links. Consider any isomorphism
γw : L(w, st(K,X)) → L , and put

(2.5.1) λw = γw ◦ µw,

thus getting the label system Λ = {λw : w ∈ V∂K}. A standart checking shows that
the complexes st(K,X) and K(Λ) are then canonically isomorphic by the isomorphism
extending idK .

The lemma follows by applying above observation succesively to the subcomplexes in
X obtained from the star of any vertex by iterating the operation of taking the star.

3. Order systems and characteristic functions.

By Lemma 2.5, each (k, L)-complex can be obtained by a variant of the inductive
construction of Section 2. The choices of label systems provide freedom in the construction,
allowing nonisomorphic complexes to appear. In this section we introduce characteristic
functions of label systems — the notion usefull in the study of the uniqueness question for
(k, L)-complexes.

3.1. Order systems in L.

Let p be a vertex and e an edge of L.

3.1.1. Let x, y be the vertices adjacent to e. Denote by Ox and Oy the pairs of edges
in L, distinct from e, adjacent to x and y respectively, with distinguished order for each
pair. We will call them ordered pairs of peripheral edges at edge e, and the whole system
(e,Ox, Oy) an order-system at e.

3.1.2. Let x, y, z be all the vertices of st(p, L) distinct from p. Denote by Ox, Oy and
Oz the pairs of edges in L not contained in st(p, L), adjacent to x, y and z respectively,
with distinguished order for each pair. We will call them ordered pairs of peripheral edges
at star of vertex p, and the whole system (p,Ox, Oy, Oz) an order-system at star of p.

3.1.3. Let x, y, z and u be all the vertices of st(e, L) not adjacent to e. The system
(e,Ox, Oy, Oz, Ou) consisting of ordered pairs of edges in L, adjacent to x, y, z and u
respectively, and not contained in st(e, L), will be called an order-system at star of e, and
its elements ordered pairs of peripheral edges at star of e.

3.1.4. Denote by Op the cyclically ordered triple of edges in L adjacent to p. We will
call (p,Op) a cyclic order at p.
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All orders at pairs of peripheral edges, or at a triple in the last case, will be called
peripheral orders.

3.2. Good label systems.
Assume we have fixed order-systems in L of all four types 3.1.1-3.1.4, and let K be a

finite (k, L)-complex with convex boundary, as defined in 2.1. Denote by V∂K the set of
vertices of K contained in the boundary ∂K.

We will say that a label system Λ = {λw : w ∈ V∂K} is good, if its label maps satisfy
the following conditions:
(i) if w is 1-free in K, then λw(L(w,K)) = e, where e is the edge appearing in the fixed

order-system of type 3.1.1 in L;
(ii) if w is 2-free in K, then λw(L(w,K)) = st(p, L), where p is the vertex appearing in

the fixed order-system of type 3.1.2 in L;
(iii) if w is 3-free in K, then λw(L(w,K)) = st(e, L), where e is the edge appearing in the

fixed order-system of type 3.1.3 in L.

3.2.1. Remark. Note that, due to transitivity of the group Aut(L) on the vertices and
edges of L, each label system can be made good by the appropriate reparametrizations in
L of its label maps.

3.3. Characteristic functions of good label systems.
Let E∂K denote the set of boundary edges of K. For each edge d ∈ E∂K consider

the set of two faces in K̃ \ K adjacent to d and call it the set of peripheral faces at d.
Let Λ = {λw : w ∈ V∂K} be a good label system for K. Then for each vertex w ∈ V∂K
the label map λw establishes a correspondence between the elements of sets of peripheral
faces at edges of E∂K adjacet to w, and elements of peripheral pairs of edges in the fixed
order system of the corresponding type. Using the above correspondence, for each edge
d ∈ E∂K we can induce an order on the set of peripheral faces at d by any of the two
label maps λw and λv, where w and v are the endpoints of d. We define a characteristic
function χΛ : E∂K → Z2 by

χΛ(d) =
{

0 if the two induced orders as above agree;
1 otherwise.

3.4. K-equivalences of label maps and label systems.
Given w ∈ V∂K, we say that label maps λ, λ′ : L(w, K̃) → L are K-equivalent if

λ|L(w,K) = λ′|L(w,K), i.e. their restrictions to the link of K coincide. Label systems
Λ = {λw : w ∈ V∂K} and Λ′ = {λ′w : w ∈ V∂K} are K-equivalent if for each w ∈ V∂K the
label maps λw and λ′w are K-equivalent.

The significance of the notions of K-equivalence and characteristic function of a good
label system becomes apparent due to the following lemma, which will be used later for
the classifications. Characteristic functions will be used also to define local invariants of
(k, L)-complexes in the next section.

3.5. Lemma. If two good label systems Λ = {λw : w ∈ V∂K} and Λ′ = {λ′w : w ∈ V∂K}
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are K-equivalent, and have equal characteristic functions, then the complexes K(Λ) and
K(Λ′) are isomorphic by an isomorphism extending the identity map idK .

Proof: Consider the systems {ψw : w ∈ V∂K} and {ψ′
w : w ∈ V∂K} of glueing maps used

to get K(Λ) and K(Λ′) respectively, as in (2.3.2). By construction of K(Λ), each map ψw
is a restriction to st(w, K̃) of some isomorphism γw : st(w,K(Λ)) → Bw1 , and similarly ψ′

w

is a restriction of some γ′w : st(w,K(Λ′)) → Bw1 . Consider the following conditions for a
combinatorial map f : K(Λ) → K(Λ′):

(3.5.1) f |K = idK ;

(3.5.2) f |st(w,K(Λ)) = (γ′w)−1 ◦ γw for w ∈ V∂K.

