Lista publikacji:


 

 

[50] Szczotka, W. (2016) GI/GI/1 Queues with Infinite Means of Service Time and Interarrival Time, Probab. Math. Stat. Vol. 36, No 2, pp. 267-278
[49] Dziwisz, A. and Szczotka, W. (2016) Functional Central Limit Theorems for seeds in a Linear Birth and Growth Model, Applicationes Mathematicae, 43.1, pp. 1-24.
[48] Magdziarz, M. and Szczotka, W. (2016) Quenched trap model for Levy flights, Communications in Nonlinear Science and Numerical Simulation, 30, pp. 5-14.
[47] Magdziarz, M., Szczotka, W. and Żebrowski, P. (2013) Asymptotic behavior of random walks with correlated temporal structure, Proc. R. Soc. A 2013 469, 20130419, published 28 August 2013
[46] Czystołowski, M., Szczotka, W. and Woyczyński, A.W. (2013) L'evy processes as heavy traffic limits of tandem queues with heavy tails, Probab. Math. Stat. Vol. 33, No 1, pp 107-120.
[45] Magdziarz, M., Metzler, R., Szczotka, W. and Żebrowski, P. (2012) Correlated continuous-time random walks in external force fields, Physical Review E 85, 051103, pp 051103-1-- 051103-5.
[44] Magdziarz, M., Metzler, R., Szczotka, W. and Żebrowski, P. (2012) Correlated continuous-time random walks-scaling limits and Langevin picture Journal of Statistical Mechanics: Theory and Experiment, P04010, DOI:10.1088/1742-5468/2012/04/P04010.
[43] Magdziarz, M., Szczotka, W. and Żebrowski, P. (2012) Langevin picture of L'evy walks and their extensions Journal of Statistical Physics, (J Stat Phys) Volume 147, Issue 1, pp 74-96, DOI: 10.1007/s10955-012-0465-2.
[42] Szczotka, W. and Żebrowski, P. (2012) On fully coupled continuous time random walks, Applicationes Mathematicae, Vol. 39, No. 1, pp. 87-102.
[41] Szczotka, W. and Żebrowski, P. (2011) Chain Dependent Continuous Time Random Walk, Probab. Math. Stat. Vol. 31, No. 2, pp. 239-261.
[40] Czystołowski, M. and Szczotka, W.(2010) Queueing approximation of suprema of spectrally positive L'evy process, Queueing Systems 64: pp. 305 – 323 DOI 10.1007/s11134-009-9160-7.
[39] Czystołowski, M. and Szczotka, W. (2009) A note on properties of stationary waiting time distribution and its heavy traffic limit, SANKHYA: The Indian Journal of Statistics, Vol 71-A, Part1, pp. 35-48.
[38] Kasprzyk, A. and Szczotka, W.(2008) Two types of Markov property, Probab. Math. Stat. Vol. 28, No.1,
pp. 75-90.
[37] Czystołowski, M. and Szczotka, W. (2007) Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails, Probab. Math. Stat. Vol. 27, No.1, pp. 109-123.
[36] Kasprzyk, A. and Szczotka, W.(2006) Covariance structure of Markov processes in wide sense of order
$k \geq 1$, Applicationes Mathematicae, Vol. 33, No.2, pp. 129-143.
[35] Szczotka, W. (2006) Weak convergence of mutually independent $X_n^B$ and $X_n^A$ under weak convergence of $ X_n\equiv X_n^B-X_n^A, $ Applicationes Mathematicae Vol. 33, No.1, pp. 41-49.
[34] Szczotka, W. and Woyczyński, W.A. (2004) Heavy tailed Dependent Queues in Heavy Traffic,
Probab. Math. Stat. 24.1, pp.67-96.
[33] Szczotka, W. and Woyczyński, W.A. (2003) Distributions of Suprema of L'evy Processes via Heavy Traffic Invariance Principle, Probab. Math. Stat. 23, pp 251-172.
[32] Quine, M.P. and Szczotka, W. (2000) A General Linear Birth and Growth Model. Advances in Applied Probability, Vol. 32, No. 4. pp 1027-1050.
[31] Szczotka, W. (1999) Tightness of the stationary waiting time in heavy traffic. Advances in Applied Probability, Vol. 31, No. 3, pp 788-794.
[30] Quine, M.P. and Szczotka, W. (1999) Existence and Positivity of the Limit in Processes with a Branching Structure. Journal of Applied Probability, (March, Vol. 36, No. 1).
[29] Chang, Kuo-Hwa, Serfozo, R.F. and Szczotka, W. (1998) Treelike Queueing Networks: Asymptotic Stationarity and Heavy Traffic. The Annals of Applied Probability, Vol. 8, pp. 541-568.
[28] Quine, M.P. and Szczotka, W. (1998) Asymptotic Normality for Generalized Branching Processes. Stochastic Models, Vol. 14 No. 4, pp 833-848.
[27] Szczotka, W.(1997) Asymptotic stationarity of tandem queues. Probability and Mathematical Statistics, Vol. 17, pp. 47-63.
[26] Szczotka, W. (1997) Asymptotic stationarity of queueing processes. Journal of Applied Probability, Vol. 34, pp. 1041-1048.
[25] Quine, M.P. and Szczotka, W. (1995) Aspects of the critical case of a generalized Galton-Watson branching process. Branching Processes: Proceedings of the First World Congress, September 1993, Edited by C.C. Heyde.
[24] Quine, M.P. and Szczotka, W. (1994) Generalizations of the Bienaym'e - Galton - Watson branching process via its representation as an imbedded random walk. The Annals of Applied Probability, Vol.4, No 4, 1206-1222.
[23] Szczotka, W. and Topolski, K. (1994) Conditioned limit theorems for the difference of waiting time and queue lenghth. Advances in Applied Probability Vol. 26, 242-257.
[22] Serfozo, R.F., Szczotka, W. and Topolski, K. ( 1994) Relating the waiting time in a queueing system to the queue length. Stochastic Processes and Their Applications, Vol. 52, 119-134.
[21] Szczotka, W.(1993) Asymptotic stationarity of multichannel queues. Advances in Applied Probability, Vol. 25, 203-220.
[20] Szczotka, W. (1992) A Distributional form of Little law in heavy traffic. The Annals of Probability, Vol. 20, No.2, 790-800.
[19] Szczotka, W. (1992) Weak convergence under mappings. Probability and Mathematical Statistics,
Vol. 13, 39-58.
[18] Szczotka, W. (1990) An note on Skorohkod representation. Bulletin of the Polish Academy of Sciences, Mathematics, Vol. 38, No 1-12, 35-39.
[17] Szczotka, W. and Kelly, F.P. (1990) Asymptotic stationarity of queues in series and the heavy traffic approximation. The Annals of Probability, Vol. 18, No.3, 1232-1248.
[16] Szczotka, W. (1990) Exponential approximation of waiting time and queue size for queues in heavy traffic. Advances in Applied Probability, Vol. 22, 230-240.
[15] Szczotka, W. and Topolski, K. (1989) Conditioned limit theorem for the pair of waiting time and queue line processes. Queueing Systems, Vol. 5, 393-400.
[14] Szczotka, W. (1988) Extreme value theory for asymptotically stationary sequences. Probability and Mathematical Statistics, Vol. 9, 51-86.
[13] Szczotka, W. (1986) Stationary representation of queues II. Advances in Applied Probability, Vol. 18, 849-859.
[12] Szczotka, W. (1986) Stationary representation of queues I. Advances in Applied Probability, Vol. 18, 815-848.
[11] Szczotka, W. (1986) Joint distribution of waiting time and queue size for single server queues. Dissertationes Mathematicae, Vol. 248.
[10] Szczotka, W. (1981) On some modification of Invariance Principle. Bulletin de l'Academie Polonaise des Sciences Mathematiques Astronomiques et Physiques, Vol. 29, 523-529.
[9] Szczotka, W. (1980) Central limit theorem in $D[0,\infty)$ for Breakdown processes. Probability and Mathematical Statistics, Vol. 1., 49-57.