Note that, due to K-equivalence of label systems Λ and Λ′, each condition of form (3.5.2)
is compatible with condition (3.5.1). Furthermore, due to equality of the characteristic
functions, conditions of form (3.5.2) are pairwise compatible with each other. It is then
clear that (3.5.1) and (3.5.2) determine f uniquely, and that f is an isomorphism. This
finishes the proof.

4. Local invariants.

In this section we introduce a collection of invariants for small subcomplexes of (k, L)-
complexes.

Let X be a (k, L)-complex. A 1-ball in X is a star of a vertex in X. By the proof of
Lemma 2.5, we can view any star of an edge, of a face or of a 1-ball inX as obtained from the
corresponding edge, face or 1-ball in one step as in 2.3, with use of some appropriate label
system. We shall use the characteristic function of such a system to define a combinatorial
invariant of the corresponding star. The invariant will be defined in different ways in the
corresponding cases of s-regularity of L. To show that in each case the invariant is well
defined, we will use the following Proposition which extracts what is important for our
purposes from Propositions 1-5 of [DM].

4.1. Proposition.
(1) If L is 1-regular then any automorphism of L which fixes a vertex p in L preserves a

cyclic order at p;
(2) If L is 2′-regular then any automorphisms of L which fixes an edge e in L (but not

necessarily its endpoints) either preserves both peripheral orders at e, or reverses them
both;

(3) If L is 2′′-regular then
(a) any automorphisms of L fixing edge e as oriented edge (i.e. together with its

endpoints) either preserves both peripheral orders at e, or reverses them both;
(b) any automorphism of L fixing an edge e, but reversing its orientation, reverses

exactly one of the peripheral orders.
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(4) If L is 3-regular then any automorphism of L fixing a vertex p either preserves all
three peripheral orders at star of p, or reverses them all, for some proper choice of the
orders (it is not true for each choice).

(5) If L is s-regular for some s ∈ {4′, 4′′, 5} then any automorphism of L fixing a vertex
p either preserves all three peripheral orders at star of p, or reverses exactly two of
them.

(6) The converse of any of above statements is true, i.e. for any change of peripheral
orders mentioned in any of the cases (1)-(5) above, there exists a corresponding auto-
morphism of L which results with exactly this change.

4.2. Local invariants. Let L be an s-regular graph and X a (k, L)-complex.

4.2.1. The case s = 1. To introduce an invariant in this case, we view the star of an edge
in X as obtained from this edge by a step of construction as in 2.3. This requires however
some explanation, since a complex consisting of a single edge is not a (k, L)-complex with
convex boundary.

Let K consist of a single edge d = (w1, w2). Define K̃ to consist of three k-gonal faces
glued to d along some of their edges. Define a label system Λ for K to consist of two label
maps λi : L(wi, K̃) → L. Then one obtains an extension K(Λ) according to the pattern
determined by Λ, as in (2.3.2). It follows by the arguments as in the proof of Lemma 2.5
that the star of any edge in X can be viewed as obtained by the construction as above.

To get an invariant, fix a cyclic order (p,Op) in L, as defined in 3.1.4. A label system
Λ is said to be good, if λi(L(wi,K)) = p, for i = 1, 2. Given such a good label system,

induce twice the cyclic order from L to the set of three faces of K̃, by pulling back with
respect to the label maps λi, and define characteristic function χΛ : {d} → Z2 by

χΛ(d) =
{

0 if the two induced cyclic orders agree;
1 otherwise.

The value of χΛ does not depend on reparametrizations in L for which the label maps λi
remain good since, by Proposition 4.1(1), the stabilizer of vertex p in the group Aut(L)
preserves the cyclic order Op. This allows to define an invariant ε by

εX(d) = χΛ(d),

where Λ is a good label system as above.

4.2.2. The case s = 2′. Given a face f in a (k, L)-complex X, put K = f , and consider
a good label system Λ of form (2.5.1) for K. Since, by Proposition 4.1(2), an element
[χΛ] ∈ H1(∂K,Z2) determined by the characteristic function χΛ (viewed as a 1-cocycle in
∂K) does not depend on the choice of Λ, put

ξX(f) = [χΛ].

4.2.3. The case s = 2′′. Consider a variant of the order system of form 3.1.3 consisting
of an oriented edge e and two orders at peripheral pairs at e. Let f+ be an oriented face
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in a (k, L)-complex X, and w its vertex. Then f+ determines orientation of the edge df
corresponding to f in link L(w,X). Put K = f . We will say that a label map λw for K
is good if it maps df onto e preserving orientations.

Consider a good label system Λ of form (2.5.1) for K (which clearly exists due to the
transitivity of Aut(L) on the set of oriented edges in L) and note that, due to Proposition
4.1(3)(a), the cohomology element

ξ′′X(f+) = [χΛ]

does not depend on reparametrizations in L for which Λ remains good in the above sense.
Note also that, due to Proposition 4.1(3)(b), if f± denote the oppositely oriented faces

related to a nonoriented face f then

(4.2.3.1) ξ′′X(f+) ̸= ξ′′X(f−) if k is odd, and ξ′′X(f+) = ξ′′X(f−) if k is even.

4.2.4. The case s = 3 and k = 3. For a vertex v in X, let K = st(v,X) and let Λ
be a good label system of form (2.5.1) for K. Since, by Proposition 4.1(4), an element
[χΛ] ∈ H1(∂K,Z2) does not depend on the choice of Λ, put

ηX(v) = [χΛ].

4.2.5. The case s ∈ {4′, 4′′, 5} and k = 3. Let v, K and Λ be as in 4.2.4. Then, by
Propostion 4.1(5), the number

σX(v) =
∑

d∈E∂K

χΛ(d) ∈ Z2

does not depend on the choice of Λ.

We summarize results of this section in the following.

4.3. Lemma. The quantities ε, ξ, η and σ defined in 4.2 are the invariants of combinatorial
isomorhism for the corresponding complexes st(K,X).

In the case of s = 3 this requires the following more carefull statement. Let T :
st2(v,X) → st2(w,X) be an isomorphism, and put T1 = T |∂st(v,X). Then T1 pulls back
ηX(w) to ηX(v), i.e. T ∗

1 (ηX(w)) = ηX(v).

5. Conditions for label systems, related to local invariants.

The general construction of (k, L)-complexes, as presented in Section 2, does not
provide any control on local invariants of resulting complexes. In this section we describe
a method to get such a control, in terms of restrictive conditions for label systems used
at corresponding steps of construction. We use letter C as a variable, speaking about
condition C whenever refering to a condition as above. We prove that conditions of this
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type are consistent, i.e. that there exist label systems which satisfy them. We also prove
that these conditions determine resulting complexes uniquely.

5.1. Description of conditions.
An n-ball is a complex obtained in n steps of the construction as in 2.2 and 2.3. A

center of an n-ball is the initial vertex of this construction. A (k, L)-n-ball is an n-ball
obtained by the construction with use of data k and L. Note that each (k, L)-n-ball is a
(k, L)-complex with convex boundary.

Let L be an s-regular graph and let K be a (k, L)-n-ball. In all the cases 5.1.1-5.1.6
below LCK denotes the set of all good label systems for K satisfying condition C.

5.1.1. The case s = 1. Denote by EoutK the set of all outer edges in K, i.e. those which
have at least one vertex on the boundary ∂K. Consider any function εC : EoutK → Z2,
and define condition C by

Λ ∈ LCK iff εK(Λ)(e) = εC(e) for each e ∈ EoutK.

5.1.2. The case s = 2′, or s = 2′′ and k is even. Denote by FoutK the set of all outer
faces of K, i.e. those which contain at least one boundary vertex. Consider any function
ξ : FoutK → Z2, and define condition C by

Λ ∈ LCK iff ξK(Λ)(f) = ξC(f) for each f ∈ FoutK.

In the above equation we use the canonical identification of H1(∂f, Z2) with Z2.
Note that due to (4.2.3.1), when G is 2′′-regular and k is even, we can view ξ′′ as an

invariant of nonoriented faces. In this case we define condition C in exactly the same way
as above, replacing ξ by ξ′′.

5.1.3. The case s = 2′′ and k is odd. For each face f ∈ FoutK choose an orientation,
and denote the set of so oriented faces by F oroutK (note that only one of the two oriented
faces corresponding to a given face of FoutK is contained in F oroutK). Consider a function
ξ′′C : F oroutK → Z2, and define condition C by

Λ ∈ LCK iff ξ′′
K(Λ)

(f) = ξ′′C(f) for each f ∈ F oroutK.

5.1.4. The case s = 3 and k = 3. Denote by K− the concentric (n− 1)-ball contained
in K. For each v ∈ V∂K

−, consider the boundary ∂st(v,K) of the 1-ball in K centered
at v, and an element ηC(v) ∈ H1(∂st(v,K), Z2), thus getting a sheaf ηC of cohomology
elements. Define condition C by

Λ ∈ LCK iff ηK(Λ)(v) = ηC(v) for each v ∈ V∂K
−.

5.1.5. The case s ∈ {4′, 4′′, 5} and k = 3. Under notation of 5.1.4, consider a function
σC : V∂K

− → Z2 and define condition C by

Λ ∈ LCK iff σK(Λ)(v) = σC(v) for each v ∈ V∂K
−.
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5.1.6. The case s ∈ {3, 4′, 4′′, 5} and k ≥ 4. Note that in this case no local invariant
has been defined. We consider then the empty condition C for label systems, i.e. the one
giving no restrictions. This means that the space LCK consists of all good label systems for
K.

The rest of this section is devoted to proving the following two results.

5.2. Proposition. Let C be any of the conditions described in 5.1. Then the set LCK of
good label systems satisfying this condition is nonempty.

5.3. Proposition. Any two label systems Λ1,Λ2 ∈ LCK are K-equivalent, after appropri-
ate reparametrizations in L for the label maps of one of them.

Note that, in view of Lemmas 2.4.1 and 3.5, Proposition 5.3 is the first step towards
the proof that each condition C determines the resulting complex K uniquely up to an
isomorphism extending the identity map idK . The proof of this fact will be completed in
Section 6.

Before strarting the proofs of above propositions, we need to establish some facts
concerning the notion of an order structure in a trivalent graph.

5.4. Order structures in trivalent graphs.

By a trivalent graph we mean a connected graph Q, each vertex of which is adjacent
either to one or to three edges. Q is a tree, if it is simply connected, i.e. contains no
circuit. Let ∂Q be the set of all boundary vertices of Q, i.e. those which are adjacent to
only one edge. We define three types of order structures in a trivalent graph Q.

Type 1. Let v be an interior (i.e. not boundary) vertex of Q. An order atlas at v consists
of a cyclic order at v (i.e. a cyclic order for the triple of edges of Q adjacent to v). An
order structure of this type in Q consists of a collection of fixed order atlasses at all interior
edges of Q.