[8] Szczotka, W. (1980) A Characterization of the distribution of an exchangeable random vector.
Bulletin de l'Academie Polonaise des Sciences, Serie de Sciences Mathematiques, Astronomiques et Physiques, Vol. 28, 411-414.
[7] Dziubdziela, W. and Szczotka, W. (1979) On weak convergence of order statistics. Bulletin de l'Academie Polonaise des Sciences, Serie de Sciences Mathematiques Astronomiques et Physiques Vol. 27. 499-501.
[6] Szczotka, W. (1979) Factorization of the distribution function of waiting time. Zastosowania Matematyki (Applicationes Mathematicae) Vol. 26, 365-631.

[5] Szczotka, W. (1977) An Invariance Principle for queues in Heavy Traffic. Mathematische Operationsforschung und Statistik, Series Optimization. Vol. 8, 591-631.
[4] Szczotka, W. (1976) An Invariance Principle for queues in Heavy Traffic. Bulletin de l'Academie Polonaise des Sciences, Serie de Sciences Mathematiques, Astronomiques et Physiques, Vol. 24, 1119-1125.
[3] Szczotka, W. (1976) A case of the Invariance Principle. Bulletin de l'Academie Polonaise des Sciences, Serie de Sciences Mathematiques, Astronomiques et Physique, Vol. 24, 1113-1117.
[2] Szczotka, W. (1974) Immediate service time in a Benes-type G/G/1 queueing system. Zastosowania Matematyki (Applicationes Mathematicae), vol. 14, 357-363.
[1] Szczotka, W. (1973) Queueing systems with ``fagging'' service channel, Zastosowania Matematyki, (Applicationes Mathematicae), vol. 13, 439-463.