Type 2. Let e be an interior edge of Q, i.e. the one whose both endpoints are interior.
An order atlas at e consists of two order systems at e (as described in 3.1.1), that differ by
the simultaneous change of both peripheral orders. An order structure in Q of this type
consists of a collection of fixed order atlesses at all interior edges of Q.

Type 3. We shall need also a variant of order structure consisting of order atlasses at
oriented interior edges of Q. Order atlasses of this structure consist of two order systems
that differ by the simultaneous change of both peripheral orders. Moreover, order atlass at
oppositely oriented edge consists of order systems that differ from the ones in the original
atlas by exactly one peripheral order.

5.4.1. Example: Aut(L)-invariant order structures in L. Let graph L be s-regular.
In the three cases corresponding to s = 1, s = 2′ and s = 2′′ we define invariant order
structures in L of types 1, 2 and 3 respectively. In each case we do this simply by taking
an orbit of the action of Aut(L) on the set of order systems in L of type 3.1.4, 3.1.1 and
4.2.3 respectively. We arrange order systems from any such orbit into a collection of order
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atlasses at vertices, edges and oriented edges of L. Order structures as above are well
defined due to the corresponding cases of Proposition 4.1.

5.4.2. Lemma. Consider an Aut(L)-invariant order structure in L, as in 5.4.1, and a
trivalent tree Q equipped with an order structure of the same type. Then there exists a
combinatorial immersion i : Q→ L preserving order structures. Moreover, this immersion
is unique up to a reparametrization in L.

Proof: Consider an s-arc in Q, where s = 1 for type 1, and s = 2 for types 2 and 3. (If
there is no such arc in Q then there is no order structure and you can immerse Q arbitrarily
getting uniqueness by the regularity of L.) Immerse this s-arc into L arbitrarily and note
that in each case there exists a unique order preserving extension of any such immersion
to the whole Q.

The uniqueness part of Lemma follows from the uniqueness of above extension.

5.5. Proof of Proposition 5.2.

The proof goes separately for the corresponding cases of s-regularity of L.

The case s = 1. Consider a vertex w ∈ V∂K, and an edge e = (w, u) not contained in
∂K. The vertex qe, which represents edge e, is then interior in the link L(w,K) (note
that this link is a trivalent tree). Since vertex u of e is interior in K, the link L(u,K)
is isomorphic to L. Recall that we have fixed a cyclic order system at a vertex p in L,
and now we extend it in a unique way to an Aut(L)-invariant order structure in L. We
induce this order structure to L(u,K), which clearly does not depend on the choice of
an isomorphism with L. This determines a cyclic order on the set Fe of three faces of K
adjacent to e. Condition C requires that εK(Λ)(e) = εC(e), and so a cyclic order on Fe
induced by a label map λw ∈ Λ has to agree or not agree with the above order according
to the value of εC(e). Thus the value of εC(e) determines a cyclic order at vertex qe in
L(w,K).

By the argument as above applied to all outer nonboundary edges of K, condition
C determines order structures in links L(w,K) at all boundary vertices w of K. The
restrictions λw|L(w,K) of label maps in any Λ ∈ LCK have to preserve these order structures
(with respect to the Aut(L)-invariant order structure in L defined above).

To construct a label system Λ ∈ LCK , immerse links L(w,K) into L in a way preserving
order structures, which is possible by Lemma 5.4.2. Extend these immersions arbitrarily
and use reparametrizations in L to get a good label system Λ′ = {λ′w : w ∈ V∂K}. Consider
the complex K(Λ′), and note that εK(Λ′)(e) = εC(e) for all outer nonboundary edges of K.

Now, for each boundary edge d of K, compare the values of εK(Λ′)(d) and εC(d). Whenever

they are different, change the label map λ′w at one endpoint w of d, at the peripheral pair

of edges in L(w, K̃) corresponding to the peripheral pair of faces in K̃ adjacent to d.

After these changes we get a label system Λ which clearly belongs to LCK , which
finishes the proof in this case.

The case s ∈ {2′, 2′′}. Consider the case s = 2′. Let f be a face in K, which is outer, but
has no edge contained in the boundary ∂K, and denote by w its unique vertex contained
in ∂K. Note that the edge ef representing f is inner in the link L(w,K). Since all the
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vertices u of f other than w are inner in K, the links L(u,K) are isomorphic to L. We
have fixed in L an order system at an edge, as in 3.1.1, and now we extend it in a unique
way to an Aut(L)-invariant order structure in L of the corresponding type 2. We induce
this order structure to links L(u,K), and consider order atlasses at edges representing face
f in these links. The equality ξK(Λ)(f) = ξC(f) determines then an order atlas at the edge

ef in L(w,K) which has to be preserved by any label map λw of a label system Λ ∈ LCK .
Applying this to all faces as f in K, we get that condition C determines order structures
in links L(w,K) at all boundary vertices of K.

To construct a label system Λ ∈ LCK , choose label preserving immersions of links
L(w,K) into L, extend them arbitrarily and reparametrize in L to get a good label system
Λ′ = {λ′w : w ∈ V∂K}. By construction, we have ξK(Λ′)(f) = ξC(f) for all outer faces f

of K with no edge contained in ∂K. Consider an outer face g with at least one edge e
contained in ∂K. If ξK(Λ′)(g) ̸= ξC(g), choose one endpoint w of e and modify λw only

at the peripheral pair of edges in L(w, K̃) representing the peripheral pair of faces in K̃
adjacent to e. Repeating this for all faces g as above, we get a new label system Λ which
now belongs to LCK .

The argument for the case s = 2′′ is the same.

The case s = 3 and k = 3. Choose an arbitrary good label system Λ′ = {λ′w : w ∈ V∂K},
and for each vertex v ∈ V∂K

−, compare the cohomology elements ηK(Λ′)(v) and ηC(v).

If they are different, consider a subgraph A(v) in ∂st(v,K) consisting of all edges not

contained in ∂K. Note that A(v) is isomorphic to L(v, K̃−), and hence it is a tree and
contains not all edges of ∂st(v,K).

Claim. Let η ∈ H1(∂st(v,K), Z2) and let h be a Z2-valued function defined on the set
of edges of A(v). Then h can be extended to a 1-cocycle in ∂st(v,K) representing the
cohomology element η.

Proof of Claim: Let ϕ be any 1-cocycle representing η. Define a set of edges δ(h, ϕ) :=
{e ∈ A(v) : h(e) ̸= ϕ(e)} and assume that its cardinality satisfies |δ(h, ϕ)| ̸= 0 (otherwise
there is nothing to prove). Choose any edge e ∈ δ(h, ϕ) and note that, since A(v) is a
tree, the removal of e splits A(v) into two components. Choose any of those components
and denote by V the set of its vertices (among them one vertex adjacent to e). Let
M := {mv : v ∈ V } be the set of modifications, each consisting of changing the values at
all edges in ∂st(v,K) adjacent to v. Applying all modifications from M to the 1-cocycle
ϕ, we get a cohomological to it cocycle ϕ′ with |δ(h, ϕ′)| = |δ(h, ϕ)| − 1. Then the Claim
follows by induction.

It follows from the Claim that we can modify any cocycle representing ηK(Λ′)(v) into

a cocycle representing ηC(v), by changing its values only at edges outside A(v), that is
at edges contained in ∂K. For each such edge e (contained in ∂K) at which we want to
change the value of a corresponding cocycle, choose a vertex w adjacent to e and modify
λ′w at the pair of peripheral edges in L(w, K̃) corresponding to the pair of peripheral faces

in K̃ adjacent to e. By the fact that each boundary edge of K is contained in exactly one
1-ball st(v,K) with v ∈ ∂K−, modifications as above do not influence one another, and
produce a new label system Λ which belongs to LCK . This finishes the proof of Proposition
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5.2 in this case.

The case s ∈ {4′, 4′′, 5} and k = 3. Choose an arbitrary good label system Λ′ = {λ′w :
w ∈ V∂K} and, for each vertex v ∈ V∂K

−, compare the numbers σK(Λ)(v) and σC(v).

Whenever they are different, choose a boundary edge e of K belonging to ∂st(v,K). Such
edge always exists, as it was argued in the proof of the previous case. Choose one endpoint
w of e and modify the label map λ′w at the peripheral pair of edges in L(w, K̃) corresponding

to the peripheral pair of faces in K̃ adjacent to e. For the same reason as in the previous
case, modifications as above do not influence one another, and so the new label system Λ
belongs to LCK .

The case s ∈ {3, 4′, 4′′, 5} and k ≥ 4. Since in this case the set LCK consists of all good
label systems for K, it is clearly nonempty.

This finishes the proof of Proposition 5.2.

5.6. Proof of Proposition 5.3.

In the cases when s ∈ {1, 2′, 2′′} K-equivalence up to reparametrization in L fol-
lows from the uniqueness part in Lemma 5.4.2 applied to restrictions λw|L(w,K) of label
maps, which are order preserving as in the proof of Proposition 5.2. The cases when
s ∈ {3, 4′, 4′′, 5} are even easier. The group Aut(L) is then so big that, by convexity of the
boundary of K, any two label maps are K-equivalent up to reparametrization in L. This
finishes the proof.

6. Local conditions determine (k, L)-complexes uniquely.

This section is devoted to the proof of the following.

6.1. Proposition. Let L be an s-regular graph and K be a (k, L)-n-ball as defined at
the beginning of 5.1. Assume that either s /∈ {4′, 4′′} or k ≥ 4. Let C be a condition of
the corresponding form as in 5.1. Then for any two label systems Λ,Λ′ ∈ LCK there exists
an isomorphism between the complexes K(Λ) and K(Λ′) which extends the identity map
idK . Moreover, if s ∈ {1, 2′, 2′′}, or if s = 3, k = 3 and n ≥ 2, then this isomorphism is
unique, while there is more than one such isomorphism in the other cases.

Before proving Proposition 6.1 we introduce the notion of modifications of character-
istic functions and give two preparatory lemmas.

6.2. Modifications of characteristic functions.

Consider the following elementary modifications of a function χ : E∂K → {0, 1}:

(i) change the values of χ at both edges of ∂K adjacent to a 1-free vertex of K;

(ii) change the value of χ at any edge of ∂K adjacent to a 1-free vertex of K;

(iii) change the values of χ at all three edges of ∂K adjacent to a 2-free vertex of K;

(iv) change the values of χ at any two of the three edges of ∂K adjacent to a 2-free vertex
of K;

(v) change the values of χ at all four edges of ∂K adjacent to a 3-free vertex of K;
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(vi) change the values of χ at any two of the four edges of ∂K adjacent to a 3-free vertex
w of K such that the vertices in L(w,K) corresponding to those two edges are at
polygonal distance 2 in L(w,K).

A modification is a finite sequence of elementary modifications of the forms as below:
(1) when s = 1, no modifications;
(2) when s = 2′ or s = 2′′, form (i) only;
(3) when s = 3, forms (ii) and (iii);
(4) when s = 4′ or s = 4′′, forms (ii), (iv) and (v);
(5) when s = 5, forms (ii), (iv) and (vi).

6.3. Lemma. Let χ′ : E∂K → {0, 1} be a function obtained from a characteristic function
χ = χΛ of a label system Λ by a modification (suitable for the corresponding regularity
type of L). Then there exists a K-equivalent to Λ label system Λ′, obtained from Λ by
reparametrizations in L, such that χ′ = χΛ′ .

Proof: The Lemma follows from Propositions 1-5 of [DM], where the pointwise stabilizers
of subgraphs in L corresponding to the links of K at the boundary vertices are described
(compare Proposition 4.1, which contains however not enough information).

6.4. Lemma. In addition to hypotheses of Proposition 6.1, assume that if s ∈ {3, 4′, 4′′, 5}
and k = 4 then g(L) ≥ 5. Then the characteristic functions of any two K-equivalent label
systems from LCK differ at most by a modification (suitable for the corresponding case of
regularity of L).

In the proof of Lemma 6.4 we shall use the following.

6.4.1. Sublemma. Let G be a connected finite graph and let EG denote the set of its
edges. Let h1, h2 : EG → Z2 be two functions such that

(6.4.2)
∑
e∈EG

h1(e) =
∑
e∈EG

h2(e) ∈ Z2.

Then h2 can be obtained from h1 by a finite sequence of modifications consisting of chang-
ing the values of the function at some two edges adjacent to a common vertex in G.

Proof of Sublemma: Consider the set δ(h1, h2) := {e ∈ EG : h1(e) ̸= h2(e)} and
note that, by equality (6.4.2), it consists of even number of edges. Assume that the
cardinality |δ(h1, h2)| ̸= 0 (otherwise there is nothing to prove) and choose any two distinct
edges e1, e2 ∈ δ(h1, h2). By connectivity of G, there is an arc (v0, . . . , vn) in G such that
(v0, v1) = e1 and (vn−1, vn) = e2. Let mi be a modification which changes values at
edges (vi−1, vi) and (vi, vi+1). Denote by h′1 a function obtained from h1 by the sequence
m1, . . . ,mn−1 of modifications. Then clearly |δ(h′1, h2)| = |δ(h1, h2)|−2, and the Sublemma
follows by induction.

Proof of Lemma 6.4: Let Λ = {λw : w ∈ V∂K} and Λ′ = {λ′w : w ∈ V∂K} be two
K-equivalent label systems for K, both satisfying condition C.

The case s = 1. Let e = (u,w) be a boundary edge of K. Assume that λw and λ′w differ

at the peripheral pair of edges in L(w, K̃) corresponding to the peripheral pair of faces
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in K̃ adjacent to e. Since εK(Λ)(e) = εK(Λ′)(e), it follows that λu and λ′u differ at the
peripheral pair of edges in L(u,K) corresponding to the peripheral pair of faces as above.
But this means that χΛ(e) = χΛ′(e). By repeating this argument we get χΛ = χΛ′ , which
finishes the proof in this case.

The case s ∈ {2′, 2′′}. Denote by V 2,3
∂ K the set of all 2-free and 3-free edges of ∂K.

Let Ω∂K be the family of connected components of |∂K| \ V 2,3
∂ K (where |∂K| denotes the

topological space underlying graph ∂K). Components a ∈ Ω∂K are clearly polygonal arcs
without endpoints, and for each such arc a denote by Ea the set of its edges (consisting
of k − 2 or k − 3 elements). Let fa be the face of K containing a. Note that we can view
the stars of fa in K(Λ) and K(Λ′) as obtained from fa by a step of construction as in 2.3
(compare the proof of Lemma 2.5). Label systems for fa used in the two corresponding
steps can be assumed to consist of equal label maps at vertices of fa not in ∂K. Similarly,
at vertices of fa contained in ∂K, above label systems for fa can be assumed to consist
of (restrictions of) the corresponding label maps for K. Then, it follows from equalities
ξK(Λ)(fa) = ξK(Λ′)(fa) and from K-equivalence of Λ with Λ′ that for each a ∈ Ω∂K∑

e∈Ea

χΛ(e) =
∑
e∈Ea

χΛ′(e) ∈ Z2.

But then, by Sublemma 6.4.1, χΛ can be modified to χΛ′ separately and independantly at
disjoint sets Ea.

The argument in the case s = 2′′ is the same.

The case s = 3 and k = 3. Recall that given a vertex v ∈ ∂K−, A(v) is a subgraph in
∂st(v,K) consisting of all edges which are nonboundary in K. Moreover, A(v) is a tree
and contains not all edges of ∂st(v,K). Donote by ∂st(v,K)/A(v) the quotient graph
obtained from ∂st(v,K) by shrinking A(v) to a vertex. (This quotient graph may contain
both loops and more than one edge between two vertices.) By the fact that A(v) is a tree,
we get the following.

Claim. Let ϕ1, ϕ2 be Z2-valued 1-cocycles in ∂st(v,K), and let ϕ1|A(v) = ϕ2|A(v). Denote
by ϕi/A(v) the 1-cocycle in ∂st(v,K)/A(v) obtained from ϕi by forgetting the values at
edges of A(v). Then [ϕ1] = [ϕ2] iff [ϕ1/A(v)] = [ϕ2/A(v)].

Proof of Claim: By contractibility of A(v), the natural homomorphism H1∂st(v,K) →
H1∂st(v,K)/A(v) is an isomorphism. Its inverse can be defined on 1-cocycles level by
extension with values zero at the edges of A(v). From this the Claim follows easily.

Recall that for all vertices v ∈ ∂K− we can view the stars of the 1-balls st(v,K) in
K(Λ) and K(Λ′) respectively, as obtained by a step of construction as in 2.3. We can
assume that label systems for st(v,K) used in those steps consist of pairwise equal label
maps at vertices of ∂st(v,K) not in ∂K, and that their label maps at vertices contained in
∂K coincide with the (restrictions of) the label maps from Λ and Λ′ respectively. By K-
equivalence of Λ with Λ′, characteristic functions of the label systems as above for st(v,K)
coincide at edges of A(v). By equalities ηK(Λ)(v) = ηK(Λ′)(v) , in view of above Claim,

it follows that [χΛ/A(v)] = [χΛ′/A(v)] in the cohomology group H1(∂st(v,K)/A(v), Z2),
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where χΛ/A(v) is a 1-cocycle in ∂st(v,K)/A(v) obtained by restricting χΛ to the edges
contained in ∂st(v,K) only.

Observe that each vertex of ∂st(v,K) which is not in A(v) is a 2-free vertex of K,
and that all edges of ∂K adjacent to it are contained in ∂st(v,K). It follows that we can
obtain χΛ′/A(v) from χΛ/A(v) by elementary modifications of form (iii) at such vertices.
It is also clear that we can do this independantly for all 1-balls st(v,K) with v ∈ ∂K−.
This gives a modification of Λ to Λ′ and the Lemma follows in this case.

The case s = 5 and k = 3. For a vertex v ∈ ∂K− put ∂vK := ∂K ∩ st(v,K). By
reasoning as in the previous case we get∑

e⊂∂vK

χΛ(e) =
∑

e⊂∂vK

χΛ′(e) ∈ Z2

for all v ∈ ∂K−. We want to apply Sublemma 6.4.1 to the graph ∂vK and to the restricted
characteristic functions χΛ|∂vK and χΛ′ |∂vK .

First, observe the following two properties which follow easily from the construction
2.3:
(i) each vertex of ∂vK not contained in A(v) is 2-free in K and all edges of ∂K adjacent

to it are contained in ∂vK;
(ii) each vertex w of ∂vK ∩ A(v) is 3-free in K and two edges of ∂K adjacent to w

are contained in the same graph ∂vK iff the polygonal distance between the vertices
representing them in the link L(w,K) is 2.
By above properties, elementary modifications of form (iv) and (vi) correspond to

modifications as in Sublemma in the corresponding graphs ∂vK. We also have the follow-
ing.

Claim. Each graph ∂vK is connected.

Proof of Claim: Consider the vertices of ∂vK ∩ A(v) and note that, by connectivity of
∂st(v,K), any vertex of ∂vK can be joined by an arc in ∂vK with one of them. Note also
that we can split these vertices uniquely into two sets U and W so that any two vertices
u ∈ U and w ∈W can be joined by a 5-arc in A(v). Clearly, it is enough to show that any
two vertices u, w as above can be also joined by an arc in ∂vK.

By 5-regularity of ∂st(v,K), any 5-arc is contained in a circuit of length g, where g is
the girth of ∂st(v,K). Consider such a circuit c for the 5-arc a joining u and w in A(v),
and note that the complement of a in c joins u and w in ∂vK. This finishes the proof of
Claim.

In view of above properties (i) and (ii) and the Claim, applying Sublemma 6.4.1, we
can modify χΛ to χΛ′ separately and independantly on graphs ∂vK.

The case s ∈ {3, 4′, 4′′, 5} and k ≥ 5. Let Ω∂K be the family of polygonal arcs in ∂K, as
defined above in the case s ∈ {2′, 2′′}. We state without proof the following easy

Claim. Each arc in Ω∂K consists of at least two edges.

By above Claim, each edge in E∂K has a 1-free vertex of K as an endpoint. It follows that
any two functions χ1, χ2 : E∂K → {0, 1} differ by a sequence of elementary modifications
of form (ii), and hence the Lemma for this case.
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The case s ∈ {3, 4′, 4′′, 5}, k = 4 and g(L) ≥ 5. Consider the family Ω∂K of polygonal
arcs in ∂K, as in the previous case. Then we have the following.

Claim. Let a0 ∈ Ω∂K be an arc consisting of one edge, and let v be its endpoint. Then v
is 2-free in K and each distinct arc a ∈ Ω∂K with endpoint v consists of two edges.

We will show that any two functions χ1, χ2 : E∂K → {0, 1} differ by a modification.
Start with modifying χ1 at edges corresponding to arcs in Ω∂K consisting of one edge. By
above Claim χ1 can be made equal to χ2 at all such edges by a sequence of elementary
modifications of forms (iii) or (iv) (depending on s). Then another sequence of elementary
modifications of form (ii) at remaining edges makes χ1 equal χ2 at all edges.

This finishes the proof of Lemma 6.4.

6.5. Proof of Proposition 6.1.
Since the main part of proof is based on Lemma 6.4, consider first the case to which

this lemma does not apply, i.e. the case s ∈ {3, 4′, 4′′, 5}, k = 4 and g(L) = 4. It is easy to
realize that the only trivalent 3-arc-transitive graph with girth 4 is the full bipartite graph
K(3, 3). It is known that the only (4,K(3, 3))-complex is (isomorphic to) the product of
two infinite trivalent trees, see Remark on page 110 of [Ron]. This implies both Proposition
6.1 and the Main Theorem in this case.

As for the other cases, let Λ and Λ′ be two label systems for K satisfying condition C.
By Lemma 2.4.1, the complexes K(Λ) and K(Λ′) do not depend, up to an isomorphism
extending idK , on reparametrizations in L for label maps in Λ and Λ′. Thus, due to
Proposition 5.3, we can assume that Λ and Λ′ are K-equivalent. Then, by Lemma 6.4,
characteristic functions χΛ and χΛ′ differ by a modification, and using Lemma 6.3 we again
modify, say Λ, by reparametrizations in L, so that now Λ and Λ′ are K-equivalent and
have equal characteristic functions. This allows to apply Lemma 3.5, which finishes the
proof of the existence part of Proposition 6.1.

To see the uniqueness in the cases when s ∈ {1, 2′, 2′′}, consider isomorphisms T1, T2 :
K(Λ) → K(Λ′), both extending the identity automorphism idK . Note that in these cases
no nontrivial automorphism of L fixes pointwise a star of vertex or a star of edge in L.
This implies that if w is a 2-free or a 3-free vertex of K then T1|st(w,K(Λ)) = T2|st(w,K(Λ))

and hence the isomorphisms T1 and T2 coincide on the subcomplex

M = K ∪
⋃

{st(w,K(Λ)) : w is 2-free or 3-free in K}.

But then, the links L(v,M) at those 1-free vertices v of K, which have a 2-free or a 3-free
neighbour, are big enough to imply the coincidence of T1 and T2 on the stars st(v,K(Λ)).
Since ∂K is connected, repeating this argument we get T1 = T2.

The similar argument as above applies to the case when s = 3, k = 3 and n ≥ 2,
with the following changes. In this case no nontrivial automorphism of L fixes pointwise
a star of edge in L. Thus isomorphisms T1 and T2 coincide on stars of 3-free vertices of
K. The following Claim allows then to extend this coincidence to the whole K(Λ), by the
argument of the previous case.

Claim. If k = 3 and K is an n-ball with n ≥ 2, then at least one vertex in K is 3-free,
and no one is 1-free.
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Proof of Claim: Constructing an n-ball from an (n − 1)-ball, we glue 1-balls to it,
according to the pattern provided by a label system. The boundary of this n-ball consists
then of parts of boundaries of the glued 1-balls. If k = 3, no boundary vertex of the 1-ball
is 1-free, and so this is also true for K. On the other hand, if k = 3 then all the vertices
of B̃n−1 \Bn−1 become 3-free in Bn, and the Claim follows.

Now, we proceed to prove that there is more than one isomorphism between K(Λ)
and K(Λ′) extending idK in the following three remaining cases:
(1) s = 3, k = 3 and K is a 1-ball;
(2) s = 3 and k ≥ 4;
(3) s ∈ {4′, 4′′, 5}.

We start with the observation that in the case (1) only 2-free vertices appear at ∂K,
and in the case (2) only 2-free and 1-free ones. In any of these two cases there exists
an automorphism of L fixing pointwise an edge (respectively a star of vertex) in L, and
transposing all pairs of its peripheral edges; in the case (3) the same is true also for a star
of edge in L (see [DM], Propositions 1-5).

Using these facts we can construct in any of the cases (1)-(3) an isomorphism between

K(Λ) and K(Λ′) that differs from a given one at all pairs of peripheral faces in K̃. This
finishes the proof of Proposition 6.1.

7. Proofs of the main results.

Proof of Main Theorem.
In the cases (2), (3) and (5) in the Main Theorem a necessary condition for a (k, L)-

complex X to be symmetric is that the appropriate local invariant (viewed as a Z2-valued
function on the set of vertices, edges, faces or oriented faces of X) is constant. In the case
(1) no local invariant has been defined, and we will formally speak about constant local
invariant as condition satisfied by all (k, L)-complexes in this case (compare 5.1.6). In the
remaining case (4) a necessary condition is that the cohomology element ηX(w) is invariant
under some 1-arc-transitive subgroup Γ in the group Aut(∂st(w,X)), but the methods of
this paper are not sufficient to handle this case completely. Therefore we shall consider
a stronger condition that ηX(w) is Aut(∂st(w,X))-invariant for each vertex w ∈ X, and
that for any two vertices w and u of X the elements ηX(w) and ηX(u) coincide via some
(and hence any) isomorphism of the (boundaries of) corresponding stars of vertices. We
shall take this condition as a definition for the invariant η to be constant on X.

By (4.2.3.1) the invariant ξ′′ cannot be constant on a (k, L)-complex X if L is 2′′-
regular and k is odd. In all other cases (k, L)-complexes with constant local invariants
exist due to Proposition 5.2. The uniqueness in each case (except s ∈ {4′, 4′′} and k = 3)
follows from Proposition 6.1, since this proposition allows to construct inductively an
isomorphism between any two (k, L)-complexes with constant and equal local invariants.
The symmetry follows by the same argument, and the properties of automorphism groups
Aut(X) follow then from the uniqueness (or nonuniqueness) part of Proposition 6.1.
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Proof of Corollary.
Consider a local invariant of 4.2 suitable for the local data (k, L), and note that in

any case it can take at least two distinct values. On the other hand, by Proposition
5.2, we have an absolute freedom in determining the values of the invariant during the
inductive construction of a (k, L)-complex. Playing with this we easily get the conclusion
of Corollary.
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